1
|
Chen W, Zhang Y, Mi J. Assessing Antibiotic-Resistant Genes in University Dormitory Washing Machines. Microorganisms 2024; 12:1112. [PMID: 38930496 PMCID: PMC11205806 DOI: 10.3390/microorganisms12061112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance.
Collapse
Affiliation(s)
- Wenbo Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China;
- Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China;
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
2
|
Chen Y, Ren H, Kong X, Wu H, Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5. Appl Environ Microbiol 2023; 89:e0118723. [PMID: 37823642 PMCID: PMC10617536 DOI: 10.1128/aem.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or β-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.
Collapse
Affiliation(s)
- Yiyang Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xia M, Yu D, Chen H, Dai J, Gao N, Li S, Bi X, Qiu D. An RpoN-dependent PEP-CTERM gene is involved in floc formation of an Aquincola tertiaricarbonis strain. BMC Microbiol 2023; 23:20. [PMID: 36658495 PMCID: PMC9850573 DOI: 10.1186/s12866-022-02745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The floc is a characteristic of microbial aggregate growth, displaying cloudy suspensions in water. Floc formation has been demonstrated in a series of bacteria and the floc-forming bacteria play a crucial role in activated sludge (AS) process widely used for municipal sewage and industrial wastewater treatment over a century. It has been demonstrated that some exopolysaccharide biosynthesis genes and the sigma factor (sigma54 or rpoN) were required for floc forming in some bacteria. However, the mechanism underlying the floc formation stills need to be elucidated. RESULTS In this study, we demonstrate that a TPR (Tetratricopeptide repeats) protein-encoding gene prsT is required for floc formation of Aquincola tertiaricarbonis RN12 and an upstream PEP-CTERM gene (designated pepA), regulated by RpoN1, is involved in its floc formation but not swarming motility and biofilm formation. Overexpression of PepA could rescue the floc-forming phenotype of the rpoN1 mutant by decreasing the released soluble exopolysaccharides and increasing the bound polymers. CONCLUSION Our results indicate that the wide-spread PEP-CTERM proteins play an important role in the self-flocculation of bacterial cells and may be a component of extracellular polymeric substances required for floc-formation.
Collapse
Affiliation(s)
- Ming Xia
- grid.411854.d0000 0001 0709 0000School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056 China ,grid.411854.d0000 0001 0709 0000Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056 China
| | - Dianzhen Yu
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.419092.70000 0004 0467 2285Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Han Chen
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.429211.d0000 0004 1792 6029Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei Province China
| | - Jingcheng Dai
- grid.429211.d0000 0004 1792 6029Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei Province China
| | - Na Gao
- grid.469521.d0000 0004 1756 0127Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Shuyang Li
- grid.429211.d0000 0004 1792 6029Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei Province China
| | - Xuezhi Bi
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 138668 Singapore
| | - Dongru Qiu
- grid.429211.d0000 0004 1792 6029Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei Province China
| |
Collapse
|
4
|
Mitschke N, Jarling R, Rabus R, Christoffers J, Wilkes H. Metabolites of the anaerobic degradation of diethyl ether by denitrifying betaproteobacterium strain HxN1. Org Biomol Chem 2020; 18:7098-7109. [PMID: 32897282 DOI: 10.1039/d0ob01419b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The constitutions of five metabolites formed during co-metabolic, anaerobic degradation of diethyl ether by the denitrifying betaproteobacterium Aromatoleum sp. strain HxN1 were elucidated by comparison of mass spectrometric and gas chromatographic data with those of synthetic reference standards. Furthermore, the absolute configurations of two stereogenic centers in the metabolites were established. Based on these results a degradation pathway for diethyl ether by Aromatoleum sp. HxN1 analogous to that of n-hexane is proposed. Synthesis of both enantiomers of methyl (E)-4-ethoxy-2-pentenoate was accomplished by etherification of ethyl (R)- or (S)-lactate, followed by hydrolysis of the ester group and reduction to furnish 2-ethoxy-1-propanol. The primary alcohol was converted by a Swern oxidation followed by a Horner-Wadsworth-Emmons reaction to methyl (E)-4-ethoxy-2-pentenoate that was finally hydrogenated to methyl 4-ethoxypentanoate. Methyl (S)-4-ethoxy-3-oxopentanoate was prepared by conversion of (S)-2-ethoxypropanoyl chloride with Meldrum's acid. Reduction of the resulting β-oxoester with NaBH4 or baker's yeast gave both diastereoisomers of methyl 4-ethoxy-3-hydroxypentanoate. The stereocenter at C-3 of the main diastereoisomer produced with baker's yeast was determined by Mosher ester analysis to be (R)-configurated. Dimethyl 2-(1-ethoxyethyl)succinate was prepared by Michael addition of nitroethane to diethyl maleate, followed by conjugate addition of sodium ethanolate, hydrolysis and esterification with diazomethane.
