1
|
Pederick JL, Vandborg BC, George A, Bovermann H, Boyd JM, Freundlich JS, Bruning JB. Identification of Cysteine Metabolism Regulator (CymR)-Derived Pentapeptides as Nanomolar Inhibitors of Staphylococcus aureus O-Acetyl-l-serine Sulfhydrylase (CysK). ACS Infect Dis 2025; 11:238-248. [PMID: 39705018 DOI: 10.1021/acsinfecdis.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The pathway of bacterial cysteine biosynthesis is gaining traction for the development of antibiotic adjuvants. Bacterial cysteine biosynthesis is generally facilitated by two enzymes possessing O-acetyl-l-serine sulfhydrylases (OASS), CysK and CysM. In Staphylococcus aureus, there exists a single OASS homologue, SaCysK. Knockout of SaCysK was found to increase sensitivity to oxidative stress, making it a relevant target for inhibitor development. SaCysK also forms two functional complexes via interaction with the preceding enzyme in the pathway serine acetyltransferase (CysE) or the transcriptional regulator of cysteine metabolism (CymR). These interactions occur through insertion of a C-terminal peptide of CysE or CymR into the active site of SaCysK, inhibiting OASS activity, and therefore represent an excellent starting point for developing SaCysK inhibitors. Here, we detail the characterization of CysE and CymR-derived C-terminal peptides as inhibitors of SaCysK. Using a combination of X-ray crystallography, surface plasmon resonance, and enzyme inhibition assays, it was determined that the CymR-derived decapeptide forms extensive interactions with SaCysK and acts as a potent inhibitor (KD = 25 nM; IC50 = 180 nM), making it a promising lead for the development of SaCysK inhibitors. To understand the determinants of this high-affinity interaction, the structure-activity relationships of 16 rationally designed peptides were also investigated. This identified that the C-terminal pentapeptide of CymR facilitates the high-affinity interaction with SaCysK and that subtle structural modification of the pentapeptide is possible without impacting potency. Ultimately, this work identified CymR pentapeptides as a promising scaffold for the development of antibiotic adjuvants targeting SaCysK.
Collapse
Affiliation(s)
- Jordan L Pederick
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bethiney C Vandborg
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Amir George
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, New Jersey 07101, United States
| | - Hannah Bovermann
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University-New Jersey Medical School, Newark, New Jersey 07101, United States
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
2
|
Pederick JL, Vandborg BC, George A, Bovermann H, Boyd JM, Freundlich JS, Bruning JB. Identification of cysteine metabolism regulator (CymR)-derived pentapeptides as nanomolar inhibitors of Staphylococcus aureus O-acetyl-ʟ-serine sulfhydrylase (CysK). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.614015. [PMID: 39345565 PMCID: PMC11429995 DOI: 10.1101/2024.09.19.614015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The conditionally essential pathway of bacterial cysteine biosynthesis is gaining traction for the development of antibiotic adjuvants. Bacterial cysteine biosynthesis is generally facilitated by two enzymes possessing O-acetyl-ʟ-serine sulfhydrylase (OASS) activity, CysK and CysM. CysK enzymes can also form functional complexes with other proteins that regulate cysteine metabolism. In Staphylococcus aureus there exists a single OASS homologue, herein termed Sa CysK. Knockout of Sa CysK was found to increase sensitivity to oxidative stress, making it a relevant target for inhibitor development. Sa CysK forms two functional complexes via interaction with the preceding enzyme in the pathway serine acetyltransferase (CysE) or the transcriptional regulator of cysteine metabolism (CymR). These interactions occur through the insertion of a C-terminal peptide of CysE or CymR into the active site of Sa CysK, inhibiting OASS activity, and therefore represent an excellent starting