1
|
Guanzon DA, Pienkoß S, Brandenburg V, Röder J, Scheller D, Dietze A, Wimbert A, Twittenhoff C, Narberhaus F. Two temperature-responsive RNAs act in concert: the small RNA CyaR and the mRNA ompX. Nucleic Acids Res 2025; 53:gkaf041. [PMID: 39907110 PMCID: PMC11795201 DOI: 10.1093/nar/gkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Bacterial pathogens, such as Yersinia pseudotuberculosis, encounter temperature fluctuations during host infection and upon return to the environment. These temperature shifts impact RNA structures globally. While previous transcriptome-wide studies have focused on RNA thermometers in the 5'-untranslated region of virulence-related messenger RNAs, our investigation revealed temperature-driven structural rearrangements in the small RNA CyaR (cyclic AMP-activated RNA). At 25°C, CyaR primarily adopts a conformation that occludes its seed region, but transitions to a liberated state at 37°C. By RNA sequencing and in-line probing experiments, we identified the Shine-Dalgarno sequence of ompX as a direct target of CyaR. Interestingly, the ompX transcript itself exhibits RNA thermometer-like properties, facilitating CyaR base pairing at elevated temperatures. This interaction impedes ribosome binding to ompX and accelerates degradation of the ompX transcript. Furthermore, we observed induced proteolytic turnover of the OmpX protein at higher temperatures. Collectively, our study uncovered multilayered post-transcriptional mechanisms governing ompX expression, resulting in lower OmpX levels at 37°C compared with 25°C.
Collapse
MESH Headings
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- Yersinia pseudotuberculosis/genetics
- Yersinia pseudotuberculosis/pathogenicity
- Temperature
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Nucleic Acid Conformation
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- RNA Stability
Collapse
Affiliation(s)
- David A Guanzon
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Stephan Pienkoß
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Jennifer Röder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Scheller
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Alisa Dietze
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andrea Wimbert
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Wood NA, Gopinath T, Shin K, Marassi FM. In situ NMR reveals a pH sensor motif in an outer membrane protein that drives bacterial vesicle production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634179. [PMID: 39896486 PMCID: PMC11785132 DOI: 10.1101/2025.01.21.634179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The outer membrane vesicles (OMVs) produced by diderm bacteria have important roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella enterica Typhimurium (STm) activates OMV biogenesis inside the acidic vacuoles of host cells by upregulating the expression of the outer membrane (OM) protein PagC, one of the most robustly activated genes in a host environment. Here, we used solid-state nuclear magnetic resonance (NMR) and electron microscopy (EM), with native bacterial OMVs, to demonstrate that three histidines, essential for the OMV biogenic function of PagC, constitute a key pH-sensing motif. The NMR spectra of PagC in OMVs show that they become protonated around pH 6, and His protonation is associated with specific perturbations of select regions of PagC. The use of bacterial OMVs is an essential aspect of this work enabling NMR structural studies in the context of the physiological environment. PagC expression upregulates OMV production in E. coli, replicating its function in STm. Moreover, the presence of PagC drives a striking aggregation of OMVs and increases bacterial cell pellicle formation at acidic pH, pointing to a potential role as an adhesin active in biofilm formation. The data provide experimental evidence for a pH-dependent mechanism of OMV biogenesis and aggregation driven by an outer membrane protein.
Collapse
Affiliation(s)
- Nicholas A Wood
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| | - Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| | - Kyungsoo Shin
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| | - Francesca M. Marassi
- Department of Biophysics, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226-3548 USA
| |
Collapse
|
3
|
Zhang Y, Xia N, Hu Y, Zhu W, Yang C, Su J. Bactericidal ability of target acidic phospholipids and phagocytosis of CDC42 GTPase-mediated cytoskeletal rearrangement underlie functional conservation of CXCL12 in vertebrates. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2713-2729. [PMID: 39279006 DOI: 10.1007/s11427-023-2625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 09/18/2024]
Abstract
Chemokine CXCL12 plays a crucial role in both direct bactericidal activity and phagocytosis in humans. However, the mechanisms and evolutionary functions of these processes in vertebrates remain largely unknown. In this study, we found that the direct bactericidal activity of CXCL12 is highly conserved across various vertebrate lineages, including Arctic lamprey (Lampetra japonica), Basking shark (Cetorhinus maximus), grass carp (Ctenopharyngodon idella), Western clawed frog (Xenopus tropicalis), Green anole (Anolis carolinensis), chicken (Gallus gallus), and human (Homo sapiens). CXCL12 also has been shown to promote phagocytosis in lower and higher vertebrates. We then employed C. idella CXCL12a (CiCXCL12a) as a model to further investigate its immune functions and underlying mechanisms. CiCXCL12a exerts direct broad-spectrum antibacterial activity by targeting bacterial acidic phospholipids, resulting in bacterial cell membrane perforation, and eventual lysis. Monocytes/macrophages are attracted to the infection sites for phagocytosis through the rapid production of CiCXCL12a during bacterial infection. CiCXCL12a induces CDC42 and CDC42 GTPase activation, which in turn mediates F-actin polymerization and cytoskeletal rearrangement. The interaction between F-actin and Aeromonas hydrophila facilitates bacterial internalization into monocytes/macrophages. Additionally, A. hydrophila is colocalized within early endosomes, late endosomes and lysosomes, ultimately degrading within phagolysosomes. CiCXCL12a also activates PI3K-AKT, JAK-STAT5 and MAPK-ERK signaling pathways. Notably, only the PI3K-AKT signaling pathway inhibits LPS-induced monocyte/macrophage apoptosis. Thus, CiCXCL12a plays key roles in reducing tissue bacterial loads, attenuating organ injury, and decreasing mortality rates. Altogether, our findings elucidate the conserved mechanisms underlying CXCL12-mediated bactericidal activity and phagocytosis, providing novel perspectives into the immune functions of CXCL12 in vertebrates.
