1
|
Kachan AV, Evtushenkov AN. The CssRS two-component system of Bacillus subtilis contributes to teicoplanin and polymyxin B response. Folia Microbiol (Praha) 2025; 70:83-99. [PMID: 38847924 DOI: 10.1007/s12223-024-01179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
CssRS is a two-component system that plays a pivotal role in mediating the secretion stress response in Bacillus subtilis. This system upregulates the synthesis of membrane-bound HtrA family proteases that cope with misfolded proteins that accumulate within the cell envelope as a result of overexpression or heat shock. Recent studies have shown the induction of CssRS-regulated genes in response to cell envelope stress. We investigated the induction of the CssRS-regulated htrA promoter in the presence of different cell wall- and membrane-active substances and observed induction of the CssRS-controlled genes by glycopeptides (vancomycin and teicoplanin), polymyxins B and E, certain β-lactams, and detergents. Teicoplanin was shown to elicit remarkably stronger induction than vancomycin and polymyxin B. Teicoplanin and polymyxin B induced the spxO gene expression in a CssRS-dependent fashion, resulting in increased activity of Spx, a master regulator of disulfide stress in Bacillus subtilis. The CssRS signaling pathway and Spx activity were demonstrated to be involved in Bacillus subtilis resistance to teicoplanin and polymyxin B.
Collapse
Affiliation(s)
- Alexandr V Kachan
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimosty Ave., 4, 220030, Minsk, Belarus.
- Center of Analytical and Genetic Engineering Research, Institute of Microbiology, National Academy of Sciences of Belarus, Kuprevich Str., 2, 220141, Minsk, Belarus.
| | - Anatoly N Evtushenkov
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimosty Ave., 4, 220030, Minsk, Belarus
| |
Collapse
|
2
|
Faozia S, Hossain T, Cho KH. The Dlt and LiaFSR systems derepress SpeB production independently in the Δpde2 mutant of Streptococcus pyogenes. Front Cell Infect Microbiol 2023; 13:1293095. [PMID: 38029265 PMCID: PMC10679467 DOI: 10.3389/fcimb.2023.1293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The second messenger molecule, c-di-AMP, plays a critical role in pathogenesis and virulence in S. pyogenes. We previously reported that deleting the c-di-AMP phosphodiesterase gene pde2 severely suppresses SpeB production at the transcriptional level. We performed transposon mutagenesis to gain insight into the mechanism of how Pde2 is involved in SpeB regulation. We identified one of the genes of the dlt operon, dltX, as a suppressor of the SpeB-null phenotype of the Δpde2 mutant. The dlt operon consists of five genes, dltX, dltA, dltB, dltC, and dltD in many Gram-positive bacteria, and its function is to incorporate D-alanine into lipoteichoic acids. DltX, a small membrane protein, is a newly identified member of the operon. The in-frame deletion of dltX or insertional inactivation of dltA in the Δpde2 mutant restored SpeB production, indicating that D-alanylation is crucial for the suppressor phenotype. These mutations did not affect the growth in lab media but showed increased negative cell surface charge and enhanced sensitivity to polymyxin B. Considering that dlt mutations change cell surface charge and sensitivity to cationic antimicrobial peptides, we examined the LiaFSR system that senses and responds to cell envelope stress. The ΔliaR mutation in the Δpde2 mutant also derepressed SpeB production, like the ΔdltX mutation. LiaFSR controls speB expression by regulating the expression of the transcriptional regulator SpxA2. However, the Dlt system did not regulate spxA2 expression. The SpeB phenotype of the Δpde2ΔdltX mutant in higher salt media differed from that of the Δpde2ΔliaR mutant, suggesting a unique pathway for the Dlt system in SpeB production, possibly related to ion transport or turgor pressure regulation.