point for developing Sa CysK inhibitors. Here we detail the characterization of CysE and CymR-derived C-terminal peptides as inhibitors of Sa CysK. First, interactions between CysE or CymR-derived C-terminal decapeptides and Sa CysK were assessed by X-ray crystallography. While both peptides occupied the active site of Sa CysK, the alternate sidechains of the CymR decapeptide formed more extensive interactions. Surface plasmon resonance binding assays and Sa CysK inhibition assays revealed that the CymR decapeptide bound to Sa CysK with nanomolar affinity (K D = 25 nM) and inhibited Sa CysK activity (IC 50 = 180 nM), making it a promising lead for the development of Sa CysK inhibitors. To understand the determinants of this high affinity interaction the structure-activity relationships of 16 rationally designed peptides were also investigated. This identified that the C-terminal pentapeptide of CymR alone facilitates the high affinity interaction with Sa CysK, and that subtle structural modification of the pentapeptide is possible without impacting potency. Ultimately, this work has identified CymR pentapeptides as a promising scaffold for the development of antibiotic adjuvants targeting Sa CysK. Author summary There is increasing interest in the investigation of non-essential pathways including bacterial cysteine metabolism for developing antibiotic adjuvants. Within this pathway the O-acetyl-ʟ-serine sulfhydrylase (OASS) enzymes CysK and CysM have been a focus. As such, the OASS enzyme of Staphylococcus aureus , Sa CysK, gained our interest. Previous efforts to inhibit CysK enzymes have mimicked the interaction between CysK and the C-terminus of serine acetyltransferase (CysE) which occurs inside the CysK active site and inhibits OASS activity. CysE peptides have only moderate potency, typically binding with micromolar affinity. In S. aureus another complex forms between Sa CysK and a transcriptional regulator CymR, but the ability of CymR peptides to inhibit CysK enzymes has not been investigated. We noticed there is variation between the C-terminus of CysE and CymR, suggesting that CymR peptides make distinct interactions with Sa CysK and may be superior inhibitors. Here we characterized CysE and CymR peptides as Sa CysK inhibitors. We found CymR peptides make more extensive molecular interactions with Sa CysK and bind with higher affinity, being the most potent peptide inhibitors of a CysK enzyme to date. A CymR pentapeptide is the minimal length required for this potency and provides a promising scaffold for developing antibiotic adjuvants targeting Sa CysK.
Collapse
|
3
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Tao Y, Zheng D, Zou W, Guo T, Liao G, Zhou W. Targeting the cysteine biosynthesis pathway in microorganisms: Mechanism, structure, and drug discovery. Eur J Med Chem 2024; 271:116461. [PMID: 38691891 DOI: 10.1016/j.ejmech.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Owing to the global health crisis of resistant pathogenic infections, researchers are emphasizing the importance of novel prevention and control strategies. Existing antimicrobial drugs predominantly target a few pathways, and their widespread use has pervasively increased drug resistance. Therefore, it is imperative to develop new antimicrobial drugs with novel targets and chemical structures. The de novo cysteine biosynthesis pathway, one of the microbial metabolic pathways, plays a crucial role in pathogenicity and drug resistance. This pathway notably differs from that in humans, thereby representing an unexplored target for developing antimicrobial drugs. Herein, we have presented an overview of cysteine biosynthesis pathways and their roles in the pathogenicity of various microorganisms. Additionally, we have investigated the structure and function of enzymes involved in these pathways as well as have discussed drug design strategies and structure-activity relationships of the enzyme inhibitors. This review provides valuable insights for developing novel antimicrobials and offers new avenues to combat drug resistance.
