1
|
Li Z, Li Z, Peng Y, Zhang M, Wen Y, Lu X, Kan B. Genomic diversity of mcr-carrying plasmids and the role of type IV secretion systems in IncI2 plasmids conjugation. Commun Biol 2025; 8:342. [PMID: 40025288 PMCID: PMC11873049 DOI: 10.1038/s42003-025-07748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
The rapid dissemination of colistin resistance via mcr-carrying plasmids (pMCRs) poses a significant public health challenge. This study examined the genomic diversity and conjugation mechanisms of pMCRs, with a particular focus on the role of type IV secretion systems (T4SS) in IncI2 plasmids. The 868 complete plasmid sequences revealed various replicon types of pMCRs, with IncI2 as the primary epidemic type, and the co-transfer risk of multidrug resistance genes associated with IncHI2. T4SS was identified in 89.9% of pMCRs, with the T4SS sequence exclusively carried by IncI2 being conserved and typical of the VirB/D4 type, consisting of 12 subunits. Conjugation assays confirmed the essential role of the pilus subunit VirB2 and the significant impact of VirB5P3 on conjugation. This was further validated in the in vivo intra-species competitive conjugation of Escherichia coli. Structural predictions show that a hypervariable region at the C-terminus of the pentameric VirB5 co-evolves in sequence with VirB6, and the conserved N-terminal may act as a potential drug target to inhibit the plasmid transfer channel. This study will deepen the understanding of the pMCR epidemic patterns and provide additional insights for controlling the spread of resistant plasmids.
Collapse
Affiliation(s)
- Zhe Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengke Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Yuanxi Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Waksman G. Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria. Curr Opin Struct Biol 2025; 90:102978. [PMID: 39823762 DOI: 10.1016/j.sbi.2024.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell. Here, focusing on systems principally involved in DNA transfer, we provide an update on progress made on various mechanistic aspects of conjugation.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Wu P, Zhang M, Kou Y, Liang S, Ni J, Huang Q, Shen Y. Identification of novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A. MLIFE 2025; 4:17-28. [PMID: 40026581 PMCID: PMC11868833 DOI: 10.1002/mlf2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
In Sulfolobales cells, transcription of the Ups (UV-inducible pili of Sulfolobus) and Ced (Crenarchaeal system for exchange of DNA) genes is highly induced by DNA damage, and the two systems play key roles in pili-mediated cell aggregation and chromosomal DNA import, respectively. Ups is composed of UpsA, UpsB, UpsE, and UpsF, while Ced is composed of CedA, CedA1, CedA2, and CedB. So far, how DNA is transported by these systems is far from clear. Here, we report three novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A, CedD (SiRe_1715) and CedE (SiRe_2100), paralogs of CedB and CedA, and UpsC (SiRe_1957), a paralog of UpsA/UpsB. We developed a DNA import and export assay method, by which we revealed that CedD, CedE, and UpsC are essential for DNA import, while CedE and UpsC are also involved in DNA export together with CedA1 and Ups. Microscopic analysis revealed that upsC is involved in cell aggregation like other Ups genes. In addition, we found that cedB and cedD co-occur in the Crenarchaeal genomes that lack virB4, an essential component of type IV secretion system. Interestingly, CedB and CedD share homology to different parts of VirB4 N-terminal domain and form stable homo-oligomers in vitro. Collectively, our results indicate that CedD, CedE, and UpsC are integral components of the Ced and Ups systems in Sulfolobales.
Collapse
Affiliation(s)
- Pengju Wu
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Mengqi Zhang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Yanlu Kou
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Shikuan Liang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Qihong Huang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Yulong Shen
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| |
Collapse
|
4
|
Yin Y, Tian M, Zhang G, Hu H, Ding C, Yu S. Identification of Brucella RS15060 as a novel type IV secretion system effector associated with bacterial virulence. Vet Res 2024; 55:168. [PMID: 39696601 DOI: 10.1186/s13567-024-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
Brucella is an intracellular parasitic pathogen that causes the worldwide zoonotic disease brucellosis. The type IV secretion system (T4SS) is utilized to secrete various effectors to help Brucella form Brucella-containing vacuoles within the cell and accomplish intracellular trafficking and replication. Brucella has fewer recognized effector proteins than other intracellular parasites in the Proteobacteria, indicating that Brucella may contain a large number of unidentified effector proteins. In this study, the optimal conditions for inducing protein secretion from Brucella were screened, and the secreted proteins of 2308 and the T4SS-deficient mutant SV123 under optimal conditions were collected for comparative proteomics analysis. By label-free quantitative proteomics, we identified 15 differential proteins. Through the β-lactamase TEM1 assay and indirect immunofluorescence assay, we identified RS15060 and RS10635 as novel T4SS effectors. Furthermore, by constructing mutation strains and performing cell/mouse infection experiments, we found that deletion of the rs15060 gene reduced the capacity of Brucella to replicate in cells and cause chronic infection in mice. In conclusion, a novel Brucella T4SS effector protein, RS15060, was identified to be associated with virulence in this study, and the discovery of effector proteins is conducive to a more comprehensive elucidation of T4SS function as well as to uncovering the cryptic strategies of Brucella survival in cells.