Collapse
Affiliation(s)
| | | | - Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN, United States
| |
Collapse
|
3
|
Ding Y, Hu X, Piao Y, Huang R, Xie L, Yan X, Sun H, Li Y, Shi L, Liu Y. Lipid Prodrug Nanoassemblies via Dynamic Covalent Boronates. ACS NANO 2023; 17:6601-6614. [PMID: 36999933 DOI: 10.1021/acsnano.2c12233] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prodrug nanoassemblies combine the advantages of prodrug and nanomedicines, offering great potential in targeting the lesion sites and specific on-demand drug release, maximizing the therapeutic performance while minimizing their side effects. However, there is still lacking a facile pathway to prepare the lipid prodrug nanoassemblies (LPNAs). Herein, we report the LPNAs via the dynamic covalent boronate between catechol and boronic acid. The resulting LPNAs possess properties like drug loading in a dynamic covalent manner, charge reversal in an acidic microenvironment, and specific drug release at an acidic and/or oxidative microenvironment. Our methodology enables the encapsulation and delivery of three model drugs: ciprofloxacin, bortezomib, and miconazole. Moreover, the LPNAs are often more efficient in eradicating pathogens or cancer cells than their free counterparts, both in vitro and in vivo. Together, our LPNAs with intriguing properties may boost the development of drug delivery and facilitate their clinical applications.
Collapse
Affiliation(s)
- Yuxun Ding
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xiaowen Hu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinzi Piao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingping Xie
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Sun
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong Liu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
4
|
Wu H, Zhang Y, Li L, Li Y, Yuan L, E Y, Qiao J. Positive regulation of the DLT operon by TCSR7 enhances acid tolerance of Lactococcus lactis F44. J Dairy Sci 2022; 105:7940-7950. [PMID: 36028342 DOI: 10.3168/jds.2022-21898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022]
Abstract
Lactococcus lactis, a lactic acid bacterium, has been widely used in the fermented dairy products. The acid tolerance of L. lactis is of great importance to food fermentation and probiotic applications. As the first barrier of bacteria, the cell wall has a protective effect on strains under many stress conditions, whereas the regulatory mechanism has rarely been reported. Here, based on the transcription analysis of 9 cell wall or membrane-related genes of L. lactis F44 under acid stress, the transcription levels of DACB, DLTD, YLBA, HRTA, WP_080613266.1 (1610), and ERFK genes were significantly increased. We constructed 9 overexpressing strains with the cell wall or membrane-related genes, respectively. It was demonstrated that the survival rates under acid stress of DACB, DLTD, and ERFK were significantly higher than that of wild-type F44. To investigate the regulatory mechanism, a DNA pull-down assay was used to identify the transcriptional regulators of these 3 genes. It was discovered that the 2-component system (TCS) transcriptional regulator TCSR7 bound to the upstream region of DLTD involved in the teichoic acid (TA) alanylation. The combination was confirmed through an electrophoretic mobility shift assay in vitro. Reverse-transcription quantitative PCR results indicated that TCSR7 upregulated the expression of DLTD gene. In addition, the transcription level of TCSR7 increased approximately 1.8-fold (log2 fold change) under acidic conditions. In summary, this study found that TCSR7 was induced by acid stress to upregulate the transcription level of the DLT operon genes, which might increase the positive charge on the cell membrane surface to increase the acid tolerance of the strain. This study lays the foundation for the regulatory mechanism of TA alanylation under acid stress.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Yangling Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lin Yuan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Department of Bioengineering, School of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300072, P. R. China
| | - Yue E
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| |
Collapse
|
5
|
Effects of Growth Stage on the Characterization of Enterotoxin A-Producing Staphylococcus aureus‐Derived Membrane vesicles. Microorganisms 2022; 10:microorganisms10030574. [PMID: 35336149 PMCID: PMC8948643 DOI: 10.3390/microorganisms10030574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Virulence factors, such as staphylococcal enterotoxin A (SEA), are contained within membrane vesicles (MVs) in the cell membrane of Staphylococcus aureus. In this study, the effects of the growth stage on quantitative and qualitative changes in the components contained in the MVs of S. aureus SEA-producing strains were examined. Changes in the expression levels of S. aureus genes were examined at each growth stage; phenol-soluble modulin (PSM) gene reached a maximum after 8 h, and the expression of cell membrane-related genes was decreased after 6 h. Based on these gene expression patterns, MVs were prepared at 6, 17, and 24 h. The particle size of MVs did not change depending on the growth stage. MVs prepared after culture for 17 h maintained their particle size when stored at 23 °C. The amount of SEA in the culture supernatant and MVs were not correlated. Bifunctional autolysin, a protein involved in cell wall biosynthesis/degradation, was increased in MVs at 17 h. The expression pattern of inflammation-related genes in human adult low calcium high temperature (HaCaT) cells induced by MVs was different for each growth stage. The inclusion components of S. aureus-derived MVs are selective, depend on the stage of growth, and may play an important role in toxicity.