Collapse
Affiliation(s)
- Ying Tao
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Dandan Zheng
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Zou
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Ting Guo
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Guojian Liao
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Elebiju OF, Oduselu GO, Ogunnupebi TA, Ajani OO, Adebiyi E. In Silico Design of Potential Small-Molecule Antibiotic Adjuvants against Salmonella typhimurium Ortho Acetyl Sulphydrylase Synthase to Address Antimicrobial Resistance. Pharmaceuticals (Basel) 2024; 17:543. [PMID: 38794114 PMCID: PMC11124240 DOI: 10.3390/ph17050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 05/26/2024] Open
Abstract
The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyridoxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from the PubChem database were carried out using AutoDock vina, while a post-screening analysis was carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs 118614633, 135715279, and 155773276, possessing binding affinities of -9.1, -8.9, and -8.8 kcal/mol, respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to 187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the lowest binding energy (-9.3 kcal/mol) and performed better than its parent compound 155773276. Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a synergistic effect and consequently increases the binding energy. The stability of the best hit and optimized compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and SASA plots generated from a molecular dynamics simulation. The MD simulation results were also used to monitor how the introduction of new functional groups of optimized compounds contributes to the stability of ligands at the target active site. The improved binding affinity of these compounds compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good inhibitors of StOASS, and hence, possible antimicrobial adjuvants.
Collapse
Affiliation(s)
- Oluwadunni F. Elebiju
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Ogun State, Nigeria
| | - Gbolahan O. Oduselu
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
| | - Temitope A. Ogunnupebi
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota 112233, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Department of Chemistry, College of Science and Technology, Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota 112233, Ogun State, Nigeria; (O.F.E.); (G.O.O.); (T.A.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Piskovsky V, Oliveira NM. Bacterial motility can govern the dynamics of antibiotic resistance evolution. Nat Commun 2023; 14:5584. [PMID: 37696800 PMCID: PMC10495427 DOI: 10.1038/s41467-023-41196-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Spatial heterogeneity in antibiotic concentrations is thought to accelerate the evolution of antibiotic resistance, but current theory and experiments have overlooked the effect of cell motility on bacterial adaptation. Here, we study bacterial evolution in antibiotic landscapes with a quantitative model where bacteria evolve under the stochastic processes of proliferation, death, mutation and migration. Numerical and analytical results show that cell motility can both accelerate and decelerate bacterial adaptation by affecting the degree of genotypic mixing and ecological competition. Moreover, we find that for sufficiently high rates, cell motility can limit bacterial survival, and we derive conditions for all these regimes. Similar patterns are observed in more complex scenarios, namely where bacteria can bias their motion in chemical gradients (chemotaxis) or switch between motility phenotypes either stochastically or in a density-dependent manner. Overall, our work reveals limits to bacterial adaptation in antibiotic landscapes that are set by cell motility.
Collapse
Affiliation(s)
- Vit Piskovsky
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK.
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
7
|
Loss of the Rhodobacter capsulatus Serine Acetyl Transferase Gene, cysE1, Impairs Gene Transfer by Gene Transfer Agents and Biofilm Phenotypes. Appl Environ Microbiol 2022; 88:e0094422. [PMID: 36098534 PMCID: PMC9552610 DOI: 10.1128/aem.00944-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are widespread in the environment, where they allow bacterial species to survive adverse conditions. Cells in biofilms are densely packed, and this proximity is likely to increase the frequency of horizontal gene transfer. Gene transfer agents (GTAs) are domesticated viruses with the potential to spread any gene between bacteria. GTA production is normally restricted to a small subpopulation of bacteria, and regulation of GTA loci is highly coordinated, but the environmental conditions that favor GTA production are poorly understood. Here, we identified a serine acetyltransferase gene, cysE1, in Rhodobacter capsulatus that is required for optimal receipt of GTA DNA, accumulation of extracellular polysaccharide, and biofilm formation. The cysE1 gene is directly downstream of the core Rhodobacter-like GTA (RcGTA) structural gene cluster and upregulated in an RcGTA overproducer strain, although it is expressed on a separate transcript. The data we present suggest that GTA production and biofilm are coregulated, which could have important implications for the study of rapid bacterial evolution and understanding the full impact of GTAs in the environment. IMPORTANCE Direct exchange of genes between bacteria leads to rapid evolution and is the major factor underlying the spread of antibiotic resistance. Gene transfer agents (GTAs) are an unusual but understudied mechanism for genetic exchange that are capable of transferring any gene from one bacterium to another, and therefore, GTAs are likely to be important factors in genome plasticity in the environment. Despite the potential impact of GTAs, our knowledge of their regulation is incomplete. In this paper, we present evidence that elements of the cysteine biosynthesis pathway are involved in coregulation of various phenotypes required for optimal biofilm formation by Rhodobacter capsulatus and successful infection by the archetypal RcGTA. Establishing the regulatory mechanisms controlling GTA-mediated gene transfer is a key stepping stone to allow a full understanding of their role in the environment and wider impact.