Collapse
Affiliation(s)
- Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
- Veterinary Biopharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, China.
| |
Collapse
|
5
|
Lacroix B, Fratta A, Hak H, Hu Y, Citovsky V. Agrobacterium virulence factors induce the expression of host DNA repair-related genes without promoting major genomic damage. Sci Rep 2024; 14:24330. [PMID: 39420028 PMCID: PMC11487168 DOI: 10.1038/s41598-024-75525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
This study aimed to investigate whether the plant DNA damage levels and DNA damage response (DDR) are regulated during Agrobacterium infection and potentially manipulated by Agrobacterium to facilitate T-DNA integration. We investigated the plant genomic response to Agrobacterium infection by measuring gamma H2AX levels, which reflect the levels of double-strand DNA breaks (DSBs), and by characterizing transcription of three major DNA repair marker genes NAC82, KU70, and AGO2. These experiments revealed that, globally, Agrobacterium infection did not result in a major increase in DSB content in the host genome. The transcription of the DNA damage repair genes, on the other hand, was elevated upon the wild-type Agrobacterium infection. This transcriptional outcome was largely negated by a mutation in the bacterial virB5 gene which encodes the virulence (Vir) protein B5, a minor component of Agrobacterium pilus necessary for the translocation of Vir effector proteins into the host cell, suggesting that the transcriptional activation of the cellular DNA damage repair machinery requires the transport into the host cell of the Agrobacterium effectors, i.e., the VirD2, VirD5, VirE2, VirE3, and VirF proteins. Most likely, a combination of several of these Vir effectors is required to activate the host DNA repair as their individual loss- or gain-of-function mutants did not significantly affect this process.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA.
| | - Anna Fratta
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Hagit Hak
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Center, 50250, Beit Dagan, Israel
| | - Yufei Hu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| |
Collapse
|
6
|
Macé K, Waksman G. Cryo-EM structure of a conjugative type IV secretion system suggests a molecular switch regulating pilus biogenesis. EMBO J 2024; 43:3287-3306. [PMID: 38886579 PMCID: PMC11294453 DOI: 10.1038/s44318-024-00135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Conjugative type IV secretion systems (T4SS) mediate bacterial conjugation, a process that enables the unidirectional exchange of genetic materials between a donor and a recipient bacterial cell. Bacterial conjugation is the primary means by which antibiotic resistance genes spread among bacterial populations (Barlow 2009; Virolle et al, 2020). Conjugative T4SSs form pili: long extracellular filaments that connect with recipient cells. Previously, we solved the cryo-electron microscopy (cryo-EM) structure of a conjugative T4SS. In this article, based on additional data, we present a more complete T4SS cryo-EM structure than that published earlier. Novel structural features include details of the mismatch symmetry within the OMCC, the presence of a fourth VirB8 subunit in the asymmetric unit of both the arches and the inner membrane complex (IMC), and a hydrophobic VirB5 tip in the distal end of the stalk. Additionally, we provide previously undescribed structural insights into the protein VirB10 and identify a novel regulation mechanism of T4SS-mediated pilus biogenesis by this protein, that we believe is a key checkpoint for this process.
Collapse
Affiliation(s)
- Kévin Macé
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
- Univ. Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) - UMR6290, 35000, Rennes, France.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
- Institute of Structural and Molecular Biology, Division of Biosciences, Gower Street, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Gordils-Valentin L, Ouyang H, Qian L, Hong J, Zhu X. Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Commun Biol 2024; 7:499. [PMID: 38664513 PMCID: PMC11045733 DOI: 10.1038/s42003-024-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.
Collapse
Affiliation(s)
- Lois Gordils-Valentin
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US
| | - Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Liangyu Qian
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, 77843, TX, US
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US.
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US.
| |
Collapse
|
8
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
9
|
Cabezón E, Valenzuela-Gómez F, Arechaga I. Primary architecture and energy requirements of Type III and Type IV secretion systems. Front Cell Infect Microbiol 2023; 13:1255852. [PMID: 38089815 PMCID: PMC10711112 DOI: 10.3389/fcimb.2023.1255852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| | | | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, Santander, Spain
| |
Collapse
|
10
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-displaying Escherichia coli cells and minicells for programmable delivery of toxic payloads via type IV secretion systems. mBio 2023; 14:e0214323. [PMID: 37772866 PMCID: PMC10653926 DOI: 10.1128/mbio.02143-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize the urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through the surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for the selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled programmed delivery system (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed the growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
11
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-Displaying E. coli Cells and Minicells for Programmable Delivery of Toxic Payloads via Type IV Secretion Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553016. [PMID: 37609324 PMCID: PMC10441419 DOI: 10.1101/2023.08.11.553016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) are highly versatile macromolecular translocators and offer great potential for deployment as delivery systems for therapeutic intervention. One major T4SS subfamily, the conjugation machines, are well-adapted for delivery of DNA cargoes of interest to other bacteria or eukaryotic cells, but generally exhibit modest transfer frequencies and lack specificity for target cells. Here, we tested the efficacy of a surface-displayed nanobody/antigen (Nb/Ag) pairing system to enhance the conjugative transfer of IncN (pKM101), IncF (F/pOX38), or IncP (RP4) plasmids, or of mobilizable plasmids including those encoding CRISPR/Cas9 systems (pCrispr), to targeted recipient cells. Escherichia coli donors displaying Nb's transferred plasmids to E. coli and Pseudomonas aeruginosa recipients displaying the cognate Ag's at significantly higher frequencies than to recipients lacking Ag's. Nb/Ag pairing functionally substituted for the surface adhesin activities of F-encoded TraN and pKM101-encoded Pep, although not conjugative pili or VirB5-like adhesins. Nb/Ag pairing further elevated the killing effects accompanying delivery of pCrispr plasmids to E. coli and P. aeruginosa transconjugants bearing CRISPR/Cas9 target sequences. Finally, we determined that anucleate E. coli minicells, which are clinically safer delivery vectors than intact cells, transferred self-transmissible and mobilizable plasmids to E. coli and P. aeruginosa cells. Minicell-mediated mobilization of pCrispr plasmids to E. coli recipients elicited significant killing of transconjugants, although Nb/Ag pairing did not enhance conjugation frequencies or killing. Together, our findings establish the potential for deployment of bacteria or minicells as Programmed Delivery Systems (PDSs) for suppression of targeted bacterial species in infection settings. IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize an urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled Programmed Delivery System (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing of E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
- Current address: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
- Current address: Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, Texas 77030
| |
Collapse
|
12
|
Blanc M, Lettl C, Guérin J, Vieille A, Furler S, Briand-Schumacher S, Dreier B, Bergé C, Plückthun A, Vadon-Le Goff S, Fronzes R, Rousselle P, Fischer W, Terradot L. Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system. PLoS Pathog 2023; 19:e1011368. [PMID: 37155700 DOI: 10.1371/journal.ppat.1011368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.