Collapse
Affiliation(s)
- Nico Mitschke
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - René Jarling
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Ralf Rabus
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| | - Heinz Wilkes
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
5
|
Thornton SF, Nicholls HCG, Rolfe SA, Mallinson HEH, Spence MJ. Biodegradation and fate of ethyl tert-butyl ether (ETBE) in soil and groundwater: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122046. [PMID: 32145642 DOI: 10.1016/j.jhazmat.2020.122046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/07/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
This review summarises the current state of knowledge on the biodegradation and fate of the gasoline ether oxygenate ethyl tert-butyl ether (ETBE) in soil and groundwater. Microorganisms have been identified in soil and groundwater with the ability to degrade ETBE aerobically as a carbon and energy source, or via cometabolism using alkanes as growth substrates. Aerobic biodegradation of ETBE initially occurs via hydroxylation of the ethoxy carbon by a monooxygenase enzyme, with subsequent formation of intermediates which include acetaldehyde, tert-butyl acetate (TBAc), tert-butyl alcohol (TBA), 2-hydroxy-2-methyl-1-propanol (MHP) and 2-hydroxyisobutyric acid (2-HIBA). Slow cell growth and low biomass yields on ETBE are believed to result from the ether structure and slow degradation kinetics, with potential limitations on ETBE metabolism. Genes known to facilitate transformation of ETBE include ethB (within the ethRABCD cluster), encoding a cytochrome P450 monooxygenase, and alkB-encoding alkane hydroxylases. Other genes have been identified in microorganisms but their activity and specificity towards ETBE remains poorly characterised. Microorganisms and pathways supporting anaerobic biodegradation of ETBE have not been identified, although this potential has been demonstrated in limited field and laboratory studies. The presence of co-contaminants (other ether oxygenates, hydrocarbons and organic compounds) in soil and groundwater may limit aerobic biodegradation of ETBE by preferential metabolism and consumption of available dissolved oxygen or enhance ETBE biodegradation through cometabolism. Both ETBE-degrading microorganisms and alkane-oxidising bacteria have been characterised, with potential for use in bioaugmentation and biostimulation of ETBE degradation in groundwater.
Collapse
Affiliation(s)
- S F Thornton
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - H C G Nicholls
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - S A Rolfe
- Dept of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN, UK
| | - H E H Mallinson
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - M J Spence
- Concawe, Environmental Science for European Refining, Boulevard du Souverain 165, 1160 Brussels, Belgium
| |
Collapse
|
6
|
Nicholls HCG, Mallinson HEH, Rolfe SA, Hjort M, Spence MJ, Thornton SF. Influence of contaminant exposure on the development of aerobic ETBE biodegradation potential in microbial communities from a gasoline-impacted aquifer. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122022. [PMID: 31962211 DOI: 10.1016/j.jhazmat.2020.122022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Aerobic biodegradation of ethyl tert butyl ether (ETBE) in a gasoline-impacted aquifer was investigated in laboratory microcosms containing groundwater and aquifer material from ETBE-impacted and non-impacted locations amended with either ETBE, or ETBE plus methyl tert butyl ether (MTBE). As sole substrate, ETBE was biodegraded (maximum rate of 0.54 day-1) without a lag in ETBE-impacted microcosms but with a lag of up to 66 days in non-impacted microcosms (maximum rate of 0.38 day-1). As co-substrate, ETBE was biodegraded preferentially (maximum rate of 0.25 and 0.99 day-1 in non-impacted and impacted microcosms, respectively) before MTBE (maximum rate of 0.24 and 0.36 day-1 in non-impacted and impacted microcosms, respectively). Further addition of ETBE and MTBE reduced lags and increased biodegradation rates. ethB gene copy numbers increased significantly (>100 fold) after exposure to ETBE, while overall cell numbers remained constant, suggesting that ethB-containing microorganisms come to dominate the microbial communities. Deep sequencing of 16S rRNA genes identified members of the Comamonadaceae family that increased in relative abundance upon exposure to ETBE. This study demonstrates the potential for ETBE biodegradation within the unsaturated and saturated zone, and that ETBE biodegrading capability is rapidly developed and maintained within the aquifer microbial community over extended timescales.
Collapse
Affiliation(s)
- H C G Nicholls
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - H E H Mallinson
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - S A Rolfe
- Dept of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - M Hjort
- Concawe, Environmental Science for European Refining, Boulevard du Souverain 165, 1160 Brussels, Belgium
| | - M J Spence
- Concawe, Environmental Science for European Refining, Boulevard du Souverain 165, 1160 Brussels, Belgium
| | - S F Thornton
- Groundwater Protection and Restoration Group, Dept of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
7
|
Kucharzyk KH, Rectanus HV, Bartling CM, Rosansky S, Minard-Smith A, Mullins LA, Neil K. Use of omic tools to assess methyl tert-butyl ether (MTBE) degradation in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120618. [PMID: 31301927 DOI: 10.1016/j.jhazmat.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/10/2023]
Abstract
This study employed innovative technologies to evaluate multiple lines of evidence for natural attenuation (NA) of methyl tertiary-butyl ether (MTBE) in groundwater at the 22 Area of Marine Corps Base (MCB) Camp Pendleton after decommissioning of a biobarrier system. For comparison, data from the 13 Area Gas Station where active treatment of MTBE is occurring was used to evaluate the effectiveness of omic techniques in assessing biodegradation. Overall, the 22 Area Gas Station appeared to be anoxic. MTBE was detected in large portion of the plume. In comparison, concentrations of MTBE at the 13 Area Gas Station were much higher (42,000 μg/L to 2800 μg/L); however, none of the oxygenates were detected. Metagenomic analysis of the indigenous groundwater microbial community revealed the presence of bacterial strains known to aerobically and anaerobically degrade MTBE at both sites. While proteomic analysis at the 22 Area Gas Station showed the presence of proteins of MTBE degrading microorganisms, the MTBE degradative proteins were only found at the 13 Area Gas Station. Taken together, these results provide evidence for previous NA of MTBE in the groundwater at 22 Area Gas Station and demonstrate the effectiveness of innovative-omic technologies to assist monitored NA assessments.