Collapse
|
8
|
Annunziato G, Spadini C, Marchetti M, Franko N, Pavone M, Iannarelli M, Bruno A, Pieroni M, Bettati S, Cabassi CS, Campanini B, Costantino G. Inhibitors of O-Acetylserine Sulfhydrylase with a Cyclopropane-Carboxylic Acid Scaffold Are Effective Colistin Adjuvants in Gram Negative Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15060766. [PMID: 35745685 PMCID: PMC9227781 DOI: 10.3390/ph15060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Antibacterial adjuvants are of great significance, since they allow one to downscale the therapeutic dose of conventional antibiotics and reduce the insurgence of antibacterial resistance. Herein, we report that O-acetylserine sulfhydrylase (OASS) inhibitors could be used as colistin adjuvants to treat infections caused by critical pathogens spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae. Starting from a hit compound endowed with a nanomolar dissociation constant, we have rationally designed and synthesized a series of derivatives to be tested against S. Typhimurium OASS isoenzymes, StOASS-A and StOASS-B. All acidic derivatives have shown good activities in the nanomolar range against both OASS isoforms in vitro. Minimal Inhibitory Concentrations (MICs) were then evaluated, as well as compounds’ toxicity. The compounds endowed with good activity in vitro and low cytotoxicity have been challenged as a potential colistin adjuvant against pathogenic bacteria in vitro and the fractional inhibitory concentration (FIC) index has been calculated to define additive or synergistic effects. Finally, the target engagement inside the S. Typhimurium cells was confirmed by using a mutant strain in which the OASS enzymes were inactivated. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- P4T Group, Food and Drug Department, University of Parma, 43124 Parma, Italy; (M.P.); (A.B.); (M.P.); (G.C.)
- Correspondence:
| | - Costanza Spadini
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.); (M.I.); (C.S.C.)
| | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.M.); (S.B.)
| | - Nina Franko
- Laboratory of Biochemistry and Molecular Biology, Food and Drug Department, University of Parma, 43124 Parma, Italy; (N.F.); (B.C.)
| | - Marialaura Pavone
- P4T Group, Food and Drug Department, University of Parma, 43124 Parma, Italy; (M.P.); (A.B.); (M.P.); (G.C.)
| | - Mattia Iannarelli
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.); (M.I.); (C.S.C.)
| | - Agostino Bruno
- P4T Group, Food and Drug Department, University of Parma, 43124 Parma, Italy; (M.P.); (A.B.); (M.P.); (G.C.)
| | - Marco Pieroni
- P4T Group, Food and Drug Department, University of Parma, 43124 Parma, Italy; (M.P.); (A.B.); (M.P.); (G.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.M.); (S.B.)
| | - Clotilde Silvia Cabassi
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.); (M.I.); (C.S.C.)
| | - Barbara Campanini
- Laboratory of Biochemistry and Molecular Biology, Food and Drug Department, University of Parma, 43124 Parma, Italy; (N.F.); (B.C.)
| | - Gabriele Costantino
- P4T Group, Food and Drug Department, University of Parma, 43124 Parma, Italy; (M.P.); (A.B.); (M.P.); (G.C.)