Collapse
|
6
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
7
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Relative contributions of non-essential Sec pathway components and cell envelope-associated proteases to high-level enzyme secretion by Bacillus subtilis. Microb Cell Fact 2020; 19:52. [PMID: 32111210 PMCID: PMC7048088 DOI: 10.1186/s12934-020-01315-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Bacillus subtilis is an important industrial workhorse applied in the production of many different commercially relevant proteins, especially enzymes. Virtually all of these proteins are secreted via the general secretion (Sec) pathway. Studies from different laboratories have demonstrated essential or non-essential contributions of various Sec machinery components to protein secretion in B. subtilis. However, a systematic comparison of the impact of each individual Sec machinery component under conditions of high-level protein secretion was so far missing. Results In the present study, we have compared the contributions of non-essential Sec pathway components and cell envelope-associated proteases on the secretion efficiency of three proteins expressed at high level. This concerned the α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis, and the serine protease BPN’ from Bacillus amyloliquefaciens. We compared the secretion capacity of mutant strains in shake flask cultures, and the respective secretion kinetics by pulse-chase labeling experiments. The results show that secDF, secG or rasP mutations severely affect AmyE, AmyL and BPN’ secretion, but the actual effect size depends on the investigated protein. Additionally, the chaperone DnaK is important for BPN’ secretion, while AmyE or AmyL secretion are not affected by a dnaK deletion. Further, we assessed the induction of secretion stress responses in mutant strains by examining AmyE- and AmyL-dependent induction of the quality control proteases HtrA and HtrB. Interestingly, the deletion of certain sip genes revealed a strong differential impact of particular signal peptidases on the magnitude of the secretion stress response. Conclusions The results of the present study highlight the importance of SecDF, SecG and RasP for protein secretion and reveal unexpected differences in the induction of the secretion stress response in different mutant strains.
Collapse
|
9
|
Mo F, Cai D, He P, Yang F, Chen Y, Ma X, Chen S. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis. ACTA ACUST UNITED AC 2019; 46:1745-1755. [DOI: 10.1007/s10295-019-02229-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Abstract
Cell surface engineering was proven as the efficient strategy for enhanced production of target metabolites. In this study, we want to improve the yield of target protein by engineering cell surface in Bacillus licheniformis. First, our results confirmed that deletions of d-alanyl-lipoteichoic acid synthetase gene dltD, cardiolipin synthase gene clsA and CDP-diacylglycerol-serine O-phosphatidyltransferase gene pssA were not conducive to cell growth, and the biomass of gene deletion strains were, respectively, decreased by 10.54 ± 1.43%, 14.17 ± 1.51%, and 17.55 ± 1.28%, while the concentrations of total extracellular proteins were improved, due to the increases of cell surface net negative charge and cell membrane permeability. In addition, the activities of target proteins, nattokinase, and α-amylase were also improved significantly in gene deletion strains. Furthermore, the triplicate gene (dltD, clsA, and pssA) deletion strain was constructed, which further led to the 45.71 ± 2.43% increase of cell surface net negative charge and 26.45 ± 2.31% increase of cell membrane permeability, and the activities of nattokinase and α-amylase reached 37.15 ± 0.89 FU/mL and 305.3 ± 8.4 U/mL, increased by 46.09 ± 3.51% and 96.34 ± 7.24%, respectively. Taken together, our results confirmed that cell surface engineering via deleting dltD, clsA, and pssA is an efficient strategy for enhanced production of target proteins, and this research provided a promising host strain of B. licheniformis for efficient protein expression.
