1
|
Angulo V, Bleichrodt RJ, Dijksterhuis J, Erktan A, Hefting MM, Kraak B, Kowalchuk GA. Enhancement of soil aggregation and physical properties through fungal amendments under varying moisture conditions. Environ Microbiol 2024; 26:e16627. [PMID: 38733112 DOI: 10.1111/1462-2920.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Soil structure and aggregation are crucial for soil functionality, particularly under drought conditions. Saprobic soil fungi, known for their resilience in low moisture conditions, are recognized for their influence on soil aggregate dynamics. In this study, we explored the potential of fungal amendments to enhance soil aggregation and hydrological properties across different moisture regimes. We used a selection of 29 fungal isolates, recovered from soils treated under drought conditions and varying in colony density and growth rate, for single-strain inoculation into sterilized soil microcosms under either low or high moisture (≤-0.96 and -0.03 MPa, respectively). After 8 weeks, we assessed soil aggregate formation and stability, along with soil properties such as soil water content, water hydrophobicity, sorptivity, total fungal biomass and water potential. Our findings indicate that fungal inoculation altered soil hydrological properties and improved soil aggregation, with effects varying based on the fungal strains and soil moisture levels. We found a positive correlation between fungal biomass and enhanced soil aggregate formation and stabilization, achieved by connecting soil particles via hyphae and modifying soil aggregate sorptivity. The improvement in soil water potential was observed only when the initial moisture level was not critical for fungal activity. Overall, our results highlight the potential of using fungal inoculation to improve the structure of agricultural soil under drought conditions, thereby introducing new possibilities for soil management in the context of climate change.
Collapse
Affiliation(s)
- Violeta Angulo
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Robert-Jan Bleichrodt
- Microbiology Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Amandine Erktan
- Eco&Sols, University Montpellier, IRD, INRAe, CIRAD, Montpellier SupAgro, Montpellier, France
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Mariet M Hefting
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bart Kraak
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Stevanović KS, Čepkenović B, Križak S, Pajić T, Todorović NV, Živić MŽ. ATP modulation of osmotically activated anionic current in the membrane of Phycomyces blakesleeanus sporangiophore. Sci Rep 2023; 13:11897. [PMID: 37488205 PMCID: PMC10366193 DOI: 10.1038/s41598-023-39021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Ion channels are vital components of filamentous fungi signaling in communication with their environment. We exploited the ability of the apical region of growing sporangiophores of Phycomyces blakesleeanus to form membrane-enveloped cytoplasmic droplets (CDs), to examine ion currents in the filamentous fungi native plasma membrane. In hypoosmotic conditions, the dominant current in the CDs is ORIC, an osmotically activated, anionic, outwardly rectified, fast inactivating instantaneous current that we have previously characterized. Here, we examined the effect of ATP on ORIC. We show that CDs contain active mitochondria, and that respiration inhibition by azide accelerates ORIC inactivation. ATP, added intracellularly, reduced ORIC run-down and shifted the voltage dependence of inactivation toward depolarized potentials, in a manner that did not require hydrolysis. Notably, ATP led to slowing down of ORIC inactivation, as evidenced by an increased time constant of inactivation, τin, and slower decline of τin during prolonged recordings. Flavonoids (genistein and quercetin) had the effect on ORIC opposite to ATP, acting as current inhibitors, possibly by disrupting the stabilizing effect of ATP on ORIC. The integration of osmotic sensing with ATP dependence of the anionic current, typical of vertebrate cells, is described here for the first time in filamentous fungi.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Tanja Pajić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| | - Nataša V Todorović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, Belgrade, 11000, Serbia.