Collapse
Affiliation(s)
| | | | | | - Steve Rosansky
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | - Kenda Neil
- Naval Facilities Engineering Command (NAVFAC) Engineering and Expeditionary Warfare Center (EXWC), Port Huaneme, CA, United States
| |
Collapse
|
8
|
Distinct Bacterial Consortia Established in ETBE-Degrading Enrichments from a Polluted Aquifer. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ethyl tert-butyl ether (ETBE) is a gasoline additive that became an important aquifer pollutant. The information about natural bacterial consortia with a capacity for complete ETBE degradation is limited. Here we assess the taxonomical composition of bacterial communities and diversity of the ethB gene (involved in ETBE biodegradation) in ETBE-enrichment cultures that were established from a gasoline-polluted aquifer, either from anoxic ETBE-polluted plume water (PW), or from an upstream non-polluted water (UW). We used a 16S rRNA microarray, and 16S rRNA and ethB gene sequencing. Despite the dissimilar initial chemical conditions and microbial composition, ETBE-degrading consortia were obtained from both PW and UW. The composition of ETBE-enrichment cultures was distinct from their initial water samples, reflecting the importance of the rare biosphere as a reservoir of potential ETBE degraders. No convergence was observed between the enrichment cultures originating from UW and PW, which were dominated by Mesorhizobium and Hydrogenophaga, respectively, indicating that distinct consortia with the same functional properties may be present at one site. Conserved ethB genes were evidenced in both PW and UW ETBE-enrichment cultures and in PW water. Our results suggest that the presence of ethB genes rather than the taxonomical composition of in situ bacterial communities indicate the potential for the ETBE degradation at a given site.
Collapse
|
9
|
Structures of 2-Hydroxyisobutyric Acid-CoA Ligase Reveal Determinants of Substrate Specificity and Describe a Multi-Conformational Catalytic Cycle. J Mol Biol 2019; 431:2747-2761. [DOI: 10.1016/j.jmb.2019.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023]
|
10
|
RpoN (σ 54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain. Appl Environ Microbiol 2017; 83:AEM.00709-17. [PMID: 28500044 DOI: 10.1128/aem.00709-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022] Open
Abstract
Some bacteria are capable of forming flocs, in which bacterial cells become self-flocculated by secreted extracellular polysaccharides and other biopolymers. The floc-forming bacteria play a central role in activated sludge, which has been widely utilized for the treatment of municipal sewage and industrial wastewater. Here, we use a floc-forming bacterium, Aquincolatertiaricarbonis RN12, as a model to explore the biosynthesis of extracellular polysaccharides and the regulation of floc formation. A large gene cluster for exopolysaccharide biosynthesis and a gene encoding the alternative sigma factor RpoN1, one of the four paralogues, have been identified in floc formation-deficient mutants generated by transposon mutagenesis, and the gene functions have been further confirmed by genetic complementation analyses. Interestingly, the biosynthesis of exopolysaccharides remained in the rpoN1-disrupted flocculation-defective mutants, but most of the exopolysaccharides were secreted and released rather than bound to the cells. Furthermore, the expression of exopolysaccharide biosynthesis genes seemed not to be regulated by RpoN1. Taken together, our results indicate that RpoN1 may play a role in regulating the expression of a certain gene(s) involved in the self-flocculation of bacterial cells but not in the biosynthesis and secretion of exopolysaccharides required for floc formation.IMPORTANCE Floc formation confers bacterial resistance to predation of protozoa and plays a central role in the widely used activated sludge process. In this study, we not only identified a large gene cluster for biosynthesis of extracellular polysaccharides but also identified four rpoN paralogues, one of which (rpoN1) is required for floc formation in A. tertiaricarbonis RN12. In addition, this RpoN sigma factor regulates the transcription of genes involved in biofilm formation and swarming motility, as previously shown in other bacteria. However, this RpoN paralogue is not required for the biosynthesis of exopolysaccharides, which are released and dissolved into culture broth by the rpoN1 mutant rather than remaining tightly bound to cells, as observed during the flocculation of the wild-type strain. These results indicate that floc formation is a regulated complex process, and other yet-to-be identified RpoN1-dependent factors are involved in self-flocculation of bacterial cells via exopolysaccharides and/or other biopolymers.
Collapse
|
11
|
Raffic Ali SS, Ambasankar K, Nandakumar S, Praveena PE, Syamadayal J. Effect of dietary prebiotic inulin on growth, body composition and gut microbiota of Asian seabass (Lates calcarifer). Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Guisado IM, Purswani J, González-López J, Pozo C. An extractive membrane biofilm reactor as alternative technology for the treatment of methyltert-butyl ether contaminated water. Biotechnol Prog 2016; 32:1238-1245. [DOI: 10.1002/btpr.2311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/28/2016] [Indexed: 11/09/2022]
Affiliation(s)
- I. M. Guisado
- Environmental Microbiology Group, Institute of Water Research, University of Granada; C/Ramón Y Cajal, nº4 Granada 18071 Spain
- Dept. of Microbiology; Faculty of Sciences, Av. Fuentenueva, s/n. Granada, 18071, Spain
| | - J. Purswani
- Environmental Microbiology Group, Institute of Water Research, University of Granada; C/Ramón Y Cajal, nº4 Granada 18071 Spain
- Dept. of Microbiology; Faculty of Sciences, Av. Fuentenueva, s/n. Granada, 18071, Spain
| | - J. González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada; C/Ramón Y Cajal, nº4 Granada 18071 Spain
- Dept. of Microbiology; Faculty of Pharmacy, Campus Cartuja. Granada, 18071, Spain
| | - C. Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada; C/Ramón Y Cajal, nº4 Granada 18071 Spain
- Dept. of Microbiology; Faculty of Sciences, Av. Fuentenueva, s/n. Granada, 18071, Spain
| |
Collapse
|
13
|
Przybylski D, Rohwerder T, Dilßner C, Maskow T, Harms H, Müller RH. Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 2014; 99:2131-45. [DOI: 10.1007/s00253-014-6266-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/23/2022]
|
14
|
Auffret MD, Yergeau E, Labbé D, Fayolle-Guichard F, Greer CW. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl Microbiol Biotechnol 2014; 99:2419-30. [PMID: 25343979 DOI: 10.1007/s00253-014-6159-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/12/2014] [Indexed: 11/29/2022]
Abstract
A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified. Degradation capacities for Mix3 and the isolated bacterial strains were characterized and compared. At day 113, we induced the expression of catabolic genes in Mix3 by adding the substrate mixture to resting cells and the metatranscriptome was analyzed. After addition of the substrate mixture, the relative abundance of Actinobacteria increased at day 222 while a shift between Rhodococcus and Mycobacterium was observed after 113 days. Mix3 was able to degrade 13 compounds completely, with partial degradation of isooctane and 2-ethylhexyl nitrate, but tert-butyl alcohol was not degraded. Rhodococcus wratislaviensis strain IFP 2016 isolated from Mix3 showed almost the same degradation capacities as Mix3: these results were not observed with the other isolated strains. Transcriptomic results revealed that Actinobacteria and in particular, Rhodococcus species, were major contributors in terms of total and catabolic gene transcripts while other species were involved in cyclohexane degradation. Not all the microorganisms identified at day 113 were active except R. wratislaviensis IFP 2016 that appeared to be a major player in the degradation activity observed in Mix3.