Collapse
Affiliation(s)
- Fei Mo
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Dongbo Cai
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Penghui He
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Fan Yang
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Yaozhong Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Xin Ma
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Shouwen Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| |
Collapse
|
10
|
He P, Wan N, Cai D, Hu S, Chen Y, Li S, Chen S. 13C-Metabolic Flux Analysis Reveals the Metabolic Flux Redistribution for Enhanced Production of Poly-γ-Glutamic Acid in dlt Over-Expressed Bacillus licheniformis. Front Microbiol 2019; 10:105. [PMID: 30774627 PMCID: PMC6367249 DOI: 10.3389/fmicb.2019.00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is an anionic polymer with various applications. Teichoic acid (TA) is a special component of cell wall in gram-positive bacteria, and its D-alanylation modification can change the net negative charge of cell surface, autolysin activity and cationic binding efficiency, and might further affect metabolic production. In this research, four genes (dltA, dltB, dltC, and dltD) of dlt operon were, respectively, deleted and overexpressed in the γ-PGA producing strain Bacillus licheniformis WX-02. Our results implied that overexpression of these genes could all significantly increase γ-PGA synthetic capabilities, among these strains, the dltB overexpression strain WX-02/pHY-dltB owned the highest γ-PGA yield (2.54 g/L), which was 93.42% higher than that of the control strain WX-02/pHY300 (1.31 g/L). While, the gene deletion strains produced lower γ-PGA titers. Furthermore, 13C-Metabolic flux analysis was conducted to investigate the influence of dltB overexpression on metabolic flux redistribution during γ-PGA synthesis. The simulation data demonstrated that fluxes of pentose phosphate pathway and tricarboxylic acid cycle in WX-02/pHY-dltB were 36.41 and 19.18 mmol/g DCW/h, increased by 7.82 and 38.38% compared to WX-02/pHY300 (33.77 and 13.86 mmol/g DCW/h), respectively. The synthetic capabilities of ATP and NADPH were also increased slightly. Meanwhile, the fluxes of glycolytic and by-product synthetic pathways were all reduced in WX-02/pHY-dltB. All these above phenomenons were beneficial for γ-PGA synthesis. Collectively, this study clarified that overexpression of dltB strengthened the fluxes of PPP pathway, TCA cycle and energy metabolism for γ-PGA synthesis, and provided an effective strategy for enhanced production of γ-PGA.
Collapse
Affiliation(s)
- Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Ni Wan
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shunyi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
De Maio F, Battah B, Palmieri V, Petrone L, Corrente F, Salustri A, Palucci I, Bellesi S, Papi M, Rubino S, Sali M, Goletti D, Sanguinetti M, Manganelli R, De Spirito M, Delogu G. PE_PGRS3 of Mycobacterium tuberculosis is specifically expressed at low phosphate concentration, and its arginine-rich C-terminal domain mediates adhesion and persistence in host tissues when expressed in Mycobacterium smegmatis. Cell Microbiol 2018; 20:e12952. [PMID: 30192424 DOI: 10.1111/cmi.12952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
PE_PGRSs of Mycobacterium tuberculosis (Mtb) represent a family of complex and peculiar proteins whose role and function remain elusive. In this study, we investigated PE_PGRS3 and PE_PGRS4, two highly homologous PE_PGRSs encoded by two contiguous genes in the Mtb genome. Using a gene-reporter system in Mycobacterium smegmatis (Ms) and transcriptional analysis in Mtb, we show that PE_PGRS3, but not PE_PGRS4, is specifically expressed under low phosphate concentrations. Interestingly, PE_PGRS3, but not PE_PGRS4, has a unique, arginine-rich C-terminal domain of unknown function. Heterologous expression of PE_PGRS3 in Ms was used to demonstrate cellular localisation of the protein on the mycobacterial surface, where it significantly affects net surface charge. Moreover, expression of full-length PE_PGRS3 enhanced adhesion of Ms to murine macrophages and human epithelial cells and improved bacterial persistence in spleen tissue following infection in mice. Expression of the PE_PGRS3 functional deletion mutant lacking the C-terminal domain in Ms did not enhance adhesion to host cells, showing a phenotype similar to the Ms parental strain. Interestingly, enhanced persistence of Ms expressing PE_PGRS3 did not correlate with increased concentrations of inflammatory cytokines. These results point to a critical role for the ≈ 80 amino acids long, arginine-rich C-terminal domain of PE_PGRS3 in tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Flavio De Maio