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, Belgrade, 11158, Serbia
| |
Collapse
|
3
|
Stevanović KS, Čepkenović B, Križak S, Živić MŽ, Todorović NV. Osmotically Activated Anion Current of Phycomyces Blakesleeanus-Filamentous Fungi Counterpart to Vertebrate Volume Regulated Anion Current. J Fungi (Basel) 2023; 9:637. [PMID: 37367573 DOI: 10.3390/jof9060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Collapse
Affiliation(s)
- Katarina S Stevanović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Bogdana Čepkenović
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Strahinja Križak
- Institute of Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Miroslav Ž Živić
- Faculty of Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Nataša V Todorović
- Institute of Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
de Jong TG, Hulshof J, Prokert G. Modelling fungal hypha tip growth via viscous sheet approximation. J Theor Biol 2020; 492:110189. [PMID: 32035095 DOI: 10.1016/j.jtbi.2020.110189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 02/03/2023]
Abstract
In this paper we present a new model for single-celled, non-branching hypha tip growth. The growth mechanism of hypha cells consists of transport of cell wall building material to the cell wall and subsequent incorporation of this material in the wall as it arrives. To model the transport of cell wall building material to the cell wall we follow Bartnicki-Garcia and Gierz in assuming that the cell wall building material is transported in straight lines by an isotropic point source. To model the dynamics of the cell wall, including its growth by new material, we use the approach of Campàs and Mahadevan, which assumes that the cell wall is a thin viscous sheet sustained by a pressure difference. Furthermore, we include a novel equation which models the hardening of the cell wall as it ages. We validate the new model by comparing it to experimental data.
Collapse
Affiliation(s)
- T G de Jong
- Media Analytics and Computing laboratory, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
| | - J Hulshof
- Department of Mathematics, Faculty of Sciences VU University Amsterdam, De Boelelaan 1105, HV Amsterdam 1081, the Netherlands.
| | - G Prokert
- Center for Analysis, Scientific Computing and Applications (CASA), TU Eindhoven, P.O Box 513, Eindhoven, the Netherlands.
| |
Collapse
|
5
|
Foster AJ, Ryder LS, Kershaw MJ, Talbot NJ. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2017; 19:1008-1016. [PMID: 28165657 DOI: 10.1111/1462-2920.13688] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The rice blast fungus Magnaporthe oryzae elaborates a specialized cell called an appressorium, which is used to breach the tough outer cuticle of a rice leaf, enabling the fungus entry to host plant cells. The appressorium generates enormous turgor by accumulating glycerol to very high concentrations within the cell. Glycerol accumulation and melanization of the appressorium cell wall collectively drive turgor-mediated penetration of the rice leaf. In this review, we discuss the potential metabolic sources of glycerol in the rice blast fungus and how appressorium turgor is focused as physical force at the base of the infection cell, leading to the formation of a rigid penetration peg. We review recent studies of M. oryzae and other relevant appressorium-forming fungi which shed light on how glycerol is synthesized and how appressorium turgor is regulated. Finally, we provide some questions to guide avenues of future research that will be important in fully understanding the role of glycerol in rice blast disease.
Collapse
Affiliation(s)
- Andrew J Foster
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lauren S Ryder
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael J Kershaw
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
6
|
Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrob Agents Chemother 2017; 61:AAC.01414-16. [PMID: 27872062 DOI: 10.1128/aac.01414-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
Novel antifungal drugs and targets are urgently needed. Group III hybrid histidine kinases (HHKs) represent an appealing new therapeutic drug target because they are widely expressed in fungi but absent from humans. We investigated the mode of action of the widely utilized, effective fungicide fludioxonil. The drug acts in an HHK-dependent manner by constitutive activation of the HOG (high-osmolarity glycerol) pathway, but its mechanism of action is poorly understood. Here, we report a new mode of drug action that entails conversion of the HHK from a kinase into a phosphatase. We expressed Drk1 (dimorphism-regulating kinase), which is an intracellular group III HHK from the fungal pathogen Blastomyces dermatitidis, in Saccharomyces cerevisiae Drk1 engendered drug sensitivity in B. dermatitidis and conferred sensitivity upon S. cerevisiae In response to fludioxonil, Drk1 behaved as a phosphatase rather than as a kinase, leading to dephosphorylation of its downstream target, Ypd1, constitutive activation of the HOG pathway, and yeast cell death. Aspartic acid residue 1140 in the Drk1 receiver domain was required for in vivo phosphatase activity on Ypd1, and Hog1 was required for drug effect, indicating fidelity in HHK-dependent drug action. In in vitro assays with purified protein, intact Drk1 demonstrated intrinsic kinase activity, and the Drk1 receiver domain exhibited intrinsic phosphatase activity. However, fludioxonil failed to induce intact Drk1 to dephosphorylate Ypd1. We conclude that fludioxonil treatment in vivo likely acts on an upstream target that triggers HHK to become a phosphatase, which dephosphorylates its downstream target, Ypd1.