Collapse
Affiliation(s)
- Yanqi Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ning Xia
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wentao Zhu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
4
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
5
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
6
|
Kolodziejek AM, Bearden SW, Maes S, Montenieri JM, Gage KL, Hovde CJ, Minnich SA. Yersinia pestis Δ ail Mutants Are Not Susceptible to Human Complement Bactericidal Activity in the Flea. Appl Environ Microbiol 2023; 89:e0124422. [PMID: 36744930 PMCID: PMC9973026 DOI: 10.1128/aem.01244-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
Ail confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y. pestis survival in the flea vector was examined. Rat or human but not mouse sera were bactericidal against a Y. pestis Δail mutant at 28°C in vitro. Complement components deposited rapidly on the Y. pestis surface as measured by immunofluorescent microscopy. Ail reduced the amount of active C3b on the Y. pestis surface. Human sera retained bactericidal activity against a Y. pestis Δail mutant in the presence of mouse sera. However, in the flea vector, the serum protective properties of Ail were not required. Flea colonization studies using murine sera and Y. pestis KIM6+ wild type, a Δail mutant, and the Δail/ail+ control showed no differences in bacterial prevalence or numbers during the early stage of flea colonization. Similarly, flea studies with human blood showed Ail was not required for serum resistance. Finally, a variant of Ail (AilF100V E108_S109insS) from a human serum-sensitive Y. pestis subsp. microtus bv. Caucasica 1146 conferred resistance to human complement when expressed in the Y. pestis KIM6+ Δail mutant. This indicated that Ail activity was somehow blocked, most likely by lipooligosaccharide, in this serum sensitive strain. IMPORTANCE This work contributes to our understanding of how highly virulent Y. pestis evolved from its innocuous enteric predecessor. Among identified virulence factors is the attachment invasion locus protein, Ail, that is required to protect Y. pestis from serum complement in all mammals tested except mice. Murine sera is not bactericidal. In this study, we asked, is bactericidal sera from humans active in Y. pestis colonized fleas? We found it was not. The importance of this observation is that it identifies a protective niche for the growth of serum sensitive and nonsensitive Y. pestis strains.
Collapse
Affiliation(s)
- Anna M. Kolodziejek
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott W. Bearden
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sarah Maes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John M. Montenieri
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Kenneth L. Gage
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Carolyn J. Hovde
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A. Minnich
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
7
|
ompX contribute to biofilm formation, osmotic response and swimming motility in Citrobacter werkmanii. Gene X 2022; 851:147019. [DOI: 10.1016/j.gene.2022.147019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022] Open
|
8
|
Lee S, Chen J. Identification of the genetic elements involved in biofilm formation by Salmonella enterica serovar Tennessee using mini-Tn10 mutagenesis and DNA sequencing. Food Microbiol 2022; 106:104043. [DOI: 10.1016/j.fm.2022.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
|
9
|
Kolodziejek AM, Hovde CJ, Minnich SA. Contributions of Yersinia pestis outer membrane protein Ail to plague pathogenesis. Curr Opin Infect Dis 2022; 35:188-195. [PMID: 35665712 PMCID: PMC9186061 DOI: 10.1097/qco.0000000000000830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Pathogenic Yersinia have been a productive model system for studying bacterial pathogenesis. Hallmark contributions of Yersinia research to medical microbiology are legion and include: (i) the first identification of the role of plasmids in virulence, (ii) the important mechanism of iron acquisition from the host, (iii) the first identification of bacterial surface proteins required for host cell invasion, (iv) the archetypical type III secretion system, and (v) elucidation of the role of genomic reduction in the evolutionary trajectory from a fairly innocuous pathogen to a highly virulent species. RECENT FINDINGS The outer membrane (OM) protein Ail (attachment invasion locus) was identified over 30 years ago as an invasin-like protein. Recent work on Ail continues to provide insights into Gram-negative pathogenesis. This review is a synopsis of the role of Ail in invasion, serum resistance, OM stability, thermosensing, and vaccine development. SUMMARY Ail is shown to be an essential virulence factor with multiple roles in pathogenesis. The recent adaptation of Yersinia pestis to high virulence, which included genomic reduction to eliminate redundant protein functions, is a model to understand the emergence of new bacterial pathogens.
Collapse
Affiliation(s)
- Anna M. Kolodziejek
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J. Hovde
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A. Minnich
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
10
|
Briones AC, Lorca D, Cofre A, Cabezas CE, Krüger GI, Pardo-Esté C, Baquedano MS, Salinas CR, Espinoza M, Castro-Severyn J, Remonsellez F, Hidalgo AA, Morales EH, Saavedra CP. Genetic regulation of the ompX porin of Salmonella Typhimurium in response to hydrogen peroxide stress. Biol Res 2022; 55:8. [PMID: 35193678 PMCID: PMC8862304 DOI: 10.1186/s40659-022-00377-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background Salmonella Typhimurium is a Gram-negative pathogen that causes a systemic disease in mice resembling typhoid fever. During its infective cycle, S. Typhimurium is phagocytized by macrophages and proliferates inside a Salmonella-containing vacuole where Salmonella is exposed and survives oxidative stress induced by H2O2 through modulation of gene expression. After exposure of Salmonella to H2O2, the expression of the porin-encoding gene ompX increases, as previously shown by microarray analysis. Expression of ompX mRNA is regulated at a post-transcriptional level by MicA and CyaR sRNAs in aerobiosis. In addition, sequence analysis predicts a site for OxyS sRNA in ompX mRNA. Results In this work we sought to evaluate the transcriptional and post-transcriptional regulation of ompX under H2O2 stress. We demonstrate that ompX expression is induced at the transcriptional level in S. Typhimurium under such conditions. Unexpectedly, an increase in ompX gene transcript and promoter activity after challenges with H2O2 does not translate into increased protein levels in the wild-type strain, suggesting that ompX mRNA is also regulated at a post-transcriptional level, at least under oxidative stress. In silico gene sequence analysis predicted that sRNAs CyaR, MicA, and OxyS could regulate ompX mRNA levels. Using rifampicin to inhibit mRNA expression, we show that the sRNAs (MicA, CyaR and OxyS) and the sRNA:mRNA chaperone Hfq positively modulate ompX mRNA levels under H2O2-induced stress in Salmonella during the exponential growth phase in Lennox broth. Conclusions Our results demonstrate that ompX mRNA is regulated in response to H2O2 by the sRNAs CyaR, MicA and OxyS is Salmonella Typhimurium. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00377-3.