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Basem Battah
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Palmieri
- Institute of Physics, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Francesco Corrente
- Institute of Haematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Salustri
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivana Palucci
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Bellesi
- Institute of Haematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Michela Sali
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Marco De Spirito
- Institute of Physics, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Delogu
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Chen Y, Cai D, He P, Mo F, Zhang Q, Ma X, Chen S. Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid. World J Microbiol Biotechnol 2018; 34:135. [DOI: 10.1007/s11274-018-2520-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
|
13
|
Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology. J Bacteriol 2017; 199:JB.00186-17. [PMID: 28461449 DOI: 10.1128/jb.00186-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilisIMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.
Collapse
|
14
|
Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, Waldrop MP. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME JOURNAL 2017; 11:2305-2318. [PMID: 28696425 PMCID: PMC5607373 DOI: 10.1038/ismej.2017.93] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/25/2017] [Accepted: 04/27/2017] [Indexed: 01/14/2023]
Abstract
In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.
Collapse
Affiliation(s)
- Rachel Mackelprang
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Alexander Burkert
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Monica Haw
- US Geological Survey, Menlo Park, CA, USA
| | - Tara Mahendrarajah
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | | | - Thomas A Douglas
- US Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | | |
Collapse
|
15
|
Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to β-Lactams (Seesaw Effect) in Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2016; 61:AAC.01634-16. [PMID: 27795377 DOI: 10.1128/aac.01634-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance is recognized as one of the principal threats to public health worldwide, yet the problem is increasing. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most difficult to treat in clinical settings due to the resistance of MRSA to nearly all available antibiotics. The cyclic anionic lipopeptide antibiotic daptomycin (DAP) is the clinical mainstay of anti-MRSA therapy. The decreased susceptibility to DAP (DAP resistance [DAPr]) reported in MRSA is frequently accompanied by a paradoxical decrease in β-lactam resistance, a process known as the "seesaw effect." Despite the observed discordance in resistance phenotypes, the combination of DAP and β-lactams has been proven to be clinically effective for the prevention and treatment of infections due to DAPr MRSA strains. However, the mechanisms underlying the interactions between DAP and β-lactams are largely unknown. In the study described here, we studied the role of mprF with DAP-induced mutations in β-lactam sensitization and its involvement in the effective killing by the DAP-oxacillin (OXA) combination. DAP-OXA-mediated effects resulted in cell wall perturbations, including changes in peptidoglycan insertion, penicillin-binding protein 2 (PBP 2) delocalization, and reduced membrane amounts of PBP 2a, despite the increased transcription of mecA through mec regulatory elements. We have found that the VraSR sensor-regulator is a key component of DAP resistance, triggering mutated mprF-mediated cell membrane (CM) modifications that result in impairment of PrsA location and chaperone functions, both of which are essential for PBP 2a maturation, the key determinant of β-lactam resistance. These observations provide for the first time evidence that synergistic effects between DAP and β-lactams involve PrsA posttranscriptional regulation of CM-associated PBP 2a.