Collapse
|
7
|
Lew RR, Giblon RE, Lorenti MSH. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol 2015. [PMID: 26212074 DOI: 10.1016/j.fgb.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension.
Collapse
Affiliation(s)
- Roger R Lew
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rachel E Giblon
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Miranda S H Lorenti
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
8
|
Potapova TV. Structural and functional organization of growing tips of Neurospora crassa Hyphae. BIOCHEMISTRY (MOSCOW) 2014; 79:593-607. [PMID: 25108323 DOI: 10.1134/s0006297914070025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Data are presented on a variety of intracellular structures of the vegetative hyphae of the filamentous fungus Neurospora crassa and the involvement of these structures in the tip growth of the hyphae. Current ideas on the molecular and genetic mechanisms of tip growth and regulation of this process are considered. On the basis of comparison of data on behaviors of mitochondria and microtubules and data on the electrical heterogeneity of the hyphal apex, a hypothesis is proposed about a possible supervisory role of the longitudinal electric field in the structural and functional organization of growing tips of the N. crassa hyphae.
Collapse
Affiliation(s)
- T V Potapova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
García-Martínez J, Castrillo M, Avalos J. The gene cutA of Fusarium fujikuroi, encoding a protein of the haloacid dehalogenase family, is involved in osmotic stress and glycerol metabolism. Microbiology (Reading) 2014; 160:26-36. [DOI: 10.1099/mic.0.071761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Survival of micro-organisms in natural habitats depends on their ability to adapt to variations in osmotic conditions. We previously described the gene cut-1 of Neurospora crassa, encoding a protein of the haloacid dehalogenase family with an unknown function in the osmotic stress response. Here we report on the functional analysis of cutA, the orthologous gene in the phytopathogenic fungus Fusarium fujikuroi. cutA mRNA levels increased transiently after exposure to 0.68 M NaCl and were reduced upon return to normal osmotic conditions; deletion of the gene resulted in a partial reduction in tolerance to osmotic stress. ΔcutA mutants contained much lower intracellular levels of glycerol than the wild-type, and did not exhibit the increase following hyper-osmotic shock expected from the high osmolarity glycerol (HOG) response. cutA is linked and divergently transcribed with the putative glycerol dehydrogenase gene gldB, which showed the same regulation by osmotic shock. The intergenic cutA/gldB regulatory region contains putative stress-response elements conserved in other fungi, and both genes shared other regulatory features, such as induction by heat shock and by illumination. Photoinduction was also observed in the HOG response gene hogA, and was lost in mutants of the white collar gene wcoA. Previous data on glycerol production in Aspergillus spp. and features of the predicted CutA protein lead us to propose that F. fujikuroi produces glycerol from dihydroxyacetone, and that CutA is the enzyme involved in the synthesis of this precursor by dephosphorylation of dihydroxyacetone-3P.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Departamento of Genética, Facultad of Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Marta Castrillo
- Departamento of Genética, Facultad of Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Javier Avalos
- Departamento of Genética, Facultad of Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
10
|
Muralidhar A, Novis PM, Broady PA, Collings DA, Garrill A. An estuarine species of the alga Vaucheria (Xanthophyceae) displays an increased capacity for turgor regulation when compared to a freshwater species. JOURNAL OF PHYCOLOGY 2013; 49:967-978. [PMID: 27007319 DOI: 10.1111/jpy.12106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/13/2013] [Indexed: 06/05/2023]
Abstract
Turgor regulation is the process by which walled organisms alter their internal osmotic potential to adapt to osmotic changes in the environment. Apart from a few studies on freshwater oomycetes, the ability of stramenopiles to turgor regulate has not been investigated. In this study, turgor regulation and growth were compared in two species of the stramenopile alga Vaucheria, Vaucheria erythrospora isolated from an estuarine habitat, and Vaucheria repens isolated from a freshwater habitat. Species were identified using their rbcL sequences and respective morphologies. Using a single cell pressure probe to directly measure turgor in Vaucheria after hyperosmotic shock, V. erythrospora was found to recover turgor after a larger shock than V. repens. Threshold shock values for this ability were >0.5 MPa for V. erythrospora and <0.5 MPa for V. repens. Recovery was more rapid in V. erythrospora than V. repens after comparable shocks. Turgor recovery in V. erythrospora was inhibited by Gd(3+) and TEA, suggesting a role for mechanosensitive channels, nonselective cation channels, and K(+) channels in the process. Growth studies showed that V. erythrospora was able to grow over a wider range of NaCl concentrations. These responses may underlie the ability of V. erythrospora to survive in an estuarine habitat and restrict V. repens to freshwater. The fact that both species can turgor regulate may indicate a fundamental difference between members of the Stramenopila, as research to date on oomycetes suggests they are unable to turgor regulate.