Collapse
Affiliation(s)
- A C Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - D Lorca
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - A Cofre
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C E Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - G I Krüger
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M S Baquedano
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C R Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - M Espinoza
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - J Castro-Severyn
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica 83 del Norte, Antofagasta, Chile
| | - F Remonsellez
- Laboratorio de Microbiología Aplicada Y Extremófilos, Facultad de Ingeniería Y Ciencias Geológicas, Universidad Católica 83 del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en El Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - A A Hidalgo
- Laboratory of Molecular Pathogenesis and Antimicrobials, Escuela de Química Y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - E H Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - C P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias de La Vida, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
11
|
A unique NLRC4 receptor from echinoderms mediates Vibrio phagocytosis via rearrangement of the cytoskeleton and polymerization of F-actin. PLoS Pathog 2021; 17:e1010145. [PMID: 34898657 PMCID: PMC8699970 DOI: 10.1371/journal.ppat.1010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Many members of the nucleotide-binding and oligomerization domain (NACHT)- and leucine-rich-repeat-containing protein (NLR) family play crucial roles in pathogen recognition and innate immune response regulation. In our previous work, a unique and Vibrio splendidus-inducible NLRC4 receptor comprising Ig and NACHT domains was identified from the sea cucumber Apostichopus japonicus, and this receptor lacked the CARD and LRR domains that are typical of common cytoplasmic NLRs. To better understand the functional role of AjNLRC4, we confirmed that AjNLRC4 was a bona fide membrane PRR with two transmembrane structures. AjNLRC4 was able to directly bind microbes and polysaccharides via its extracellular Ig domain and agglutinate a variety of microbes in a Ca2+-dependent manner. Knockdown of AjNLRC4 by RNA interference and blockade of AjNLRC4 by antibodies in coelomocytes both could significantly inhibit the phagocytic activity and elimination of V. splendidus. Conversely, overexpression of AjNLRC4 enhanced the phagocytic activity of V. splendidus, and this effect could be specifically blocked by treatment with the actin-mediated endocytosis inhibitor cytochalasin D but not other endocytosis inhibitors. Moreover, AjNLRC4-mediated phagocytic activity was dependent on the interaction between the intracellular domain of AjNLRC4 and the β-actin protein and further regulated the Arp2/3 complex to mediate the rearrangement of the cytoskeleton and the polymerization of F-actin. V. splendidus was found to be colocalized with lysosomes in coelomocytes, and the bacterial quantities were increased after injection of chloroquine, a lysosome inhibitor. Collectively, these results suggested that AjNLRC4 served as a novel membrane PRR in mediating coelomocyte phagocytosis and further clearing intracellular Vibrio through the AjNLRC4-β-actin-Arp2/3 complex-lysosome pathway. Vibrio splendidus is ubiquitously present in marine environments and in or on many aquaculture species and is considered to be an important opportunistic pathogen that has caused serious economic losses to the aquaculture industry worldwide. Phagocytosis is the first step of pathogen clearance and is triggered by specific interactions between host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) from invasive bacteria. However, the mechanism that underlies receptor-mediated V. splendidus phagocytosis is poorly understood. In this study, an atypical AjNLRC4 receptor without LRR and CARD domains was found to serve as the membrane receptor for V. splendidus, not the common cytoplasmic NLRs. The Ig domain of AjNLRC4 is replaced with a conventional LRR domain to bind V. splendidus, and the intracellular domain of AjNLRC4 specifically interacts with β-actin to mediate V. splendidus endocytosis in an actin-dependent manner. Endocytic V. splendidus is ultimately degraded in phagolysosomes. Our findings will contribute to the development of novel strategies for treating V. splendidus infection by modulating the actin-dependent endocytosis pathway.
Collapse
|
12
|
Bacterial Outer Membrane Protein OmpX Regulates β1 Integrin and Epidermal Growth Factor Receptor (EGFR) Involved in Invasion of M-HeLa Cells by Serratia proteamaculans. Int J Mol Sci 2021; 22:ijms222413246. [PMID: 34948042 PMCID: PMC8703988 DOI: 10.3390/ijms222413246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/31/2023] Open
Abstract
Opportunistic pathogen Serratia proteamaculans are able to penetrate the eukaryotic cells. The penetration rate can be regulated by bacterial surface protein OmpX. OmpX family proteins are able to bind to host cell surface to the epidermal growth factor receptor (EGFR) and the extracellular matrix protein fibronectin, whose receptors are in return the α5 β1 integrins. Here we elucidated the involvement of these host cell proteins in S. proteamaculans invasion. We have shown that, despite the absence of fibronectin contribution to S. proteamaculans invasion, β1 integrin was directly involved in invasion of M-HeLa cells. Herewith β1 integrin was not the only receptor that determines sensitivity of host cells to bacterial invasion. Signal transfer from EGFR was also involved in the penetration of these bacteria into M-HeLa cells. However, M-HeLa cells have not been characterized by large number of these receptors. It turned out that S. proteamaculans attachment to the host cell surface resulted in an increment of EGFR and β1 integrin genes expression. Such gene expression increment also caused Escherichia coli attachment, transformed with a plasmid encoding OmpX from S. proteamaculans. Thus, an OmpX binding to the host cell surface caused an increase in the EGFR and β1 integrin expression involved in S. proteamaculans invasion.