Collapse
Affiliation(s)
- Marc D Auffret
- Institut Français du Pétrole (IFP), 1-4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France,
| | | | | | | | | |
Collapse
|
15
|
Le Digabel Y, Demanèche S, Benoit Y, Fayolle-Guichard F, Vogel TM. Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:502-510. [PMID: 25108826 DOI: 10.1016/j.jhazmat.2014.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment. The analyses of the DNA sequences obtained showed different taxonomic compositions with a majority of Proteobacteria in three cases. The two other enrichments have different microbiota with an abundance of Acidobacteria in one case, whereas the microbiota in the second was more diverse (majority of Actinobacteria, Chlorobi and Gemmatimonadetes). Actinobacteria were detected in all five enrichments. Several bacterial strains were isolated from the enrichments and five were capable of degrading ETBE and/or tert-butyl alcohol (TBA), a degradation intermediate. The five included three Rhodococcus sp. (IFP 2040, IFP 2041, IFP 2043), one Betaproteobacteria (IFP 2047) belonging to the Rubrivivax/Leptothrix/Ideonella branch, and one Pseudonocardia sp. (IFP 2050). Quantification of these five strains and two other strains, Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP2049, which had been previously isolated from one of the enrichments was carried out on the different enrichments based on quantitative PCR with specific 16S rRNA gene primers and the results were consistent with the hypothesized role of Actinobacteria and Betaproteobacteria in the degradation of ETBE and the possible role of Bradyrhizobium strains in the degradation of TBA.
Collapse
Affiliation(s)
- Yoann Le Digabel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France; Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sandrine Demanèche
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Yves Benoit
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Françoise Fayolle-Guichard
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| |
Collapse
|
16
|
Seyfried M, Boschung A. An assessment of biodegradability of quaternary carbon-containing fragrance compounds: comparison of experimental OECD screening test results and in silico prediction data. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1005-1016. [PMID: 24453060 DOI: 10.1002/etc.2523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
An assessment of biodegradability was carried out for fragrance substances containing quaternary carbons by using data obtained from Organisation for Economic Co-operation and Development (OECD) 301F screening tests for ready biodegradation and from Biowin and Catalogic prediction models. Despite an expected challenging profile, a relatively high percentage of common-use fragrance substances showed significant biodegradation under the stringent conditions applied in the OECD 301F test. Among 27 test compounds, 37% met the pass level criteria after 28 d, while another 26% indicated partial breakdown (≥20% biodegradation). For several compounds for which structural analogs were available, the authors found that structures that were rendered less water soluble by either the presence of an acetate ester or the absence of oxygen tended to degrade to a lesser extent compared to the primary alcohols or oxygenated counterparts under the test conditions applied. Difficulties were encountered when attempting to correlate experimental with in silico data. Whereas the Biowin model combinations currently recommended by regulatory agencies did not allow for a reliable discrimination between readily and nonbiodegradable compounds, only a comparably small proportion of the chemicals studied (30% and 63% depending on the model) fell within the applicability domain of Catalogic, a factor that critically reduced its predictive power. According to these results, currently neither Biowin nor Catalogic accurately reflects the potential for biodegradation of fragrance compounds containing quaternary carbons.
Collapse
|
17
|
Levchuk I, Bhatnagar A, Sillanpää M. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:415-433. [PMID: 24486497 DOI: 10.1016/j.scitotenv.2014.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water.
Collapse
Affiliation(s)
- Irina Levchuk
- Laboratory of Green Chemistry, Department of Energy and Environmental Technology, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Amit Bhatnagar
- Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Department of Energy and Environmental Technology, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
18
|
De Biase C, Carminati A, Oswald SE, Thullner M. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 154:53-69. [PMID: 24090736 DOI: 10.1016/j.jconhyd.2013.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile emissions are negligible and total removal can be attributed to biodegradation, only. The simulation study thus supports the use of both of these vertical flow systems for the treatment of groundwater contaminated with VOCs and the use of reactive transport modeling for the assessment of VOCs removal and operation modes in these high performance treatment systems.