Collapse
Affiliation(s)
- Abishek Muralidhar
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Phil M Novis
- Allan Herbarium, Landcare Research, P.O. Box 40, Lincoln, 7640, New Zealand
| | - Paul A Broady
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - David A Collings
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
11
|
Yang Q, Yu F, Yin Y, Ma Z. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea. PLoS One 2013; 8:e61307. [PMID: 23585890 PMCID: PMC3621866 DOI: 10.1371/journal.pone.0061307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/07/2013] [Indexed: 12/20/2022] Open
Abstract
Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1) and BcBmp3 (the homologue of Mpk1) in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fangwei Yu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Lew RR. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 2011; 9:509-18. [DOI: 10.1038/nrmicro2591] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Messerli MA, Smith PJS. Construction, theory, and practical considerations for using self-referencing of Ca(2+)-selective microelectrodes for monitoring extracellular Ca(2+) gradients. Methods Cell Biol 2011; 99:91-111. [PMID: 21035684 DOI: 10.1016/b978-0-12-374841-6.00004-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Ca(2+) signaling in the extra- and intracellular domains is linked to Ca(2+) transport across the plasma membrane. Noninvasive monitoring of these resulting extracellular Ca(2+) gradients with self-referencing of Ca(2+)-selective microelectrodes is used for studying Ca(2+) signaling across Kingdoms. The quantitated Ca(2+) flux enables comparison with changes to intracellular [Ca(2+)] measured with other methods and determination of Ca(2+) transport stoichiometry. Here, we review the construction of Ca(2+)-selective microelectrodes, their physical characteristics, and their use in self-referencing mode to calculate Ca(2+) flux. We also discuss potential complications when using them to measure Ca(2+) gradients near the boundary layers of single cells and tissues.
Collapse
Affiliation(s)
- Mark A Messerli
- BioCurrents Research Center, Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
14
|
Pertl H, Pöckl M, Blaschke C, Obermeyer G. Osmoregulation in Lilium pollen grains occurs via modulation of the plasma membrane H+ ATPase activity by 14-3-3 proteins. PLANT PHYSIOLOGY 2010; 154:1921-8. [PMID: 20974894 PMCID: PMC2996032 DOI: 10.1104/pp.110.165696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/24/2010] [Indexed: 05/18/2023]
Abstract
To allow successful germination and growth of a pollen tube, mature and dehydrated pollen grains (PGs) take up water and have to adjust their turgor pressure according to the water potential of the surrounding stigma surface. The turgor pressure of PGs of lily (Lilium longiflorum) was measured with a modified pressure probe for simultaneous recordings of turgor pressure and membrane potential to investigate the relation between water and electrogenic ion transport in osmoregulation. Upon hyperosmolar shock, the turgor pressure decreased, and the plasma membrane (PM) hyperpolarizes in parallel, whereas depolarization of the PM was observed with hypoosmolar treatment. An acidification and alkalinization of the external medium was monitored after hyper- and hypoosmotic treatments, respectively, and pH changes were blocked by vanadate, indicating a putative role of the PM H(+) ATPase. Indeed, an increase in PM-associated 14-3-3 proteins and an increase in PM H(+) ATPase activity were detected in PGs challenged by hyperosmolar medium. We therefore suggest that in PGs the PM H(+) ATPase via modulation of its activity by 14-3-3 proteins is involved in the regulation of turgor pressure.