Collapse
|
13
|
Deletion of Yersinia pestis ail causes temperature sensitive pleiotropic effects including cell lysis that are suppressed by carbon source, cations, or loss of phospholipase A activity. J Bacteriol 2021; 203:e0036121. [PMID: 34398663 PMCID: PMC8508112 DOI: 10.1128/jb.00361-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of phospholipid (PL) and lipopoly- or lipooligo-saccharide (LPS or LOS) asymmetry in the outer membrane (OM) of Gram-negative bacteria is essential but poorly understood. The Yersinia pestis OM Ail protein was required to maintain lipid homeostasis and cell integrity at elevated temperature (37° C). Loss of this protein had pleiotropic effects. A Y. pestis Δail mutant and KIM6+ wild- type were systematically compared for (i) growth requirements at 37° C, (ii) cell structure, (iii) antibiotic and detergent sensitivity, (iv) proteins released into supernates, (v) induction of the heat shock response, and (vi) physiological and genetic suppressors that restored the wild- type phenotype. The Δail mutant grew normally at 28° C but lysed at 37° C when it entered stationary phase as shown by cell count, SDS-PAGE of cell supernatants, and electron microscopy. Immuno-fluorescent microscopy showed that the Δail mutant did not assemble Caf1 capsule. Expression of heat shock promoters rpoE or rpoH fused to a lux operon reporter were not induced when the Δail mutant was shifted from the 28° C to 37° C (p<0.001 and p<0.01 respectively). Mutant lysis was suppressed by addition of 11 mM glucose, 22 or 44 mM glycerol, 2.5 mM Ca2+, or 2.5 mM Mg2+ to the growth medium, or by a mutation in the phospholipase A gene (pldA::miniTn5, ΔpldA, or PldAS164A). A model, accounting for the temperature-sensitive lysis of the Δail mutant and the Ail-dependent stabilization of the OM tetraacylated LOS at 37°C is presented. IMPORTANCE The Gram-negative pathogen, Yersinia pestis, transitions between a flea vector (ambient temperature) and a mammalian host (37° C). In response to 37° C, Y. pestis modifies its outer membrane (OM) by reducing the fatty acid content in lipid A, changing the outer leaflet from being predominantly hexaacylated to being predominantly tetraacylated. It also increases the Ail concentration, so it becomes the most prominent OM protein. Both measures are needed for Y. pestis to evade the host innate immune response. Deletion of ail destabilizes the OM at 37° C causing the cells to lyse. These results show that a protein is essential for maintaining lipid asymmetry and lipid homeostasis in the bacterial OM.
Collapse
|
14
|
Kent JE, Fujimoto LM, Shin K, Singh C, Yao Y, Park SH, Opella SJ, Plano GV, Marassi FM. Correlating the Structure and Activity of Y. pestis Ail in a Bacterial Cell Envelope. Biophys J 2020; 120:453-462. [PMID: 33359463 DOI: 10.1016/j.bpj.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding microbe-host interactions at the molecular level is a major goal of fundamental biology and therapeutic drug development. Structural biology strives to capture biomolecular structures in action, but the samples are often highly simplified versions of the complex native environment. Here, we present an Escherichia coli model system that allows us to probe the structure and function of Ail, the major surface protein of the deadly pathogen Yersinia pestis. We show that cell surface expression of Ail produces Y. pestis virulence phenotypes in E. coli, including resistance to human serum, cosedimentation of human vitronectin, and pellicle formation. Moreover, isolated bacterial cell envelopes, encompassing inner and outer membranes, yield high-resolution solid-state NMR spectra that reflect the structure of Ail and reveal Ail sites that are sensitive to the bacterial membrane environment and involved in the interactions with human serum components. The data capture the structure and function of Ail in a bacterial outer membrane and set the stage for probing its interactions with the complex milieu of immune response proteins present in human serum.
Collapse
Affiliation(s)
- James E Kent
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Lynn M Fujimoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kyungsoo Shin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chandan Singh
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yong Yao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sang Ho Park
- Department Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
15
|
Tsaplina O, Demidyuk I, Artamonova T, Khodorkovsky M, Khaitlina S. Cleavage of the outer membrane protein OmpX by protealysin regulates
Serratia proteamaculans
invasion. FEBS Lett 2020; 594:3095-3107. [DOI: 10.1002/1873-3468.13897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Tatiana Artamonova
- Peter the Great St. Petersburg Polytechnic University Saint‐Petersburg Russia
| | | | | |
Collapse
|
16
|
Khaitlina S, Bozhokina E, Tsaplina O, Efremova T. Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia. Int J Mol Sci 2020; 21:E4025. [PMID: 32512842 PMCID: PMC7311988 DOI: 10.3390/ijms21114025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific "actinase" activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell.
Collapse
Affiliation(s)
- Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (E.B.); (O.T.); (T.E.)
| | | | | | | |
Collapse
|
17
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
18
|
Zhang Y, Ying X, He Y, Jiang L, Zhang S, Bartra SS, Plano GV, Klena JD, Skurnik M, Chen H, Cai H, Chen T. Invasiveness of the Yersinia pestis ail protein contributes to host dissemination in pneumonic and oral plague. Microb Pathog 2020; 141:103993. [PMID: 31988008 DOI: 10.1016/j.micpath.2020.103993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
Yersinia pestis, a Gram-negative bacterium, is the etiologic agent of plague. A hallmark of Y. pestis infection is the organism's ability to rapidly disseminate through an animal host. Y. pestis expresses the outer membrane protein, Ail (Attachment invasion locus), which is associated with host invasion and serum resistance. However, whether Ail plays a role in host dissemination remains unclear. In this study, C57BL/6J mice were challenged with a defined Y. pestis strain, KimD27, or an isogenic ail-deleted mutant derived from KimD27 via metacarpal paw pad inoculation, nasal drops, orogastric infection, or tail vein injection to mimic bubonic, pneumonic, oral, or septicemic plague, respectively. Our results showed that ail-deleted Y. pestis KimD27 lost the ability to invade host cells, leading to failed host dissemination in the pneumonic and oral plague models but not in the bubonic or septicemic plague models, which do not require invasiveness. Therefore, this study demonstrated that whether Ail plays a role in Y. pestis pathogenesis depends on the infection route.
Collapse
Affiliation(s)
- Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China; Translational Medicine Conter, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China.
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Thomson JJ, Plecha SC, Krukonis ES. Ail provides multiple mechanisms of serum resistance to Yersinia pestis. Mol Microbiol 2018; 111:82-95. [PMID: 30260060 DOI: 10.1111/mmi.14140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Ail, a multifunctional outer membrane protein of Yersinia pestis, confers cell binding, Yop delivery and serum resistance activities. Resistance to complement proteins in serum is critical for the survival of Y. pestis during the septicemic stage of plague infections. Bacteria employ a variety of tactics to evade the complement system, including recruitment of complement regulatory factors, such as factor H, C4b-binding protein (C4BP) and vitronectin (Vn). Y. pestis Ail interacts with the regulatory factors Vn and C4BP, and Ail homologs from Y. enterocolitica and Y. pseudotuberculosis recruit factor H. Using co-sedimentation assays, we demonstrate that two surface-exposed amino acids, F80 and F130, are required for the interaction of Y. pestis Ail with Vn, factor H and C4BP. However, although Ail-F80A/F130A fails to interact with these complement regulatory proteins, it still confers 10,000-fold more serum resistance than a Δail strain and prevents C9 polymerization, potentially by directly interfering with MAC assembly. Using site-directed mutagenesis, we further defined this additional mechanism of complement evasion conferred by Ail. Finally, we find that at Y. pestis concentrations reflective of early-stage septicemic plague, Ail weakly recruits Vn and fails to recruit factor H, suggesting that this alternative mechanism of serum resistance may be essential during plague infection.