| |
Collapse
|
9
|
Pavone M, Raboni S, Marchetti M, Annunziato G, Bettati S, Papotti B, Marchi C, Carosati E, Pieroni M, Campanini B, Costantino G. Exploring the chemical space around N-(5-nitrothiazol-2-yl)-1,2,3-thiadiazole-4-carboxamide, a hit compound with serine acetyltransferase (SAT) inhibitory properties. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Abd El-Aleam RH, George RF, Georgey HH, Abdel-Rahman HM. Bacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistance. RSC Adv 2021; 11:36459-36482. [PMID: 35494393 PMCID: PMC9043591 DOI: 10.1039/d1ra06238g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is one of the most important challenges of the 21st century. However, the growing understanding of bacterial pathogenesis and cell-to-cell communication has revealed many potential strategies for the discovery of drugs that can be used for the treatment of bacterial infections. Interfering with bacterial virulence and/or quorum sensing could be a particularly interesting approach, because it is believed to exert less selective pressure on the bacterial resistance than with traditional strategies, geared toward killing bacteria or preventing their growth. Here, we discuss the mechanism of bacterial virulence, presenting promising strategies and recently synthesized heterocyclic compounds to combat future bacterial infections.
Collapse
Affiliation(s)
- Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI Cairo 11571 Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University Cairo 11786 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University Beni Suef Egypt
| |
Collapse
|
11
|
Italiano CJ, Pu L, Violi JP, Duggin IG, Rodgers KJ. Cysteine biosynthesis contributes to β-methylamino-l-alanine tolerance in Escherichia coli. Res Microbiol 2021; 172:103852. [PMID: 34246779 DOI: 10.1016/j.resmic.2021.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin β-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 μg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.
Collapse
Affiliation(s)
- Carly J Italiano
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Lisa Pu
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Jake P Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Iain G Duggin
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
12
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
13
|
Shemyakin IG, Firstova VV, Fursova NK, Abaev IV, Filippovich SY, Ignatov SG, Dyatlov IA. Next-Generation Antibiotics, Bacteriophage Endolysins, and Nanomaterials for Combating Pathogens. BIOCHEMISTRY (MOSCOW) 2021; 85:1374-1388. [PMID: 33280580 DOI: 10.1134/s0006297920110085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents various strategies to fight causative agents of infectious diseases. Species-specific programmable RNA-containing antibiotics open up new possibilities for creating next-generation of personalized drugs based on microbiome editing and can serve as a new tool for selective elimination of pathogenic bacterial species while keeping intact the rest of microbiota. Another promising approach in combating bacterial infections is genome editing using the CRISPR-Cas systems. Expanding knowledge on the molecular mechanisms of innate immunity has been actively used for developing new antimicrobials. However, obvious risks of using antibiotic adjuvants aimed at activation of the host immune system include development of the autoimmune response with subsequent organ damage. To avoid these risks, it is essential to elucidate action mechanisms of the specific ligands and signal molecules used as components of the hybrid antibiotics. Bacteriophage endolysins are also considered as effective antimicrobials against antibiotic-resistant bacteria, metabolically inactive persisters, and microbial biofilms. Despite significant advances in the design of implants with antibacterial properties, the problem of postoperative infections still remains. Different nanomodifications of the implant surface have been designed to reduce bacterial contamination. Here, we review bactericidal, fungicidal, and immunomodulating properties of compounds used for the implant surface nanomodifications, such as silver, boron nitride nanomaterials, nanofibers, and nanogalvanic materials.