Collapse
Affiliation(s)
- Cecilia De Biase
- Department of Environmental Microbiology, UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany; Department of Groundwater Remediation, UFZ Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | |
Collapse
|
19
|
Rohwerder T, Müller RH, Weichler MT, Schuster J, Hübschmann T, Müller S, Harms H. Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate intermediate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates. Microbiology (Reading) 2013; 159:2180-2190. [DOI: 10.1099/mic.0.068957-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thore Rohwerder
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Roland H. Müller
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - M. Teresa Weichler
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Judith Schuster
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Thomas Hübschmann
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research – UFZ, Department of Environmental Microbiology, Permoserstr. 15, D-04318 Leipzig, Germany
| |
Collapse
|
20
|
Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer. Appl Microbiol Biotechnol 2013; 97:10531-9. [DOI: 10.1007/s00253-013-4803-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
|
21
|
Constitutive expression of the cytochrome P450 EthABCD monooxygenase system enables degradation of synthetic dialkyl ethers in Aquincola tertiaricarbonis L108. Appl Environ Microbiol 2013; 79:2321-7. [PMID: 23354715 DOI: 10.1128/aem.03348-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodococcus ruber IFP 2001, Rhodococcus zopfii IFP 2005, and Gordonia sp. strain IFP 2009, the cytochrome P450 monooxygenase EthABCD catalyzes hydroxylation of methoxy and ethoxy residues in the fuel oxygenates methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). The expression of the IS3-type transposase-flanked eth genes is ETBE dependent and controlled by the regulator EthR (C. Malandain et al., FEMS Microbiol. Ecol. 72:289-296, 2010). In contrast, we demonstrated by reverse transcription-quantitative PCR (RT-qPCR) that the betaproteobacterium Aquincola tertiaricarbonis L108, which possesses the ethABCD genes but lacks ethR, constitutively expresses the P450 system at high levels even when growing on nonether substrates, such as glucose. The mutant strain A. tertiaricarbonis L10, which is unable to degrade dialkyl ethers, resulted from a transposition event mediated by a rolling-circle IS91-type element flanking the eth gene cluster in the wild-type strain L108. The constitutive expression of Eth monooxygenase is likely initiated by the housekeeping sigma factor σ(70), as indicated by the presence in strain L108 of characteristic -10 and -35 binding sites upstream of ethA which are lacking in strain IFP 2001. This enables efficient degradation of diethyl ether, diisopropyl ether, MTBE, ETBE, TAME, and tert-amyl ethyl ether (TAEE) without any lag phase in strain L108. However, ethers with larger residues, n-hexyl methyl ether, tetrahydrofuran, and alkyl aryl ethers, were not attacked by the Eth system at significant rates in resting-cell experiments, indicating that the residue in the ether molecule which is not hydroxylated also contributes to the determination of substrate specificity.
Collapse
|
22
|
Key KC, Sublette KL, Duncan K, Mackay DM, Scow KM, Ogles D. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater. GROUND WATER MONITORING & REMEDIATION 2013; 33:57-68. [PMID: 25525320 PMCID: PMC4267322 DOI: 10.1111/gwmr.12031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate.
Collapse
Affiliation(s)
- Katherine C. Key
- Department of Chemical Engineering, University of Tulsa, Tulsa, OK, USA
| | - Kerry L. Sublette
- Department of Chemical Engineering, University of Tulsa, Tulsa, OK, USA
| | - Kathleen Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK
| | - Douglas M. Mackay
- Department of Land, Air, and Water Resources, University of California at Davis, Davis, CA
| | - Kate M. Scow
- Department of Land, Air, and Water Resources, University of California at Davis, Davis, CA
| | | |
Collapse
|
23
|
Hyman M. Biodegradation of gasoline ether oxygenates. Curr Opin Biotechnol 2012; 24:443-50. [PMID: 23116604 DOI: 10.1016/j.copbio.2012.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments.
Collapse
Affiliation(s)
- Michael Hyman
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
24
|
Kim DK, O'Shea KE, Cooper WJ. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: mechanistic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 430:246-259. [PMID: 22647393 DOI: 10.1016/j.scitotenv.2011.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 06/01/2023]
Abstract
Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of α-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from β-H abstraction overlap with those from high temperature pyrolysis, the effect of β-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis.
Collapse
Affiliation(s)
- Duk Kyung Kim
- Department of Physical Science, Auburn University Montgomery, Montgomery, AL 36117, United States
| | | | | |
Collapse
|
25
|
Biosynthesis and metabolic pathways of pivalic acid. Appl Microbiol Biotechnol 2012; 95:1371-6. [PMID: 22790609 DOI: 10.1007/s00253-012-4267-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
Abstract
Occurrence, biosynthesis, and biodegradation of pivalic acid and other compounds, having a quaternary carbon atom by different bacteria, are described. We have summarized the relevant data that have so far been published, presenting them in a graphical form, i.e., as biodegradation pathways including B₁₂-dependent isomerization and desaturation that lead to the degradation of pivalic acid and similar compounds to products with other than quaternary carbon atoms, i.e., compounds whose catabolism is well known.