Collapse
Affiliation(s)
- Joshua J Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Sarah C Plecha
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Eric S Krukonis
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA.,Department of Immunology, Microbiology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
20
|
Davis KM. All Yersinia Are Not Created Equal: Phenotypic Adaptation to Distinct Niches Within Mammalian Tissues. Front Cell Infect Microbiol 2018; 8:261. [PMID: 30128305 PMCID: PMC6088192 DOI: 10.3389/fcimb.2018.00261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 01/30/2023] Open
Abstract
Yersinia pseudotuberculosis replicates within mammalian tissues to form clustered bacterial replication centers, called microcolonies. A subset of bacterial cells within microcolonies interact directly with host immune cells, and other subsets of bacteria only interact with other bacteria. This establishes a system where subsets of Yersinia have distinct gene expression profiles, which are driven by their unique microenvironments and cellular interactions. When this leads to alterations in virulence gene expression, small subsets of bacteria can play a critical role in supporting the replication of the bacterial population, and can drive the overall disease outcome. Based on the pathology of infections with each of the three Yersinia species that are pathogenic to humans, it is likely that this specialization of bacterial subsets occurs during all Yersiniae infections. This review will describe the pathology that occurs during infection with each of the three human pathogenic Yersinia, in terms of the structure of bacterial replication centers and the specific immune cell subsets that bacteria interact with, and will also describe the outcome these interactions have or may have on bacterial gene expression.
Collapse
Affiliation(s)
- Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
21
|
Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC STRUCTURAL BIOLOGY 2018; 18:7. [PMID: 29769048 PMCID: PMC5956850 DOI: 10.1186/s12900-018-0086-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Background Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Results Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Conclusions Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome. Electronic supplementary material The online version of this article (10.1186/s12900-018-0086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen Vivien Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Chris Richard Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
22
|
Hinnebusch BJ, Jarrett CO, Bland DM. "Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annu Rev Microbiol 2018; 71:215-232. [PMID: 28886687 DOI: 10.1146/annurev-micro-090816-093521] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in arthropod-borne pathogens focuses primarily on how they cause disease in humans. How they produce a transmissible infection in their arthropod host is just as critical to their life cycle, however. Yersinia pestis adopts a unique life stage in the digestive tract of its flea vector, characterized by rapid formation of a bacterial biofilm that is enveloped in a complex extracellular polymeric substance. Localization and adherence of the biofilm to the flea foregut is essential for transmission. Here, we review the molecular and genetic mechanisms of these processes and present a comparative evaluation and updated model of two related transmission mechanisms.
Collapse
Affiliation(s)
- B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - Clayton O Jarrett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | - David M Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| |
Collapse
|
23
|
Bancerz-Kisiel A, Pieczywek M, Łada P, Szweda W. The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection. Genes (Basel) 2018; 9:E235. [PMID: 29751540 PMCID: PMC5977175 DOI: 10.3390/genes9050235] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2⁻5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection.
Collapse
Affiliation(s)
- Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Marta Pieczywek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Piotr Łada
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
24
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Abstract
As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.
Collapse
Affiliation(s)
- Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
26
|
Dutta SK, Yao Y, Marassi FM. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. J Phys Chem B 2017; 121:7561-7570. [PMID: 28726410 DOI: 10.1021/acs.jpcb.7b03941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.
Collapse
Affiliation(s)
- Samit Kumar Dutta
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Defining the Ail Ligand-Binding Surface: Hydrophobic Residues in Two Extracellular Loops Mediate Cell and Extracellular Matrix Binding To Facilitate Yop Delivery. Infect Immun 2017; 85:IAI.01047-15. [PMID: 28167671 DOI: 10.1128/iai.01047-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2017] [Indexed: 01/04/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, binds host cells to deliver cytotoxic Yop proteins into the cytoplasm that prevent phagocytosis and generation of proinflammatory cytokines. Ail is an eight-stranded β-barrel outer membrane protein with four extracellular loops that mediates cell binding and resistance to human serum. Following the deletion of each of the four extracellular loops that potentially interact with host cells, the Ail-Δloop 2 and Ail-Δloop 3 mutant proteins had no cell-binding activity while Ail-Δloop 4 maintained cell binding (the Ail-Δloop 1 protein was unstable). Using the codon mutagenesis scheme SWIM (selection without isolation of mutants), we identified individual residues in loops 1, 2, and 3 that contribute to host cell binding. While several residues contributed to the binding of host cells and purified fibronectin and laminin, as well as Yop delivery, three mutations, F80A (loop 2), S128A (loop 3), and F130A (loop 3), produced particularly severe defects in cell binding. Combining these mutations led to an even greater reduction in cell binding and severely impaired Yop delivery with only a slight defect in serum resistance. These findings demonstrate that Y. pestis Ail uses multiple extracellular loops to interact with substrates important for adhesion via polyvalent hydrophobic interactions.