Collapse
Affiliation(s)
- I G Shemyakin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - V V Firstova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - N K Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I V Abaev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S Yu Filippovich
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - S G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I A Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| |
Collapse
|
14
|
A Competitive O-Acetylserine Sulfhydrylase Inhibitor Modulates the Formation of Cysteine Synthase Complex. Catalysts 2021. [DOI: 10.3390/catal11060700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine is the main precursor of sulfur-containing biological molecules in bacteria and contributes to the control of the cell redox state. Hence, this amino acid plays an essential role in microbial survival and pathogenicity and the reductive sulfate assimilation pathway is considered a promising target for the development of new antibacterials. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS-A), the enzymes catalyzing the last two steps of cysteine biosynthesis, engage in the formation of the cysteine synthase (CS) complex. The interaction between SAT and OASS-A finely tunes cysteine homeostasis, and the development of inhibitors targeting either protein–protein interaction or the single enzymes represents an attractive strategy to undermine bacterial viability. Given the peculiar mode of interaction between SAT and OASS-A, which exploits the insertion of SAT C-terminal sequence into OASS-A active site, we tested whether a recently developed competitive inhibitor of OASS-A exhibited any effect on the CS stability. Through surface plasmon resonance spectroscopy, we (i) determined the equilibrium constant for the Salmonella Typhimurium CS complex formation and (ii) demonstrated that the inhibitor targeting OASS-A active site affects CS complex formation. For comparison, the Escherichia coli CS complex was also investigated, with the aim of testing the potential broad-spectrum activity of the candidate antimicrobial compound.
Collapse
|
15
|
The Nutrient and Energy Pathway Requirements for Surface Motility of Nonpathogenic and Uropathogenic Escherichia coli. J Bacteriol 2021; 203:JB.00467-20. [PMID: 33782053 PMCID: PMC8117529 DOI: 10.1128/jb.00467-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uropathogenic E. coli (UPEC) is the causative pathogen for most uncomplicated urinary tract infections. Motility is likely to contribute to these infections, and E. coli possesses flagella-dependent swimming motility, flagella-dependent surface motility (often called swarming), and the recently observed pili-dependent surface motility. Surface motility has not been extensively studied, but for the strains that have been tested nonpathogenic E. coli (NPEC) lab strains use pili, NPEC hypermotile derivatives of these lab strains use flagella, and UPEC strains use flagella. Using a representative of these three types of strains, we showed differences in the nutritional and pathway requirements for surface motility with respect to the glucose concentration, the glycolytic pathway utilized, acetogenesis, and the TCA cycle. In addition, glucose controlled flagella synthesis for the NPEC strain, but not for the hypermotile NPEC variant or the UPEC strain. The requirements for surface motility are likely to reflect major metabolic differences between strains for the pathways and regulation of energy metabolism.IMPORTANCEUrinary tract infections (UTIs) are one of the most common bacterial infections and are an increasing burden on the healthcare system because of recurrence and antibiotic resistance (1, 2). The most common uropathogen is E. coli (3, 4), which is responsible for about 80-90% of community acquired UTIs and 40-50% of nosocomial acquired UTIs (2). Virulence requires both pili and flagella, and either appendage can contribute to surface motility, although surface motility of uropathogenic E. coli has not been examined. We found different appendage, nutrient and pathway requirements for surface motility of a nonpathogenic E. coli lab strain and a uropathogenic E. coli We propose that these differences are the result of differences in the pathways and regulation of energy metabolism.
Collapse
|
16
|
Magalhães J, Franko N, Raboni S, Annunziato G, Tammela P, Bruno A, Bettati S, Armao S, Spadini C, Cabassi CS, Mozzarelli A, Pieroni M, Campanini B, Costantino G. Discovery of Substituted (2-Aminooxazol-4-yl)Isoxazole-3-carboxylic Acids as Inhibitors of Bacterial Serine Acetyltransferase in the Quest for Novel Potential Antibacterial Adjuvants. Pharmaceuticals (Basel) 2021; 14:ph14020174. [PMID: 33672408 PMCID: PMC7931047 DOI: 10.3390/ph14020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure–activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.