Collapse
|
26
|
Synthesis of short-chain diols and unsaturated alcohols from secondary alcohol substrates by the Rieske nonheme mononuclear iron oxygenase MdpJ. Appl Environ Microbiol 2012; 78:6280-4. [PMID: 22752178 DOI: 10.1128/aem.01434-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rieske nonheme mononuclear iron oxygenase MdpJ of the fuel oxygenate-degrading bacterial strain Aquincola tertiaricarbonis L108 has been described to attack short-chain tertiary alcohols via hydroxylation and desaturation reactions. Here, we demonstrate that also short-chain secondary alcohols can be transformed by MdpJ. Wild-type cells of strain L108 converted 2-propanol and 2-butanol to 1,2-propanediol and 3-buten-2-ol, respectively, whereas an mdpJ knockout mutant did not show such activity. In addition, wild-type cells converted 3-methyl-2-butanol and 3-pentanol to the corresponding desaturation products 3-methyl-3-buten-2-ol and 1-penten-3-ol, respectively. The enzymatic hydroxylation of 2-propanol resulted in an enantiomeric excess of about 70% for the (R)-enantiomer, indicating that this reaction was favored. Likewise, desaturation of (R)-2-butanol to 3-buten-2-ol was about 2.3-fold faster than conversion of the (S)-enantiomer. The biotechnological potential of MdpJ for the synthesis of enantiopure short-chain alcohols and diols as building block chemicals is discussed.
Collapse
|
27
|
Rosell M, Gonzalez-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke FD, Richnow HH. Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4757-4766. [PMID: 22455373 DOI: 10.1021/es2036543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although the uniform initial hydroxylation of methyl tert-butyl ether (MTBE) and other oxygenates during aerobic biodegradation has already been proven by molecular tools, variations in carbon and hydrogen enrichment factors (ε(C) and ε(H)) have still been associated with different reaction mechanisms (McKelvie et al. Environ. Sci. Technol. 2009, 43, 2793-2799). Here, we present new laboratory-derived ε(C) and ε(H) data on the initial degradation mechanisms of MTBE, ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by chemical oxidation (permanganate, Fenton reagents), acid hydrolysis, and aerobic bacteria cultures (species of Aquincola, Methylibium, Gordonia, Mycobacterium, Pseudomonas, and Rhodococcus). Plotting of Δδ(2)H/ Δδ(13)C data from chemical oxidation and hydrolysis of ethers resulted in slopes (Λ values) of 22 ± 4 and between 6 and 12, respectively. With A. tertiaricarbonis L108, R. zopfii IFP 2005, and Gordonia sp. IFP 2009, ε(C) was low (<|-1|‰) and ε(H) was insignificant. Fractionation obtained with P. putida GPo1 was similar to acid hydrolysis and M. austroafricanum JOB5 and R. ruber DSM 7511 displayed Λ values previously only ascribed to anaerobic attack. The fractionation patterns rather correlate with the employment of different P450, AlkB, and other monooxygenases, likely catalyzing ether hydroxylation via different transition states. Our data questions the value of 2D-CSIA for a simple distinguishing of oxygenate biotransformation mechanisms, therefore caution and complementary tools are needed for proper interpretation of groundwater plumes at field sites.
Collapse
Affiliation(s)
- Mònica Rosell
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Yaneva N, Schuster J, Schäfer F, Lede V, Przybylski D, Paproth T, Harms H, Müller RH, Rohwerder T. Bacterial acyl-CoA mutase specifically catalyzes coenzyme B12-dependent isomerization of 2-hydroxyisobutyryl-CoA and (S)-3-hydroxybutyryl-CoA. J Biol Chem 2012; 287:15502-11. [PMID: 22433853 DOI: 10.1074/jbc.m111.314690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme B(12)-dependent acyl-CoA mutases are radical enzymes catalyzing reversible carbon skeleton rearrangements in carboxylic acids. Here, we describe 2-hydroxyisobutyryl-CoA mutase (HCM) found in the bacterium Aquincola tertiaricarbonis as a novel member of the mutase family. HCM specifically catalyzes the interconversion of 2-hydroxyisobutyryl- and (S)-3-hydroxybutyryl-CoA. Like isobutyryl-CoA mutase, HCM consists of a large substrate- and a small B(12)-binding subunit, HcmA and HcmB, respectively. However, it is thus far the only acyl-CoA mutase showing substrate specificity for hydroxylated carboxylic acids. Complete loss of 2-hydroxyisobutyric acid degradation capacity in hcmA and hcmB knock-out mutants established the central role of HCM in A. tertiaricarbonis for degrading substrates bearing a tert-butyl moiety, such as the fuel oxygenate methyl tert-butyl ether (MTBE) and its metabolites. Sequence analysis revealed several HCM-like enzymes in other bacterial strains not related to MTBE degradation, indicating that HCM may also be involved in other pathways. In all strains, hcmA and hcmB are associated with genes encoding for a putative acyl-CoA synthetase and a MeaB-like chaperone. Activity and substrate specificity of wild-type enzyme and active site mutants HcmA I90V, I90F, and I90Y clearly demonstrated that HCM belongs to a new subfamily of B(12)-dependent acyl-CoA mutases.
Collapse
Affiliation(s)
- Nadya Yaneva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fayolle-Guichard F, Durand J, Cheucle M, Rosell M, Michelland RJ, Tracol JP, Le Roux F, Grundman G, Atteia O, Richnow HH, Dumestre A, Benoit Y. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): site characterization and on-site bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2012; 201-202:236-243. [PMID: 22177017 DOI: 10.1016/j.jhazmat.2011.11.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/18/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
Ethyl tert-butyl ether (ETBE) was detected at high concentration (300mgL(-1)) in the groundwater below a gas-station. No significant carbon neither hydrogen isotopic fractionation of ETBE was detected along the plume. ETBE and BTEX biodegradation capacities of the indigenous microflora Pz1-ETBE and of a culture (MC-IFP) composed of Rhodococcus wratislaviensis IFP 2016, Rhodococcus aetherivorans IFP 2017 and Aquincola tertiaricarbonis IFP 2003 showed that ETBE and BTEX degradation rates were in the same range (ETBE: 0.91 and 0.83 mg L(-1)h(-1) and BTEX: 0.64 and 0.82 mg L(-1)h(-1), respectively) but tert-butanol (TBA) accumulated transiently at a high level using Pz1-ETBE (74 mg L(-1)). An on-site pilot plant (2m(3)) filled with polluted groundwater and inoculated by MC-IFP, successfully degraded four successive additions of ETBE and gasoline. However, an insignificant ETBE isotopic fractionation was also accompanying this decrease which suggested the involvement of low fractionating-strains using EthB enzymes, but required of additional proofs. The ethB gene encoding a cytochrome P450 involved in ETBE biodegradation (present in R. aetherivorans IFP 2017) was monitored by quantitative real-time polymerase chain reaction (q-PCR) on DNA extracted from water sampled in the pilot plant which yield up to 5×10(6) copies of ethB gene per L(-1).