Collapse
|
28
|
Zhang C, Liang W, Zhang W, Li C. Characterization of a metalloprotease involved in Vibrio splendidus infection in the sea cucumber, Apostichopus japonicus. Microb Pathog 2016; 101:96-103. [DOI: 10.1016/j.micpath.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 11/09/2016] [Indexed: 11/15/2022]
|
29
|
Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague. NPJ Vaccines 2016; 1:16020. [PMID: 29263858 PMCID: PMC5707884 DOI: 10.1038/npjvaccines.2016.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 11/10/2022] Open
Abstract
We showed recently that the live-attenuated Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants of Yersinia pestis CO92 provided short-term protection to mice against developing subsequent lethal pneumonic plague. These mutants were either deleted for genes encoding Braun lipoprotein (Lpp), an acetyltransferase (MsbB) and the attachment invasion locus (Ail) (Δlpp ΔmsbB Δail) or contained a modified version of the ail gene with diminished virulence (Δlpp ΔmsbB::ailL2). Here, long-term immune responses were first examined after intramuscular immunisation of mice with the above-mentioned mutants, as well as the newly constructed Δlpp ΔmsbB Δpla mutant, deleted for the plasminogen-activator protease (pla) gene instead of ail. Y. pestis-specific IgG levels peaked between day 35 and 56 in the mutant-immunised mice and were sustained until the last tested day 112. Splenic memory B cells peaked earlier (day 42) before declining in the Δlpp ΔmsbB::ailL2 mutant-immunised mice while being sustained for 63 days in the Δlpp ΔmsbB Δail and Δlpp ΔmsbB Δpla mutant-immunised mice. Splenic CD4+ T cells increased in all immunised mice by day 42 with differential cytokine production among the immunised groups. On day 120, immunised mice were exposed intranasally to wild-type (WT) CO92, and 80–100% survived pneumonic challenge. Mice immunised with the above-mentioned three mutants had increased innate as well as CD4+ responses immediately after WT CO92 exposure, and coupled with sustained antibody production, indicated the role of both arms of the immune response in protection. Likewise, rats vaccinated with either Δlpp ΔmsbB Δail or the Δlpp ΔmsbB Δpla mutant also developed long-term humoral and cell-mediated immune responses to provide 100% protection against developing pneumonic plague. On the basis of the attenuated phenotype, the Δlpp ΔmsbB Δail mutant was recently excluded from the Centers for Disease Control and Prevention select agent list.
Collapse
|
30
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
31
|
Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection. Int J Med Microbiol 2015; 306:77-88. [PMID: 26718660 DOI: 10.1016/j.ijmm.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 11/22/2022] Open
Abstract
Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.
Collapse
|
32
|
Bartra SS, Ding Y, Miya Fujimoto L, Ring JG, Jain V, Ram S, Marassi FM, Plano GV. Yersinia pestis uses the Ail outer membrane protein to recruit vitronectin. MICROBIOLOGY (READING, ENGLAND) 2015; 161:2174-2183. [PMID: 26377177 PMCID: PMC4806588 DOI: 10.1099/mic.0.000179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/24/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022]
Abstract
Yersinia pestis, the agent of plague, requires the Ail (attachment invasion locus) outer membrane protein to survive in the blood and tissues of its mammalian hosts. Ail is important for both attachment to host cells and for resistance to complement-dependent bacteriolysis. Previous studies have shown that Ail interacts with components of the extracellular matrix, including fibronectin, laminin and heparan sulfate proteoglycans, and with the complement inhibitor C4b-binding protein. Here, we demonstrate that Ail-expressing Y. pestis strains bind vitronectin - a host protein with functions in cell attachment, fibrinolysis and inhibition of the complement system. The Ail-dependent recruitment of vitronectin resulted in efficient cleavage of vitronectin by the outer membrane Pla (plasminogen activator protease). Escherichia coli DH5α expressing Y. pestis Ail bound vitronectin, but not heat-treated vitronectin. The ability of Ail to directly bind vitronectin was demonstrated by ELISA using purified refolded Ail in nanodiscs.
Collapse
Affiliation(s)
- Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - L. Miya Fujimoto
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Joshua G. Ring
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Vishal Jain
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| | | | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|
33
|
Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1255-68. [PMID: 26446423 DOI: 10.1128/cvi.00499-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
Abstract
Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.
Collapse
|
34
|
Craney A, Romesberg FE. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential. Bioorg Med Chem Lett 2015; 25:4761-4766. [PMID: 26276537 DOI: 10.1016/j.bmcl.2015.07.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Abstract
The general secretory pathway has long been regarded as a potential antibiotic drug target. In particular, bacterial type I signal peptidase (SPase) is emerging as a strong candidate for therapeutic use. In this review, we focus on the information gained from the use of SPase inhibitors as probes of prokaryote biology. A thorough understanding of the consequences of SPase inhibition and the mechanisms of resistance that arise are essential to the success of SPase as an antibiotic target. In addition to the role of SPase in processing secreted proteins, the use of SPase inhibitors has elucidated a previously unknown function for SPase in regulating cleavage events of membrane proteins.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Origins of Yersinia pestis sensitivity to the arylomycin antibiotics and the inhibition of type I signal peptidase. Antimicrob Agents Chemother 2015; 59:3887-98. [PMID: 25896690 DOI: 10.1128/aac.00181-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/10/2015] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis is the etiologic agent of the plague. Reports of Y. pestis strains that are resistant to each of the currently approved first-line and prophylactic treatments point to the urgent need to develop novel antibiotics with activity against the pathogen. We previously reported that Y. pestis strain KIM6+, unlike most Enterobacteriaceae, is susceptible to the arylomycins, a novel class of natural-product lipopeptide antibiotics that inhibit signal peptidase I (SPase). In this study, we show that the arylomycin activity is conserved against a broad range of Y. pestis strains and confirm that it results from the inhibition of SPase. We next investigated the origins of this unique arylomycin sensitivity and found that it does not result from an increased affinity of the Y. pestis SPase for the antibiotic and that alterations to each component of the Y. pestis lipopolysaccharide-O antigen, core, and lipid A-make at most only a small contribution. Instead, the origins of the sensitivity can be traced to an increased dependence on SPase activity that results from high levels of protein secretion under physiological conditions. These results highlight the potential of targeting protein secretion in cases where there is a heavy reliance on this process and also have implications for the development of the arylomycins as an antibiotic with activity against Y. pestis and potentially other Gram-negative pathogens.