Collapse
Affiliation(s)
- Marine Blanc
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jérémy Guérin
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Anaïs Vieille
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Sven Furler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Célia Bergé
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Rémi Fronzes
- European Institute of Chemistry and Biology, CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Univ. Bordeaux, Pessac, France
| | - Patricia Rousselle
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
13
|
Kreida S, Narita A, Johnson MD, Tocheva EI, Das A, Ghosal D, Jensen GJ. Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals stoichiometric protein-phospholipid assembly. Structure 2023; 31:385-394.e4. [PMID: 36870333 PMCID: PMC10168017 DOI: 10.1016/j.str.2023.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 02/07/2023] [Indexed: 03/06/2023]
Abstract
Agrobacterium tumefaciens causes crown gall disease in plants by the horizontal transfer of oncogenic DNA. The conjugation is mediated by the VirB/D4 type 4 secretion system (T4SS) that assembles an extracellular filament, the T-pilus, and is involved in mating pair formation between A. tumefaciens and the recipient plant cell. Here, we present a 3 Å cryoelectron microscopy (cryo-EM) structure of the T-pilus solved by helical reconstruction. Our structure reveals that the T-pilus is a stoichiometric assembly of the VirB2 major pilin and phosphatidylglycerol (PG) phospholipid with 5-start helical symmetry. We show that PG head groups and the positively charged Arg 91 residues of VirB2 protomers form extensive electrostatic interactions in the lumen of the T-pilus. Mutagenesis of Arg 91 abolished pilus formation. While our T-pilus structure is architecturally similar to previously published conjugative pili structures, the T-pilus lumen is narrower and positively charged, raising questions of whether the T-pilus is a conduit for ssDNA transfer.
Collapse
Affiliation(s)
- Stefan Kreida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Akihiro Narita
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Matthew D Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Anath Das
- Department of Biochemistry, Molecular Biology and Biophysics, and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA.
| |
Collapse
|
14
|
Tang T, Chen Y, Du Y, Yao B, Liu M. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129870. [PMID: 36063716 DOI: 10.1016/j.jhazmat.2022.129870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
15
|
Robledo M, Álvarez B, Cuevas A, González S, Ruano-Gallego D, Fernández L, de la Cruz F. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res 2022; 50:12938-12950. [PMID: 36511856 PMCID: PMC9825185 DOI: 10.1093/nar/gkac1164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic interventions on microbiomes, for clinical or biotechnological purposes, remain challenging. Conjugation-based delivery of genetic cargo is still unspecific and limited by low conjugation rates. Here we report an approach to overcome these problems, based on a synthetic bacterial adhesion system. Mating assemblers consist on a synthetic adhesion formed by the expression on the surface of donor and target cells of specific nanobodies (Nb) and their cognate antigen (Ag). The Nb-Ag bridge increased 1-3 logs transfer of a variety of plasmids, especially in liquid media, confirming that cell-cell docking is a main determinant limiting mating efficiency. Synthetic cell-to-cell adhesion allows efficient conjugation to targeted recipients, enhancing delivery of desired genes to a predefined subset of prey species, or even specific pathogenic strains such as enterohemorrhagic Escherichia coli (EHEC), within a bacterial community. The synthetic conjugation enhancer presented here optimizes plasmid delivery by selecting the target hosts with high selectivity.
Collapse
Affiliation(s)
- Marta Robledo
- Correspondence may also be addressed to Marta Robledo.
| | - Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Ana Cuevas
- Intergenomics Group, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - Sheila González
- Intergenomics Group, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
16
|
Cryo-EM structure of the Agrobacteriumtumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure 2022; 31:375-384.e4. [PMID: 36513067 DOI: 10.1016/j.str.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Agrobacterium tumefaciens is a natural genetic engineer that transfers DNA into plants, which is the most applied process for generation of genetically modified plants. DNA transfer is mediated by a type IV secretion system in the cell envelope and extracellular T-pili. We here report the cryo-electron microscopic structures of the T-pilus at 3.2-Å resolution and of the plasmid pKM101-determined N-pilus at 3-Å resolution. Both pili contain a main pilus protein (VirB2 in A. tumefaciens, TraM in pKM101) and phospholipids arranged in a five-start helical assembly. They contain positively charged amino acids in the lumen, and the lipids are positively charged in the T-pilus (phosphatidylcholine) conferring overall positive charge. Mutagenesis of the lumen-exposed Arg91 in VirB2 results in protein destabilization and loss of pilus formation. Our results reveal that different phospholipids can be incorporated into type IV secretion pili and that the charge of the lumen may be of functional importance.