Collapse
|
16
|
Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog 2012; 8:e1002891. [PMID: 22969424 PMCID: PMC3435245 DOI: 10.1371/journal.ppat.1002891] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the interactions of the human pathogen Group B Streptococcus (GBS) with a series of CAMPs having different properties. The data reveal that: (i) D-alanylation of lipoteichoic acids (LTAs) enhance GBS resistance only to a subset of CAMPs and there is a direct correlation between resistance and CAMPs length and charge density; (ii) resistance due to reduced anionic charge of LTAs is not attributed to decreased amounts of bound peptides to the bacteria; and (iii) D-alanylation most probably alters the conformation of LTAs which results in increasing the cell wall density, as seen by Transmission Electron Microscopy, and reduces the penetration of CAMPs through the cell wall. Furthermore, Atomic Force Microscopy reveals increased surface rigidity of the cell wall of the wild-type GBS strain to more than 20-fold that of the dltA mutant. We propose that D-alanylation of LTAs confers protection against linear CAMPs mainly by decreasing the flexibility and permeability of the cell wall, rather than by reducing the electrostatic interactions of the peptide with the cell surface. Overall, our findings uncover an important protective role of the cell wall against CAMPs and extend our understanding of mechanisms of bacterial resistance.
Collapse
Affiliation(s)
- Ron Saar-Dover
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Ravit Nezer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Liraz Shmuel-Galia
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Arnaud Firon
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Eyal Shimoni
- Electron Microscopy Unit, The Weizmann Institute of Science, Rehovot, Israel
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS-ERL3526, Paris, France
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
17
|
Manabe K, Kageyama Y, Tohata M, Ara K, Ozaki K, Ogasawara N. High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis. Microb Cell Fact 2012; 11:74. [PMID: 22681752 PMCID: PMC3424145 DOI: 10.1186/1475-2859-11-74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular alkaline cellulase Egl-237 and subtilisin-like alkaline protease M-protease. Here, we investigated the suitability of strain MGB874 for the production of α-amylase, which was anticipated to provoke secretion stress responses involving the CssRS (Control secretion stress Regulator and Sensor) system. Results Compared to wild-type strain 168, the production of a novel alkaline α-amylase, AmyK38, was severely decreased in strain MGB874 and higher secretion stress responses were also induced. Genetic analyses revealed that these phenomena were attributable to the decreased pH of growth medium as a result of the lowered expression of rocG, encoding glutamate dehydrogenase, whose activity leads to NH3 production. Notably, in both the genome-reduced and wild-type strains, an up-shift of the external pH by the addition of an alkaline solution improved AmyK38 production, which was associated with alleviation of the secretion stress response. These results suggest that the optimal external pH for the secretion of AmyK38 is higher than the typical external pH of growth medium used to culture B. subtilis. Under controlled pH conditions, the highest production level (1.08 g l-1) of AmyK38 was obtained using strain MGB874. Conclusions We demonstrated for the first time that RocG is an important factor for secretory enzyme production in B. subtilis through its role in preventing acidification of the growth medium. As expected, a higher external pH enabled a more efficient secretion of the alkaline α-amylase AmyK38 in B. subtilis. Under controlled pH conditions, the reduced-genome strain MGB874 was demonstrated to be a beneficial host for the production of AmyK38.
Collapse
Affiliation(s)
- Kenji Manabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | |
Collapse
|
18
|
An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother 2012; 56:1810-20. [PMID: 22290958 DOI: 10.1128/aac.05938-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Wall teichoic acids (WTAs) are phosphate-rich, sugar-based polymers attached to the cell walls of most Gram-positive bacteria. In Staphylococcus aureus, these anionic polymers regulate cell division, protect cells from osmotic stress, mediate host colonization, and mask enzymatically susceptible peptidoglycan bonds. Although WTAs are not required for survival in vitro, blocking the pathway at a late stage of synthesis is lethal. We recently discovered a novel antibiotic, targocil, that inhibits a late acting step in the WTA pathway. Its target is TarG, the transmembrane component of the ABC transporter (TarGH) that exports WTAs to the cell surface. We examined here the effects of targocil on S. aureus using transmission electron microscopy and gene expression profiling. We report that targocil treatment leads to multicellular clusters containing swollen cells displaying evidence of osmotic stress, strongly induces the cell wall stress stimulon, and reduces the expression of key virulence genes, including dltABCD and capsule genes. We conclude that WTA inhibitors that act at a late stage of the biosynthetic pathway may be useful as antibiotics, and we present evidence that they could be particularly useful in combination with beta-lactams.