Collapse
|
36
|
Keller B, Mühlenkamp M, Deuschle E, Siegfried A, Mössner S, Schade J, Griesinger T, Katava N, Braunsdorf C, Fehrenbacher B, Jiménez‐Soto LF, Schaller M, Haas R, Genth H, Retta SF, Meyer H, Böttcher RT, Zent R, Schütz M, Autenrieth IB, Bohn E. Yersinia enterocolitica
exploits different pathways to accomplish adhesion and toxin injection into host cells. Cell Microbiol 2015; 17:1179-204. [DOI: 10.1111/cmi.12429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Birgit Keller
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Melanie Mühlenkamp
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Eva Deuschle
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Alexandra Siegfried
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Sara Mössner
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Jessica Schade
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Tanja Griesinger
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | - Nenad Katava
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| | | | | | | | - Martin Schaller
- Department of Dermatology Eberhard Karls University Tübingen Germany
| | - Rainer Haas
- Max von Pettenkofer‐Institut Ludwig‐Maximilians University Munich Germany
| | - Harald Genth
- Institute of Toxicology Medical School Hannover Hannover Germany
| | - Saverio F. Retta
- Department of Clinical and Biological Sciences University of Torino Orbassano Italy
| | - Hannelore Meyer
- Max Planck Institut für Biochemie Martinsried Germany
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene Technische Universität München Germany
| | | | - Roy Zent
- Department of Medicine (Division of Nephrology) Vanderbilt University Medical Center Nashville TN USA
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
- Department of Medicine (Division of Nephrology) Vanderbilt University Medical Center Nashville TN USA
| | - Ingo B. Autenrieth
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
- German Centre of Infection Research (DZIF) Partner Site Tübingen Germany
| | - Erwin Bohn
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard Karls Universität Tübingen Germany
| |
Collapse
|
37
|
Adhesive properties of YapV and paralogous autotransporter proteins of Yersinia pestis. Infect Immun 2015; 83:1809-19. [PMID: 25690102 DOI: 10.1128/iai.00094-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs.
Collapse
|
38
|
Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun 2015; 83:1318-38. [PMID: 25605764 DOI: 10.1128/iai.02778-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection.
Collapse
|
39
|
Feeney A, Kropp KA, O’Connor R, Sleator RD. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen. Gut Microbes 2015; 5:711-8. [PMID: 25562731 PMCID: PMC4615781 DOI: 10.4161/19490976.2014.983774] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease.
Collapse
Affiliation(s)
- Audrey Feeney
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Kai A Kropp
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roxana O’Connor
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland,Correspondence to: Roy D Sleator;
| |
Collapse
|
40
|
Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:712-20. [PMID: 25433311 DOI: 10.1016/j.bbamem.2014.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/24/2014] [Accepted: 11/19/2014] [Indexed: 11/20/2022]
Abstract
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.
Collapse
|
41
|
Merritt PM, Nero T, Bohman L, Felek S, Krukonis ES, Marketon MM. Yersinia pestis targets neutrophils via complement receptor 3. Cell Microbiol 2014; 17:666-87. [PMID: 25359083 DOI: 10.1111/cmi.12391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/18/2014] [Accepted: 10/28/2014] [Indexed: 01/20/2023]
Abstract
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet, the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins because of reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria towards neutrophils during plague infection.
Collapse
Affiliation(s)
- Peter M Merritt
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | | | | | |
Collapse
|
42
|
Mouammine A, Lanois A, Pagès S, Lafay B, Molle V, Canova M, Girard PA, Duvic B, Givaudan A, Gaudriault S. Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus. PLoS One 2014; 9:e110060. [PMID: 25333642 PMCID: PMC4198210 DOI: 10.1371/journal.pone.0110060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/07/2014] [Indexed: 01/14/2023] Open
Abstract
Among pathogenic Enterobacteriaceae, the proteins of the Ail/OmpX/PagC family form a steadily growing family of outer membrane proteins with diverse biological properties, potentially involved in virulence such as human serum resistance, adhesion and entry into eukaryotic culture cells. We studied the proteins Ail/OmpX/PagC in the bacterial Photorhabdus genus. The Photorhabdus bacteria form symbiotic complexes with nematodes of Heterorhabditis species, associations which are pathogenic to insect larvae. Our phylogenetic analysis indicated that in Photorhabdus asymbiotica and Photorhabdus luminescens only Ail and PagC proteins are encoded. The genomic analysis revealed that the Photorhabdus ail and pagC genes were present in a unique copy, except two ail paralogs from P. luminescens. These genes, referred to as ail1Pl and ail2Pl, probably resulted from a recent tandem duplication. Surprisingly, only ail1Pl expression was directly controlled by PhoPQ and low external Mg2+ conditions. In P. luminescens, the magnesium-sensing two-component regulatory system PhoPQ regulates the outer membrane barrier and is required for pathogenicity against insects. In order to characterize Ail functions in Photorhabdus, we showed that only ail2Pl and pagCPl had the ability, when expressed into Escherichia coli, to confer resistance to complement in human serum. However no effect in resistance to antimicrobial peptides was found. Thus, the role of Ail and PagC proteins in Photorhabdus life cycle is discussed.
Collapse
Affiliation(s)
- Annabelle Mouammine
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Anne Lanois
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Sylvie Pagès
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Bénédicte Lafay
- Université de Lyon, Écully, France
- CNRS, UMR5005 - Laboratoire Ampère, École Centrale de Lyon, Écully, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS, UMR 5235, Montpellier, France
| | - Marc Canova
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS, UMR 5235, Montpellier, France
| | - Pierre-Alain Girard
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Bernard Duvic
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Alain Givaudan
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
| | - Sophie Gaudriault
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, France
- * E-mail:
| |
Collapse
|
43
|
Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane β-barrel from Yersinia pestis. Sci Rep 2014; 4:6508. [PMID: 25266561 PMCID: PMC4179465 DOI: 10.1038/srep06508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 11/08/2022] Open
Abstract
Attachment invasion locus (Ail) protein of Yersinia pestis is a crucial outer membrane protein for host invasion and determines bacterial survival within the host. Despite its importance in pathogenicity, surprisingly little is known on Ail biophysical properties. We investigate the contribution of micelle concentrations and interface tryptophans on the Ail β-barrel refolding and unfolding processes. Our results reveal that barrel folding is surprisingly independent of micelle amounts, but proceeds through an on-pathway intermediate that requires the interface W42 for cooperative barrel refolding. On the contrary, the unfolding event is strongly controlled by absolute micelle concentrations. We find that upon Trp → Phe substitution, protein stabilities follow the order W149F>WT>W42F for the refolding, and W42F>WT>W149F for unfolding. W42 confers cooperativity in barrel folding, and W149 clamps the post-folded barrel structure to its micelle environment. Our analyses reveal, for the first time, that interface tryptophan mutation can indeed render greater β-barrel stability. Furthermore, hysteresis in Ail stems from differential barrel-detergent interaction strengths in a micelle concentration-dependent manner, largely mediated by W149. The kinetically stabilized Ail β-barrel has strategically positioned tryptophans to balance efficient refolding and subsequent β-barrel stability, and may be evolutionarily chosen for optimal functioning of Ail during Yersinia pathogenesis.