Collapse
|
17
|
Lacroix B, Citovsky V. Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection. ADVANCES IN GENETICS 2022; 110:1-29. [PMID: 37283660 PMCID: PMC10241481 DOI: 10.1016/bs.adgen.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Several species of the Agrobacterium genus represent unique bacterial pathogens able to genetically transform plants, by transferring and integrating a segment of their own DNA (T-DNA, transferred DNA) in their host genome. Whereas in nature this process results in uncontrolled growth of the infected plant cells (tumors), this capability of Agrobacterium has been widely used as a crucial tool to generate transgenic plants, for research and biotechnology. The virulence of Agrobacterium relies on a series of virulence genes, mostly encoded on a large plasmid (Ti-plasmid, tumor inducing plasmid), involved in the different steps of the DNA transfer to the host cell genome: activation of bacterial virulence, synthesis and export of the T-DNA and its associated proteins, intracellular trafficking of the T-DNA and effector proteins in the host cell, and integration of the T-DNA in the host genomic DNA. Multiple interactions between these bacterial encoded proteins and host factors occur during the infection process, which determine the outcome of the infection. Here, we review our current knowledge of the mechanisms by which bacterial and plant factors control Agrobacterium virulence and host plant susceptibility.
Collapse
|
18
|
Al Mamun AAM, Kissoon K, Kishida K, Shropshire WC, Hanson B, Christie PJ. IncFV plasmid pED208: Sequence analysis and evidence for translocation of maintenance/leading region proteins through diverse type IV secretion systems. Plasmid 2022; 123-124:102652. [PMID: 36228885 PMCID: PMC10018792 DOI: 10.1016/j.plasmid.2022.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022]
Abstract
Two phylogenetically distantly-related IncF plasmids, F and pED208, serve as important models for mechanistic and structural studies of F-like type IV secretion systems (T4SSFs) and F pili. Here, we present the pED208 sequence and compare it to F and pUMNF18, the closest match to pED208 in the NCBI database. As expected, gene content of the three cargo regions varies extensively, although the maintenance/leading regions (MLRs) and transfer (Tra) regions also carry novel genes or motifs with predicted modulatory effects on plasmid stability, dissemination and host range. By use of a Cre recombinase assay for translocation (CRAfT), we recently reported that pED208-carrying donors translocate several products of the MLR (ParA, ParB1, ParB2, SSB, PsiB, PsiA) intercellularly through the T4SSF. Here, we extend these findings by reporting that pED208-carrying donors translocate 10 additional MLR proteins during conjugation. In contrast, two F plasmid-encoded toxin components of toxin-antitoxin (TA) modules, CcdB and SrnB, were not translocated at detectable levels through the T4SSF. Remarkably, most or all of the pED208-encoded MLR proteins and CcdB and SrnB were translocated through heterologous T4SSs encoded by IncN and IncP plasmids pKM101 and RP4, respectively. Together, our sequence analyses underscore the genomic diversity of the F plasmid superfamily, and our experimental data demonstrate the promiscuous nature of conjugation machines for protein translocation. Our findings raise intriguing questions about the nature of T4SS translocation signals and of the biological and evolutionary consequences of conjugative protein transfer.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| | - Kimberly Kissoon
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America
| | - William C Shropshire
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Blake Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX, USA; Center for Infectious Diseases, University of Texas Health Science Center, School of Public Health, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, McGovern School of Medicine, Fannin St, Houston, TX 77030, United States of America.
| |
Collapse
|
19
|
Abstract
Bacterial conjugation is the fundamental process of unidirectional transfer of DNAs, often plasmid DNAs, from a donor cell to a recipient cell1. It is the primary means by which antibiotic resistance genes spread among bacterial populations2,3. In Gram-negative bacteria, conjugation is mediated by a large transport apparatus—the conjugative type IV secretion system (T4SS)—produced by the donor cell and embedded in both its outer and inner membranes. The T4SS also elaborates a long extracellular filament—the conjugative pilus—that is essential for DNA transfer4,5. Here we present a high-resolution cryo-electron microscopy (cryo-EM) structure of a 2.8 megadalton T4SS complex composed of 92 polypeptides representing 8 of the 10 essential T4SS components involved in pilus biogenesis. We added the two remaining components to the structural model using co-evolution analysis of protein interfaces, to enable the reconstitution of the entire system including the pilus. This structure describes the exceptionally large protein–protein interaction network required to assemble the many components that constitute a T4SS and provides insights on the unique mechanism by which they elaborate pili. Cryo-electron microscopy structures of a 2.8 megadalton bacterial type IV secretion system encoded by the plasmid R388 and comprising 92 polypeptides provide insights into the stepwise mechanism of pilus assembly.
Collapse
|
20
|
Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H. The VirB System Plays a Crucial Role in Brucella Intracellular Infection. Int J Mol Sci 2021; 22:ijms222413637. [PMID: 34948430 PMCID: PMC8707931 DOI: 10.3390/ijms222413637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.
Collapse
Affiliation(s)
- Xue Xiong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130122, China
- Correspondence: (J.L.); (H.J.)
| | - Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
21
|
Czolkoss S, Safronov X, Rexroth S, Knoke LR, Aktas M, Narberhaus F. Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Front Microbiol 2021; 12:754486. [PMID: 34899640 PMCID: PMC8656257 DOI: 10.3389/fmicb.2021.754486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.