Collapse
|
19
|
Rukke HV, Hegna IK, Petersen FC. Identification of a functional capsule locus in Streptococcus mitis. Mol Oral Microbiol 2011; 27:95-108. [PMID: 22394468 DOI: 10.1111/j.2041-1014.2011.00635.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is a hallmark for virulence in humans. In its close relative Streptococcus mitis, a common human commensal, analysis of the sequenced genomes of six strains revealed the presence of a putative capsule locus in four of them. We constructed an isogenic S. mitis mutant from the type strain that lacked the 19 open reading frames in the capsule locus (Δcps mutant), using a deletion strategy similar to previous capsule functional studies in S. pneumoniae. Transmission electron microscopy and atomic force microscopy revealed a capsule-like structure in the S. mitis type strain that was absent or reduced in the Δcps mutant. Since S. mitis are predominant oral colonizers of tooth surfaces, we addressed the relevance of the capsule locus for the S. mitis overall surface properties, autoaggregation and biofilm formation. The capsule deletion resulted in a mutant with approximately two-fold increase in hydrophobicity. Binding to the Stains-all cationic dye was reduced by 40%, suggesting a reduction in the overall negative surface charge of the mutant. The mutant exhibited also increased autoaggregation in coaggregation buffer, and up to six-fold increase in biofilm levels. The results suggested that the capsule locus is associated with production of a capsule-like structure in S. mitis and indicated that the S. mitis capsule-like structure may confer surface attributes similar to those associated with the capsule in S. pneumoniae.
Collapse
Affiliation(s)
- H V Rukke
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
20
|
Control of the Staphylococcus aureus toxic shock tst promoter by the global regulator SarA. J Bacteriol 2010; 192:6077-85. [PMID: 20870770 DOI: 10.1128/jb.00146-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Staphylococcus aureus SarA global regulator controls the expression of numerous virulence genes, often in conjunction with the agr quorum-sensing system and its effector RNA, RNAIII. In the present study, we have examined the role of both SarA and RNAIII on the regulation of the promoter of tst, encoding staphylococcal superantigen toxic shock syndrome toxin 1 (TSST-1). In vitro DNA-protein interaction studies with purified SarA using gel shift and DNase I protection assays revealed one strong SarA binding site and evidence for a weaker site nearby within the minimal 400-bp promoter region upstream of tst. In vivo analysis of tst promoter activation using a p(tst)-luxAB reporter inserted in the chromosome revealed partial but not complete loss of tst expression in a Δhld-RNAIII strain. In contrast, disruption of sarA abrogated tst expression. No significant tst expression was found for the double Δhld-RNAIII-ΔsarA mutant. Introduction of a plasmid containing cloned hld-RNAIII driven by a non-agr-dependent promoter, p(HU), into isogenic parental wild-type or ΔsarA strains showed comparable levels of RNAIII detected by quantitative reverse transcription-PCR (qRT-PCR) but a two-log(10) reduction in p(tst)-luxAB reporter expression in the ΔsarA strain, arguing that RNAIII levels alone are not strictly determinant for tst expression. Collectively, our results indicate that SarA binds directly to the tst promoter and that SarA plays a significant and direct role in the expression of tst.