Collapse
|
30
|
Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J Bacteriol 2011; 194:972-81. [PMID: 22194447 DOI: 10.1128/jb.06384-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed.
Collapse
|
31
|
Quan XC, Ma JY, Xiong WC, Yang ZF. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules. JOURNAL OF HAZARDOUS MATERIALS 2011; 196:278-286. [PMID: 21962861 DOI: 10.1016/j.jhazmat.2011.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65-135% for the granules on Day 18, and 6-24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon-Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/isolation & purification
- Aerobiosis
- Biodegradation, Environmental
- Biomass
- Bioreactors/microbiology
- DNA, Bacterial/genetics
- Electrophoresis, Agar Gel
- Genes, Bacterial
- Genetic Engineering
- Microscopy, Electron, Scanning
- Plasmids
- Pseudomonas putida/genetics
- Pseudomonas putida/growth & development
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sewage/microbiology
- Surface Properties
- Water Pollutants, Chemical/isolation & purification
- Water Purification/methods
Collapse
Affiliation(s)
- Xiang-chun Quan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | | | | | | |
Collapse
|
32
|
Formation of alkenes via degradation of tert-alkyl ethers and alcohols by Aquincola tertiaricarbonis L108 and Methylibium spp. Appl Environ Microbiol 2011; 77:5981-7. [PMID: 21742915 DOI: 10.1128/aem.00093-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed.
Collapse
|
33
|
Bartling J, Esperschütz J, Wilke BM, Schloter M. ETBE (ethyl tert butyl ether) and TAME (tert amyl methyl ether) affect microbial community structure and function in soils. JOURNAL OF HAZARDOUS MATERIALS 2011; 187:488-494. [PMID: 21288640 DOI: 10.1016/j.jhazmat.2011.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/21/2010] [Accepted: 01/13/2011] [Indexed: 05/30/2023]
Abstract
Ethyl tert butyl ether (ETBE) and tert amyl methyl ether (TAME) are oxygenates used in gasoline in order to reduce emissions from vehicles. The present study investigated their impact on a soil microflora that never was exposed to any contamination before. Therefore, soil was artificially contaminated and incubated over 6 weeks. Substrate induced respiration (SIR) measurements and phospholipid fatty acid (PLFA) analysis indicated shifts in both, microbial function and structure during incubation. The results showed an activation of microbial respiration in the presence of ETBE and TAME, suggesting biodegradation by the microflora. Furthermore, PLFA concentrations decreased in the presence of ETBE and TAME and Gram-positive bacteria became more dominant in the microbial community.
Collapse
Affiliation(s)
- Johanna Bartling
- Berlin University of Technology, Institute of Ecology, Franklinstr 29, 10587 Berlin, Germany.
| | | | | | | |
Collapse
|
34
|
Chen SC, Chen CS, Zhan KV, Yang KH, Chien CC, Shieh BS, Chen WM. Biodegradation of methyl tert-butyl ether (MTBE) by Enterobacter sp. NKNU02. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1744-1750. [PMID: 21227585 DOI: 10.1016/j.jhazmat.2010.12.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/27/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
We previously isolated and identified Enterobacter sp. NKNU02 as a methyl tert-butyl ether (MTBE)-degrading bacterial strain from gasoline-contaminated water. In this study, tert-butyl alcohol, acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry when MTBE was degraded by rest cells of Enterobacter sp. NKNU02 cells. We also found that biodegradation of MTBE was decreased, but not totally inhibited in mixtures of benzene, toluene, ethylbenzene and xylene. The effects of MTBE on the biology of Enterobacter sp. NKNU02 were elucidated using 2D proteomic analysis. The cytoplasmic proteins isolated from these MTBE-treated and -untreated cells were carried out for proteomic analysis. Results showed that there were 6 differential protein spots and 8 differential protein spots, respectively, as compared to their corresponding control (without MTBE addition), at the indicated incubation times when 40% and 60% of 100 mg/L of MTBE had been removed, Among these proteins, nine were successfully identified with matrix-assisted laser desorption ionization-time of flight-mass spectrometry. Proteins identified included extracellular solute-binding protein, periplasmic-binding protein ytfQ, cationic amino acid ABC transporter, isocitrate dehydrogenase, cysteine synthase A, alkyl hydroperoxide reductase (AhpC), transaldolase, and alcohol dehydrogenase. Based on these differential proteins, we discuss the bacterial responses to MTBE at the molecular level.
Collapse
Affiliation(s)
- Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing. Biodegradation 2011; 22:961-72. [DOI: 10.1007/s10532-011-9455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/10/2011] [Indexed: 11/26/2022]
|
36
|
Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol 2010; 77:1086-96. [PMID: 21148686 DOI: 10.1128/aem.01698-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.