Collapse
Affiliation(s)
- Simon Czolkoss
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Xenia Safronov
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Rexroth
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lisa R Knoke
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Huang FC, Chi SF, Chien PR, Liu YT, Chang HN, Lin CS, Hwang HH. Arabidopsis RAB8A, RAB8B and RAB8D Proteins Interact with Several RTNLB Proteins and are Involved in the Agrobacterium tumefaciens Infection Process. PLANT & CELL PHYSIOLOGY 2021; 62:1572-1588. [PMID: 34255832 DOI: 10.1093/pcp/pcab112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis thaliana small GTP-binding proteins, AtRAB8s, associate with the endomembrane system and modulate tubulovesicular trafficking between compartments of the biosynthetic and endocytic pathways. There are five members in Arabidopsis, namely AtRAB8A-8E. Yeast two-hybrid assays, bimolecular fluorescence complementation assays and glutathione-S-transferase pull-down assays showed that RAB8A, 8B and 8D interacted with several membrane-associated reticulon-like (AtRTNLB) proteins in yeast, plant cells and in vitro. Furthermore, RAB8A, 8B and 8D proteins showed interactions with the Agrobacterium tumefaciens virulence protein, VirB2, a component of a type IV secretion system (T4SS). A. tumefaciens uses a T4SS to transfer T-DNA and Virulence proteins to plants, which causes crown gall disease in plants. The Arabidopsis rab8A, rab8B and rab8D single mutants showed decreased levels of Agrobacterium-mediated root and seedling transformation, while the RAB8A, 8B and 8D overexpression transgenic Arabidopsis plants were hypersusceptible to A. tumefaciens and Pseudomonas syringae infections. RAB8A-8E transcripts accumulated differently in roots, rosette leaves, cauline leaves, inflorescence and flowers of wild-type plants. In summary, RAB8A, 8B and 8D interacted with several RTNLB proteins and participated in A. tumefaciens and P. syringae infection processes.
Collapse
Affiliation(s)
- Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shin-Fei Chi
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Yin-Tzu Liu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Nung Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
23
|
Burns DL. Secretion of Pertussis Toxin from Bordetella pertussis. Toxins (Basel) 2021; 13:toxins13080574. [PMID: 34437445 PMCID: PMC8402538 DOI: 10.3390/toxins13080574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Production and secretion of pertussis toxin (PT) is essential for the virulence of Bordetella pertussis. Due to the large oligomeric structure of PT, transport of the toxin across bacterial membrane barriers represents a significant hurdle that the bacteria must overcome in order to maintain pathogenicity. During the secretion process, PT undergoes a two-step transport process. The first step involves transport of the individual polypeptide chains of PT across the inner membrane utilizing a generalized secretion pathway, most likely the bacterial Sec system. The second step involves the use of a specialized apparatus to transport the toxin across the outer membrane of the bacterial cell. This apparatus, which has been termed the Ptl transporter and which is unique to the PT secretion pathway, is a member of the type IV family of bacterial transporters. Here, the current understanding of the PT secretion process is reviewed including a description of the Ptl proteins that assemble to form the transporter, the general structure of type IV transporters, the known similarities and differences between canonical type IV substrate transport and Ptl-mediated transport of PT, as well as the known sequence of events in the assembly and secretion of PT.
Collapse
Affiliation(s)
- Drusilla L Burns
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
24
|
Costa TRD, Harb L, Khara P, Zeng L, Hu B, Christie PJ. Type IV secretion systems: Advances in structure, function, and activation. Mol Microbiol 2021; 115:436-452. [PMID: 33326642 DOI: 10.1111/mmi.14670] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.
Collapse
Affiliation(s)
- Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Laith Harb
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
25
|
Singhi D, Srivastava P. Role of Bacterial Cytoskeleton and Other Apparatuses in Cell Communication. Front Mol Biosci 2020; 7:158. [PMID: 32766280 PMCID: PMC7378377 DOI: 10.3389/fmolb.2020.00158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
The bacterial cytoskeleton is crucial for sensing the external environment and plays a major role in cell to cell communication. There are several other apparatuses such as conjugation tubes, membrane vesicles, and nanotubes used by bacterial cells for communication. The present review article describes the various bacterial cytoskeletal proteins and other apparatuses, the physical structures they form and their role in sensing environmental stress. The implications of this cellular communication in pathogenicity are discussed.
Collapse
Affiliation(s)
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
26
|
Deng H, Zhou J, Gong B, Xiao M, Zhang M, Pang Q, Zhang X, Zhao B, Zhou X. Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop 2019; 197:105026. [PMID: 31103700 DOI: 10.1016/j.actatropica.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is caused by the genus Brucella. Brucella is widely distributed in cattle, swine, sheep, goat and other mammals including human. Animal brucellosis causes severe economic losses and affects related international transportation and trade. Human brucellosis causes both acute and chronic symptoms of multi-organ dysfunction. Brucella type IV secretion system (T4SS) VirB5 was required for macrophages infection and essential for virulence in mice. VirB5 is located on the cell surface and serves as a specific adhesin targeting host cell receptors. The aim of this study was to isolate and characterize a specific human domain antibody against Brucella abortus (B. abortus) VirB5 from human single domain antibody (sdAb or VHH) phage display library. Following five rounds of screening, an sdAb named as BaV5VH4 showed the highest affinity by enzyme-linked immunosorbent assay (ELISA). Its interaction with B. abortus VirB5 was verified by binding assay, dot blot and molecular docking. These findings in this paper could greatly help elucidate the molecular mechanisms of Brucella infection, and accelerate the development of sdAbs-based vaccines and neutralizing therapeutics of brucellosis.