Collapse
|
44
|
Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2014; 57:237-45. [PMID: 24198067 DOI: 10.1007/s12026-013-8454-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL, 33136, USA,
| | | |
Collapse
|
45
|
Dhar MS, Virdi JS. Strategies used by Yersinia enterocolitica to evade killing by the host: thinking beyond Yops. Microbes Infect 2014; 16:87-95. [DOI: 10.1016/j.micinf.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/04/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
|
46
|
Tsang TM, Wiese JS, Felek S, Kronshage M, Krukonis ES. Ail proteins of Yersinia pestis and Y. pseudotuberculosis have different cell binding and invasion activities. PLoS One 2013; 8:e83621. [PMID: 24386237 PMCID: PMC3873954 DOI: 10.1371/journal.pone.0083621] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/14/2013] [Indexed: 11/18/2022] Open
Abstract
The Yersinia pestis adhesin Ail mediates host cell binding and facilitates delivery of cytotoxic Yop proteins. Ail from Y. pestis and Y. pseudotuberculosis is identical except for one or two amino acids at positions 43 and 126 depending on the Y. pseudotuberculosis strain. Ail from Y. pseudotuberculosis strain YPIII has been reported to lack host cell binding ability, thus we sought to determine which amino acid difference(s) are responsible for the difference in cell adhesion. Y. pseudotuberculosis YPIII Ail expressed in Escherichia coli bound host cells, albeit at ~50% the capacity of Y. pestis Ail. Y. pestis Ail single mutants, Ail-E43D and Ail-F126V, both have decreased adhesion and invasion in E. coli when compared to wild-type Y. pestis Ail. Y. pseudotuberculosis YPIII Ail also had decreased binding to the Ail substrate fibronectin, relative to Y. pestis Ail in E. coli. When expressed in Y. pestis, there was a 30-50% decrease in adhesion and invasion depending on the substitution. Ail-mediated Yop delivery by both Y. pestis Ail and Y. pseudotuberculosis Ail were similar when expressed in Y. pestis, with only Ail-F126V giving a statistically significant reduction in Yop delivery of 25%. In contrast to results in E. coli and Y. pestis, expression of Ail in Y. pseudotuberculosis led to no measurable adhesion or invasion, suggesting the longer LPS of Y. pseudotuberculosis interferes with Ail cell-binding activity. Thus, host context affects the binding activities of Ail and both Y. pestis and Y. pseudotuberculosis Ail can mediate cell binding, cell invasion and facilitate Yop delivery.
Collapse
Affiliation(s)
- Tiffany M. Tsang
- Department of Microbiology and Immunology, University of Michigan School of Medicine Ann Arbor, Michigan, United States of America
| | - Jeffrey S. Wiese
- Department of Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, Detroit, Michigan, United States of America
| | - Suleyman Felek
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Malte Kronshage
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Eric S. Krukonis
- Department of Microbiology and Immunology, University of Michigan School of Medicine Ann Arbor, Michigan, United States of America
- Department of Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ke Y, Chen Z, Yang R. Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front Cell Infect Microbiol 2013; 3:106. [PMID: 24400226 PMCID: PMC3871965 DOI: 10.3389/fcimb.2013.00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022] Open
Abstract
During infection, Yersinia, a facultative intracellular bacterial species, exhibits the ability to first invade host cells and then counteract phagocytosis by the host cells. During these two distinct stages, invasion or antiphagocytic factors assist bacteria in manipulating host cells to accomplish each of these functions; however, the mechanism through which Yersinia regulates these functions during each step remains unclear. Here, we discuss those factors that seem to function reversely and give some hypothesis about how bacteria switch between the two distinct status.
Collapse
Affiliation(s)
- Yuehua Ke
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China ; Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences Beijing, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
48
|
Skorek K, Raczkowska A, Dudek B, Miętka K, Guz-Regner K, Pawlak A, Klausa E, Bugla-Płoskońska G, Brzostek K. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane. PLoS One 2013; 8:e79525. [PMID: 24260242 PMCID: PMC3834241 DOI: 10.1371/journal.pone.0079525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS) compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC) and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.
Collapse
Affiliation(s)
- Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Miętka
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Guz-Regner
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Elżbieta Klausa
- Regional Centre of Transfusion Medicine and Blood Bank, Wroclaw, Poland
| | | | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
49
|
Paczosa MK, Fisher ML, Maldonado-Arocho FJ, Mecsas J. Yersinia pseudotuberculosis uses Ail and YadA to circumvent neutrophils by directing Yop translocation during lung infection. Cell Microbiol 2013; 16:247-68. [PMID: 24119087 DOI: 10.1111/cmi.12219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/03/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
A Yersinia pseudotuberculosis (Yptb) murine model of lung infection was previously developed using the serotype III IP2666NdeI strain, which robustly colonized lungs but only sporadically disseminated to the spleen and liver. We demonstrate here that a serotype Ib Yptb strain, IP32953, colonizes the lungs at higher levels and disseminates more efficiently to the spleen and liver compared with IP2666NdeI . The role of adhesins was investigated during IP32953 lung infection by constructing isogenic Δail, Δinv, ΔpsaE and ΔyadA mutants. An IP32953ΔailΔyadA mutant initially colonized but failed to persist in the lungs and disseminate to the spleen and liver. Yptb expressing these adhesins selectively bound to and targeted neutrophils for translocation of Yops. This selective targeting was critical for virulence because persistence of the ΔailΔyadA mutant was restored following intranasal infection of neutropenic mice. Furthermore, Ail and YadA prevented killing by complement-mediated mechanisms during dissemination to and/or growth in the spleen and liver, but not in the lungs. Combined, these results demonstratethat Ail and YadA are critical, redundant virulence factors during lung infection, because they thwart neutrophils by directing Yop-translocation specifically into these cells.
Collapse
Affiliation(s)
- Michelle K Paczosa
- Graduate Program in Immunology, MERGE-ID Track, Sackler School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Na(+)/H(+) antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na(+)/H(+) antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na(+)/H(+) antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na(+) levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na(+)/H(+) antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.
Collapse
|