Collapse
|
37
|
Pannier A, Oehm C, Fischer AR, Werner P, Soltmann U, Böttcher H. Biodegradation of fuel oxygenates by sol–gel immobilized bacteria Aquincola tertiaricarbonis L108. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Biodegradation of methyl tert-butyl ether by newly identified soil microorganisms in a simple mineral solution. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0522-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 2010; 88:309-17. [DOI: 10.1007/s00253-010-2730-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/02/2010] [Accepted: 06/12/2010] [Indexed: 11/27/2022]
|
40
|
Eixarch H, Constantí M. Biodegradation of MTBE by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Rohwerder T, Müller RH. Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon. Microb Cell Fact 2010; 9:13. [PMID: 20184738 PMCID: PMC2847961 DOI: 10.1186/1475-2859-9-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/25/2010] [Indexed: 11/10/2022] Open
Abstract
Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for biobased building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds possessing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxidation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely biotechnological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system producing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA. This review highlights the potential of these discoveries for a large-scale 2-HIBA biosynthesis from renewable carbon, replacing conventional chemistry as synthesis route and petrochemicals as carbon source.
Collapse
Affiliation(s)
- Thore Rohwerder
- Helmholtz Centre for Environmental Research, Department Environmental Microbiology, Leipzig, Germany.
| | | |
Collapse
|
42
|
Rosell M, Finsterbusch S, Jechalke S, Hübschmann T, Vogt C, Richnow HH. Evaluation of the effects of low oxygen concentration on stable isotope fractionation during aerobic MTBE biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:309-315. [PMID: 19928956 DOI: 10.1021/es902491d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Laboratory experiments were performed with two aerobic MTBE degrading strains ( Methylibium sp. PM1 and Aquincola tertiaricarbonaris L108) in order to determine whether conditions of low oxygen availability, typically found in fuel-contaminated aquifers, can influence stable isotope fractionation of MTBE. Although single carbon and hydrogen enrichment factors of the two strains were not significantly or were only slightly (L108) affected by low oxygen concentrations (fully oxic incubation with initial 21% O2 in the headspace tested versus hypoxic conditions always <2% O2), the experiments showed indirect effects caused by competition interactions in mixed cultures. In a mixed culture of PM1 and L108 under oxic and even more so under hypoxic conditions, the total observed carbon isotope enrichment factor was significantly reduced, while hydrogen fractionation was not detectable. This indicates that the low fractionating model strain L108 is more competitive in degrading MTBE compared to strain PM1. Consistently, higher oxygen affinities during MTBE degradation were observed for strain L108. These first studies, conducted with resting cells, may explain the low isotope fractionation observed in some field studies that are not necessarily related to a lack of biodegradation.
Collapse
Affiliation(s)
- Mònica Rosell
- Department of Isotope Biogeochemistry, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
House AJ, Hyman MR. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 2009; 21:525-41. [DOI: 10.1007/s10532-009-9321-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/26/2009] [Indexed: 11/28/2022]
|
44
|
Cracan V, Padovani D, Banerjee R. IcmF is a fusion between the radical B12 enzyme isobutyryl-CoA mutase and its G-protein chaperone. J Biol Chem 2009; 285:655-66. [PMID: 19864421 DOI: 10.1074/jbc.m109.062182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coenzyme B(12) is used by two highly similar radical enzymes, which catalyze carbon skeleton rearrangements, methylmalonyl-CoA mutase and isobutyryl-CoA mutase (ICM). ICM catalyzes the reversible interconversion of isobutyryl-CoA and n-butyryl-CoA and exists as a heterotetramer. In this study, we have identified >70 bacterial proteins, which represent fusions between the subunits of ICM and a P-loop GTPase and are currently misannotated as methylmalonyl-CoA mutases. We designate this fusion protein as IcmF (isobutyryl-CoA mutase fused). All IcmFs are composed of the following three domains: the N-terminal 5'-deoxyadenosylcobalamin binding region that is homologous to the small subunit of ICM (IcmB), a middle P-loop GTPase domain, and a C-terminal part that is homologous to the large subunit of ICM (IcmA). The P-loop GTPase domain has very high sequence similarity to the Methylobacterium extorquens MeaB, which is a chaperone for methylmalonyl-CoA mutase. We have demonstrated that IcmF is an active ICM by cloning, expressing, and purifying the IcmFs from Geobacillus kaustophilus, Nocardia farcinica, and Burkholderia xenovorans. This finding expands the known distribution of ICM activity well beyond the genus Streptomyces, where it is involved in polyketides biosynthesis, and suggests a role for this enzyme in novel bacterial pathways for amino acid degradation, myxalamid biosynthesis, and acetyl-CoA assimilation.
Collapse
Affiliation(s)
- Valentin Cracan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
45
|
Biodegradation of methyl tert-butyl ether by enriched bacterial culture. Curr Microbiol 2009; 59:30-4. [PMID: 19319597 DOI: 10.1007/s00284-009-9391-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Degradation of methyl tert-butyl ether (MTBE) as a sole carbon and energy source was investigated utilizing an enriched bacterial consortium derived from an old environmental MTBE spill. This enriched culture grew on MTBE with concentration up to 500 mg/l, reducing the MTBE in medium to undetectable concentrations in 23 days. Traces of tert-butyl alcohol were detected during MTBE degradation. The degradation was not affected by additional cobalt ions, whereas low concentration of glucose enhanced the rate of degradation. The bacterial community consisted of numerous bacterial genera, the majority being members of the phylum Acidobacteria and genus Terrimonas. The alkane 1-monooxygenase (alk) gene was detected in this consortium. Our findings suggest that environmental degradation of MTBE proceeds along the previously proposed pathway.
Collapse
|