Collapse
|
27
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
28
|
Thompson MA, Onyeziri MC, Fuqua C. Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment. Curr Top Microbiol Immunol 2019; 418:143-184. [PMID: 29998422 PMCID: PMC6330146 DOI: 10.1007/82_2018_96] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agrobacterium tumefaciens attaches stably to plant host tissues and abiotic surfaces. During pathogenesis, physical attachment to the site of infection is a prerequisite to infection and horizontal gene transfer to the plant. Virulent and avirulent strains may also attach to plant tissue in more benign plant associations, and as with other soil microbes, to soil surfaces in the terrestrial environment. Although most A. tumefaciens virulence functions are encoded on the tumor-inducing plasmid, genes that direct general surface attachment are chromosomally encoded, and thus this process is not obligatorily tied to virulence, but is a more fundamental capacity. Several different cellular structures are known or suspected to contribute to the attachment process. The flagella influence surface attachment primarily via their propulsive activity, but control of their rotation during the transition to the attached state may be quite complex. A. tumefaciens produces several pili, including the Tad-type Ctp pili, and several plasmid-borne conjugal pili encoded by the Ti and At plasmids, as well as the so-called T-pilus, involved in interkingdom horizontal gene transfer. The Ctp pili promote reversible interactions with surfaces, whereas the conjugal and T-pili drive horizontal gene transfer (HGT) interactions with other cells and tissues. The T-pilus is likely to contribute to physical association with plant tissues during DNA transfer to plants. A. tumefaciens can synthesize a variety of polysaccharides including cellulose, curdlan (β-1,3 glucan), β-1,2 glucan (cyclic and linear), succinoglycan, and a localized polysaccharide(s) that is confined to a single cellular pole and is called the unipolar polysaccharide (UPP). Lipopolysaccharides are also in the outer leaflet of the outer membrane. Cellulose and curdlan production can influence attachment under certain conditions. The UPP is required for stable attachment under a range of conditions and on abiotic and biotic surfaces. Other factors that have been reported to play a role in attachment include the elusive protein called rhicadhesin. The process of surface attachment is under extensive regulatory control and can be modulated by environmental conditions, as well as by direct responses to surface contact. Complex transcriptional and post-transcriptional control circuitry underlies much of the production and deployment of these attachment functions.
Collapse
Affiliation(s)
- Melene A Thompson
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
29
|
Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, Bueno NF, dos Santos TR, Alvarez-Martinez CE, Salinas RK, Farah CS. Bacteria-Killing Type IV Secretion Systems. Front Microbiol 2019; 10:1078. [PMID: 31164878 PMCID: PMC6536674 DOI: 10.3389/fmicb.2019.01078] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteria have been constantly competing for nutrients and space for billions of years. During this time, they have evolved many different molecular mechanisms by which to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial and eukaryotic cells. These processes often employ large multimeric transmembrane nanomachines that have been classified as types I-IX secretion systems. One of the most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have been shown to be able to secrete macromolecules directly into both eukaryotic and prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer from one bacterium to another was restricted to protein-DNA complexes during bacterial conjugation. This view changed when it was shown by our group that many Xanthomonas species carry a T4SS that is specialized to transfer toxic bacterial effectors into rival bacterial cells, resulting in cell death. This review will focus on this special subtype of T4SS by describing its distinguishing features, similar systems in other proteobacterial genomes, and the nature of the effectors secreted by these systems and their cognate inhibitors.
Collapse
Affiliation(s)
- Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel U. Oka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Diorge P. Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Y. Matsuyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Natalia F. Bueno
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Cristina E. Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Christie PJ, Gomez Valero L, Buchrieser C. Biological Diversity and Evolution of Type IV Secretion Systems. Curr Top Microbiol Immunol 2019; 413:1-30. [PMID: 29536353 PMCID: PMC5912172 DOI: 10.1007/978-3-319-75241-9_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bacterial type IV secretion systems (T4SSs) are a highly functionally and structurally diverse superfamily of secretion systems found in many species of Gram-negative and -positive bacteria. Collectively, the T4SSs can translocate DNA and monomeric and multimeric protein substrates to a variety of bacterial and eukaryotic cell types. Detailed phylogenomics analyses have established that the T4SSs evolved from ancient conjugation machines whose original functions were to disseminate mobile DNA elements within and between bacterial species. How members of the T4SS superfamily evolved to recognize and translocate specific substrate repertoires to prokaryotic or eukaryotic target cells is a fascinating question from evolutionary, biological, and structural perspectives. In this chapter, we will summarize recent findings that have shaped our current view of the biological diversity of the T4SSs. We focus mainly on two subtypes, designated as the types IVA (T4ASS) and IVB (T4BSS) systems that respectively are represented by the paradigmatic Agrobacterium tumefaciens VirB/VirD4 and Legionella pneumophila Dot/Icm T4SSs. We present current information about the composition and architectures of these representative systems. We also describe how these and a few related T4ASS and T4BSS members evolved as specialized nanomachines through acquisition of novel domains or subunits, a process that ultimately generated extensive genetic and structural mosaicism among this secretion superfamily. Finally, we present new phylogenomics information establishing that the T4BSSs are much more broadly distributed than initially envisioned.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| | - Laura Gomez Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
- CNRS, UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724, Paris, France
- CNRS, UMR 3525, 75724, Paris, France
| |
Collapse
|
31
|
Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep 2019; 20:embr.201847012. [PMID: 30602585 PMCID: PMC6362355 DOI: 10.15252/embr.201847012] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Conjugation is the process by which bacteria exchange genetic materials in a unidirectional manner from a donor cell to a recipient cell. The discovery of conjugation signalled the dawn of genetics and molecular biology. In Gram-negative bacteria, the process of conjugation is mediated by a large membrane-embedded machinery termed "conjugative type IV secretion (T4S) system", a large injection nanomachine, which together with a DNA-processing machinery termed "the relaxosome" and a large extracellular tube termed "pilus" orchestrates directional DNA transfer. Here, the focus is on past and latest research in the field of conjugation and T4S systems in Gram-negative bacteria, with an emphasis on the various questions and debates that permeate the field from a mechanistic perspective.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and Birkbeck, London, UK
| |
Collapse
|
32
|
González-Rivera C, Khara P, Awad D, Patel R, Li YG, Bogisch M, Christie PJ. Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA transfer. Mol Microbiol 2018; 111:96-117. [PMID: 30264928 DOI: 10.1111/mmi.14141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023]
Abstract
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Dominik Awad
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Roosheel Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | | | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2018; 19:ijms19020638. [PMID: 29495267 PMCID: PMC5855860 DOI: 10.3390/ijms19020638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/05/2022] Open
Abstract
Agrobacterium tumefaciens can genetically transform various eukaryotic cells because of the presence of a resident tumor-inducing (Ti) plasmid. During infection, a defined region of the Ti plasmid, transfer DNA (T-DNA), is transferred from bacteria into plant cells and causes plant cells to abnormally synthesize auxin and cytokinin, which results in crown gall disease. T-DNA and several virulence (Vir) proteins are secreted through a type IV secretion system (T4SS) composed of T-pilus and a transmembrane protein complex. Three members of Arabidopsis reticulon-like B (RTNLB) proteins, RTNLB1, 2, and 4, interact with VirB2, the major component of T-pilus. Here, we have identified that other RTNLB proteins, RTNLB3 and 8, interact with VirB2 in vitro. Root-based A. tumefaciens transformation assays with Arabidopsis rtnlb3, or rtnlb5-10 single mutants showed that the rtnlb8 mutant was resistant to A. tumefaciens infection. In addition, rtnlb3 and rtnlb8 mutants showed reduced transient transformation efficiency in seedlings. RTNLB3- or 8 overexpression transgenic plants showed increased susceptibility to A. tumefaciens and Pseudomonas syringae infection. RTNLB1-4 and 8 transcript levels differed in roots, rosette leaves, cauline leaves, inflorescence, flowers, and siliques of wild-type plants. Taken together, RTNLB3 and 8 may participate in A. tumefaciens infection but may have different roles in plants.
Collapse
|
34
|
Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: Mechanism and Architecture Defined Through In Vivo Mutagenesis and Chimeric Systems. Curr Top Microbiol Immunol 2018; 418:233-260. [PMID: 29808338 DOI: 10.1007/82_2018_94] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Abstract
Escherichia coli and other Gram-negative and -positive bacteria employ type IV secretion systems (T4SSs) to translocate DNA and protein substrates, generally by contact-dependent mechanisms, to other cells. The T4SSs functionally encompass two major subfamilies, the conjugation systems and the effector translocators. The conjugation systems are responsible for interbacterial transfer of antibiotic resistance genes, virulence determinants, and genes encoding other traits of potential benefit to the bacterial host. The effector translocators are used by many Gram-negative pathogens for delivery of potentially hundreds of virulence proteins termed effectors to eukaryotic cells during infection. In E. coli and other species of Enterobacteriaceae, T4SSs identified to date function exclusively in conjugative DNA transfer. In these species, the plasmid-encoded systems can be classified as the P, F, and I types. The P-type systems are the simplest in terms of subunit composition and architecture, and members of this subfamily share features in common with the paradigmatic Agrobacterium tumefaciens VirB/VirD4 T4SS. This review will summarize our current knowledge of the E. coli systems and the A. tumefaciens P-type system, with emphasis on the structural diversity of the T4SSs. Ancestral P-, F-, and I-type systems were adapted throughout evolution to yield the extant effector translocators, and information about well-characterized effector translocators also is included to further illustrate the adaptive and mosaic nature of these highly versatile machines.
Collapse
|
36
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
37
|
Gordon JE, Costa TRD, Patel RS, Gonzalez-Rivera C, Sarkar MK, Orlova EV, Waksman G, Christie PJ. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol Microbiol 2017; 105:273-293. [PMID: 28452085 PMCID: PMC5518639 DOI: 10.1111/mmi.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.
Collapse
Affiliation(s)
- Jay E. Gordon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Tiago R. D. Costa
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Roosheel S. Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Mayukh K. Sarkar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, Texas 77030
| |
Collapse
|
38
|
Volokhina I, Gusev Y, Mazilov S, Moiseeva Y, Chumakov M. Computer evaluation of VirE2 protein complexes for ssDNA transfer ability. Comput Biol Chem 2017; 68:64-70. [DOI: 10.1016/j.compbiolchem.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
|
39
|
Sharifahmadian M, Arya T, Bessette B, Lecoq L, Ruediger E, Omichinski JG, Baron C. Monomer-to-dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J 2017; 284:1218-1232. [PMID: 28236662 DOI: 10.1111/febs.14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
Secretion systems are protein complexes essential for bacterial virulence and potential targets for antivirulence drugs. In the intracellular pathogen Brucella suis, a type IV secretion system mediates the translocation of virulence factors into host cells and it is essential for pathogenicity. VirB8 is a core component of the secretion system and dimerization is important for functionality of the protein complex. We set out to study dimerization and possible conformational changes of VirB8 from B. suis (VirB8s) using nuclear magnetic resonance, X-ray crystallography, and differential scanning fluorimetry. We identified changes of the protein induced by a concentration-dependent monomer-to-dimer transition of the periplasmic domain (VirB8sp). We also show that the presence of the detergent CHAPS alters several signals in the heteronuclear single quantum coherence (HSQC) spectra and some of these chemical shift changes correspond to those observed during monomer-dimer transition. X-ray analysis of a monomeric variant (VirB8spM102R ) demonstrates that significant structural changes occur in the protein's α-helical regions (α2 and α4). We localized chemical shift changes of residues at the dimer interface as well as to the α1 helix that links this interface to a surface groove that binds dimerization inhibitors. Fragment-based screening identified small molecules that bind to VirB8sp and two of them have differential binding affinity for wild-type and the VirB8spM102R variant underlining their different conformations. The observed chemical shift changes suggest conformational changes of VirB8s during monomer-dimer transition that may play a role during secretion system assembly or function and they provide insights into the mechanism of inhibitor action. DATABASE BMRB accession no. 26852 and PDB 5JBS.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Tarun Arya