Collapse
Affiliation(s)
| | | | | | - Gerhard Obermeyer
- Plant Molecular Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
15
|
Lew RR, Kapishon V. Ptk2 contributes to osmoadaptation in the filamentous fungus Neurospora crassa. Fungal Genet Biol 2009; 46:949-55. [PMID: 19772928 DOI: 10.1016/j.fgb.2009.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/17/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
Hyphal tip-growing organisms often rely upon an internal hydrostatic pressure (turgor) to drive localized expansion of the cell. Regulation of the turgor in response to osmotic shock is mediated primarily by an osmotic MAP kinase cascade which activates osmolyte synthesis and ion uptake to effect turgor recovery. We characterized a Neurospora crassa homolog (PTK2) of ser/thr kinase regulators of ion transport in yeast to determine its role in turgor regulation in a filamentous fungi. The ptk2 mutant is osmosensitive, and has lower turgor poise than wildtype. The cause appears to be lower activity of the plasma membrane H+-ATPase. Its role in osmoadaptation is unrelated to the activity of the osmotic MAP kinase cascade. Instead, it acts in an alternative pathway that, like the osmotic MAP kinase cascade, also involves ion transport mediated osmoadaptation.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada.
| | | |
Collapse
|
16
|
Lew RR, Nasserifar S. Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa. MICROBIOLOGY-SGM 2009; 155:903-911. [PMID: 19246761 DOI: 10.1099/mic.0.023507-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fungal cells maintain an internal hydrostatic pressure (turgor) of about 400-500 kPa. In the filamentous fungus Neurospora crassa, the initial cellular responses to hyperosmotic treatment are loss of turgor, a decrease in relative hyphal volume per unit length (within 1 min) and cell growth arrest; all recover over a period of 10-60 min due to increased net ion uptake and glycerol production. The electrical responses to hyperosmotic treatment are a transient depolarization of the potential (within 1 min), followed by a sustained hyperpolarization (after 4 min) to a potential more negative than the initial potential (a driving force for ion uptake). The nature of the transient depolarization was explored in the context of other transient responses to hyperosmotic shock, to determine whether activation of a specific ion permeability or some other rapid change in electrogenic transport was responsible. Changing the ionic composition of the extracellular medium revealed that K(+) permeability increases and H(+) permeability declines during the transient depolarization. We suggest that these changes are due to concerted inhibition of the electrogenic H(+)-ATPase, and an increase in a K(+) conductance. Knockout mutants of known K(+) (tok, trk, trm-8, hak-1) and Cl(-) (a clc-3 homologue) channels and transporters had no effect on the transient depolarization, but trk and hak-1 do play a role in osmoadaptation, as does a homologue of a serine kinase regulator of H(+)-ATPase in yeast, Ptk2.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, Toronto ON M3J 1P3, Canada
| | | |
Collapse
|
17
|
|
18
|
Lew RR, Abbas Z, Anderca MI, Free SJ. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. EUKARYOTIC CELL 2008; 7:647-55. [PMID: 18296620 PMCID: PMC2292622 DOI: 10.1128/ec.00411-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/12/2008] [Indexed: 12/21/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the MID1 (mating-induced death) gene encodes a stretch-activated channel which is required for successful mating; the mutant phenotype is rescued by elevated extracellular calcium. Homologs of the MID1 gene are found in fungi that are morphologically complex compared to yeast, both Basidiomycetes and Ascomycetes. We explored the phenotype of a mid-1 knockout mutant in the filamentous ascomycete Neurospora crassa. The mutant exhibits lower growth vigor than the wild type (which is not rescued by replete calcium) and mates successfully. Thus, the role of the MID-1 protein differs from that of the homologous gene product in yeast. Hyphal cytology, growth on diverse carbon sources, turgor regulation, and circadian rhythms of the mid-1 mutant are all similar to those of the wild type. However, basal turgor is lower than wild type, as is the activity of the plasma membrane H(+)-ATPase (measured by cyanide [CN(-)]-induced depolarization of the energy-dependent component of the membrane potential). In addition, the mutant is unable to grow at low extracellular Ca(2+) levels or when cytoplasmic Ca(2+) is elevated with the Ca(2+) ionophore A23187. We conclude that the MID-1 protein plays a role in regulation of ion transport via Ca(2+) homeostasis and signaling. In the absence of normal ion transport activity, the mutant exhibits poorer growth.
Collapse
Affiliation(s)
- Roger R Lew
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|