Collapse
|
21
|
López D, Vlamakis H, Losick R, Kolter R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 2009; 74:609-18. [PMID: 19775247 DOI: 10.1111/j.1365-2958.2009.06882.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cannibalism is a mechanism to delay sporulation in Bacillus subtilis. Cannibal cells express the skf and sdp toxin systems to lyse a fraction of their sensitive siblings. The lysed cells release nutrients that serve to feed the community, effectively delaying spore formation. Here we provide evidence that the subpopulation of cells that differentiates into cannibals is the same subpopulation that produces the extracellular matrix that holds cells together in biofilms. Cannibalism and matrix formation are both triggered in response to the signalling molecule surfactin. Nutrients released by the cannibalized cells are preferentially used by matrix-producing cells, as they are the only cells expressing resistance to the Skf and Sdp toxins. As a result this subpopulation increases in number and matrix production is enhanced when cannibalism toxins are produced. The cannibal/matrix-producing subpopulation is also generated in response to antimicrobials produced by other microorganisms and may thus constitute a defense mechanism to protect B. subtilis from the action of antibiotics in natural settings.
Collapse
Affiliation(s)
- Daniel López
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
22
|
Pietiäinen M, François P, Hyyryläinen HL, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP. Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics 2009; 10:429. [PMID: 19751498 PMCID: PMC2748101 DOI: 10.1186/1471-2164-10-429] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 09/14/2009] [Indexed: 01/17/2023] Open
Abstract
Background Understanding how pathogens respond to antimicrobial peptides, and how this compares to currently available antibiotics, is crucial for optimizing antimicrobial therapy. Staphylococcus aureus has several known resistance mechanisms against human cationic antimicrobial peptides (CAMPs). Gene expression changes in S. aureus strain Newman exposed to linear CAMPs were analyzed by DNA microarray. Three antimicrobial peptides were used in the analysis, two are derived from frog, temporin L and dermaseptin K4-S4(1-16), and the ovispirin-1 is obtained from sheep. Results The peptides induced the VraSR cell-wall regulon and several other genes that are also up-regulated in cells treated with vancomycin and other cell wall-active antibiotics. In addition to this similarity, three genes/operons were particularly strongly induced by the peptides: vraDE, SA0205 and SAS016, encoding an ABC transporter, a putative membrane-bound lysostaphin-like peptidase and a small functionally unknown protein, respectively. Ovispirin-1 and dermaseptin K4-S4(1-16), which disrupt lipid bilayers by the carpet mechanism, appeared to be strong inducers of the vraDE operon. We show that high level induction by ovispirin-1 is dependent on the amide modification of the peptide C-terminus. This suggests that the amide group has a crucial role in the activation of the Aps (GraRS) sensory system, the regulator of vraDE. In contrast, temporin L, which disrupts lipid bilayers by forming pores, revealed a weaker inducer of vraDE despite the C-terminal amide modification. Sensitivity testing with CAMPs and other antimicrobials suggested that VraDE is a transporter dedicated to resist bacitracin. We also showed that SA0205 belongs to the VraSR regulon. Furthermore, VraSR was shown to be important for resistance against a wide range of cell wall-active antibiotics and other antimicrobial agents including the amide-modified ovispirin-1, bacitracin, teicoplanin, cefotaxime and 10 other β-lactam antibiotics, chlorpromazine, thioridazine and EGTA. Conclusion Defense against different CAMPs involves not only general signaling pathways but also CAMP-specific ones. These results suggest that CAMPs or a mixture of CAMPs could constitute a potential additive to standard antibiotic treatment.
Collapse
Affiliation(s)
- Milla Pietiäinen
- Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), PL 30, 00271 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Streptococcus pyogenes CovRS mediates growth in iron starvation and in the presence of the human cationic antimicrobial peptide LL-37. J Bacteriol 2008; 191:673-7. [PMID: 18996992 DOI: 10.1128/jb.01256-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We found that the global regulatory two-component signal transduction system CovRS mediates the ability of group A streptococcus (GAS) to grow under two stresses encountered during infection: iron starvation and the presence of LL-37. We also showed that CovRS regulates transcription of the multimetal transporter operon that is important for GAS growth in a low concentration of iron.
Collapse
|
24
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|