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Benoit Bessette
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Edward Ruediger
- Institut de Recherche en Immunologie et Cancer (IRIC), Université de Montréal, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| |
Collapse
|
40
|
Sharifahmadian M, Baron C. Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors. Curr Top Microbiol Immunol 2017. [PMID: 29536359 DOI: 10.1007/978-3-319-75241-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen-host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
41
|
Smart J, Fouillen A, Casu B, Nanci A, Baron C. Cag-delta (Cag3) protein from theHelicobacter pylori26695cagtype IV secretion system forms ring-like supramolecular assemblies. FEMS Microbiol Lett 2016; 364:fnw280. [DOI: 10.1093/femsle/fnw280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/20/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022] Open
|
42
|
Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains. Sci Rep 2016; 6:38101. [PMID: 27922023 PMCID: PMC5138618 DOI: 10.1038/srep38101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
The Cag Type IV secretion system, which contributes to inflammation and cancerogenesis during chronic infection, is one of the major virulence factors of the bacterial gastric pathogen Helicobacter pylori. We have generated and characterized a series of non-marked site-directed chromosomal mutants in H. pylori to define domains of unknown function of the essential tip protein CagL of the Cag secretion system. Characterizing the CagL mutants, we determined that their function to activate cells and transport the effector CagA was reduced to different extents. We identified three novel regions of the CagL protein, involved in its structural integrity, its possible interaction with the CagPAI T4SS pilus protein CagI, and in its binding to integrins and other host cell ligands. In particular two novel variable CagL motifs were involved in integrin binding, TSPSA, and TASLI, which is located opposite of its integrin binding motif RGD. We thereby defined
functionally important subdomains within the CagL structure, which can be used to clarify CagL contributions in the context of other CagPAI proteins or for inhibition of the CagT4SS. This structure-function correlation of CagL domains can also be instructive for the functional characterization of other potential VirB5 orthologs whose structure is not yet known.
Collapse
|
43
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
44
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
45
|
Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015; 13:343-59. [DOI: 10.1038/nrmicro3456] [Citation(s) in RCA: 655] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Structural biology of the Gram-negative bacterial conjugation systems. Trends Microbiol 2015; 23:301-10. [PMID: 25825348 DOI: 10.1016/j.tim.2015.02.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 11/21/2022]
Abstract
Conjugation, the process by which plasmid DNA is transferred from one bacterium to another, is mediated by type IV secretion systems (T4SSs). T4SSs are versatile systems that can transport not only DNA, but also toxins and effector proteins. Conjugative T4SSs comprise 12 proteins named VirB1-11 and VirD4 that assemble into a large membrane-spanning exporting machine. Before being transported, the DNA substrate is first processed on the cytoplasmic side by a complex called the relaxosome. The substrate is then targeted to the T4SS for export into a recipient cell. In this review, we describe the recent progress made in the structural biology of both the relaxosome and the T4SS.
Collapse
|
47
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
48
|
Hwang HH, Liu YT, Huang SC, Tung CY, Huang FC, Tsai YL, Cheng TF, Lai EM. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions. PHYTOPATHOLOGY 2015; 105:160-168. [PMID: 25163013 DOI: 10.1094/phyto-05-14-0133-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.
Collapse
|
49
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
50
|
Christie PJ, Gordon JE. The Agrobacterium Ti Plasmids. Microbiol Spectr 2014; 2:10.1128/microbiolspec.PLAS-0010-2013. [PMID: 25593788 PMCID: PMC4292801 DOI: 10.1128/microbiolspec.plas-0010-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 12/21/2022] Open
Abstract
Agrobacterium tumefaciens is a plant pathogen with the capacity to deliver a segment of oncogenic DNA carried on a large plasmid called the tumor-inducing or Ti plasmid to susceptible plant cells. A. tumefaciens belongs to the class Alphaproteobacteria, whose members include other plant pathogens (Agrobacterium rhizogenes), plant and insect symbionts (Rhizobium spp. and Wolbachia spp., respectively), human pathogens (Brucella spp., Bartonella spp., Rickettsia spp.), and nonpathogens (Caulobacter crescentus, Rhodobacter sphaeroides). Many species of Alphaproteobacteria carry large plasmids ranging in size from ∼100 kb to nearly 2 Mb. These large replicons typically code for functions essential for cell physiology, pathogenesis, or symbiosis. Most of these elements rely on a conserved gene cassette termed repABC for replication and partitioning, and maintenance at only one or a few copies per cell. The subject of this review is the ∼200-kb Ti plasmids carried by infectious strains of A. tumefaciens. We will summarize the features of this plasmid as a representative of the repABC family of megaplasmids. We will also describe novel features of this plasmid that enable A. tumefaciens cells to incite tumor formation in plants, sense and respond to an array of plant host and bacterial signal molecules, and maintain and disseminate the plasmid among populations of agrobacteria. At the end of this review, we will describe how this natural genetic engineer has been adapted to spawn an entire industry of plant biotechnology and review its potential for use in future therapeutic applications of plant and nonplant species.
Collapse
Affiliation(s)
- Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77005, Phone: 713-500-5440, Fax: 713-500-5499
| | - Jay E. Gordon
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77005, Phone: 713-500-5441, Fax: 713-500-5499
| |
Collapse
|