Collapse
Affiliation(s)
- Joana Magalhães
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
| | - Nina Franko
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Samanta Raboni
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
| | - Giannamaria Annunziato
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland;
| | - Agostino Bruno
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
| | - Stefano Bettati
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Stefano Armao
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Costanza Spadini
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (C.S.); (C.S.C.)
| | - Clotilde Silvia Cabassi
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (C.S.); (C.S.C.)
| | - Andrea Mozzarelli
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Marco Pieroni
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-0521-905054
| | - Barbara Campanini
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Gabriele Costantino
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| |
Collapse
|
17
|
Annunziato G, Spadini C, Franko N, Storici P, Demitri N, Pieroni M, Flisi S, Rosati L, Iannarelli M, Marchetti M, Magalhaes J, Bettati S, Mozzarelli A, Cabassi CS, Campanini B, Costantino G. Investigational Studies on a Hit Compound Cyclopropane-Carboxylic Acid Derivative Targeting O-Acetylserine Sulfhydrylase as a Colistin Adjuvant. ACS Infect Dis 2021; 7:281-292. [PMID: 33513010 DOI: 10.1021/acsinfecdis.0c00378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibacterial adjuvants are of great significance, since they allow the therapeutic dose of conventional antibiotics to be lowered and reduce the insurgence of antibiotic resistance. Herein, we report that an O-acetylserine sulfhydrylase (OASS) inhibitor can be used as a colistin adjuvant to treat infections caused by Gram-positive and Gram-negative pathogens. A compound that binds OASS with a nM dissociation constant was tested as an adjuvant of colistin against six critical pathogens responsible for infections spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, Klebisiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Staphylococcus pseudintermedius. The compound showed promising synergistic or additive activities against all of them. Knockout experiments confirmed the intracellular target engagement supporting the proposed mechanism of action. Moreover, compound toxicity was evaluated by means of its hemolytic activity against sheep defibrinated blood cells, showing a good safety profile. The 3D structure of the compound in complex with OASS was determined at 1.2 Å resolution by macromolecular crystallography, providing for the first time structural insights about the nature of the interaction between the enzyme and this class of competitive inhibitors. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants and the structural basis for further structure-activity relationship studies.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- P4T Group, Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Costanza Spadini
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, via del Taglio, 8, 43126 Parma, Italy
| | - Nina Franko
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drugs, University of Parma, via Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Paola Storici
- Elettra - Sincrotrone Trieste S.C.p.A., SS 14
- km 163,5 in AREA Science Park, 34149 Trieste, Italy
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste S.C.p.A., SS 14
- km 163,5 in AREA Science Park, 34149 Trieste, Italy
| | - Marco Pieroni
- P4T Group, Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Sara Flisi
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, via del Taglio, 8, 43126 Parma, Italy
| | - Lucrezia Rosati
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, via del Taglio, 8, 43126 Parma, Italy
| | - Mattia Iannarelli
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, via del Taglio, 8, 43126 Parma, Italy
| | - Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124 Parma, Italy
| | - Joana Magalhaes
- P4T Group, Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, via Volturno, 39, 43125 Parma, Italy
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124 Parma, Italy
- Institute of Biophysics, CNR, 56124 Pisa, Italy
| | - Andrea Mozzarelli
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drugs, University of Parma, via Parco Area delle Scienze 23/A, 43124 Parma, Italy
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124 Parma, Italy
- Institute of Biophysics, CNR, 56124 Pisa, Italy
| | - Clotilde Silvia Cabassi
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, via del Taglio, 8, 43126 Parma, Italy
| | - Barbara Campanini
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drugs, University of Parma, via Parco Area delle Scienze 23/A, 43124 Parma, Italy
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124 Parma, Italy
| | - Gabriele Costantino
- P4T Group, Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
18
|
Amino Acid k-mer Feature Extraction for Quantitative Antimicrobial Resistance (AMR) Prediction by Machine Learning and Model Interpretation for Biological Insights. BIOLOGY 2020; 9:biology9110365. [PMID: 33126516 PMCID: PMC7694136 DOI: 10.3390/biology9110365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Machine learning algorithms can learn mechanisms of antimicrobial resistance from the data of DNA sequence without any a priori information. Interpreting a trained machine learning algorithm can be exploited for validating the model and obtaining new information about resistance mechanisms. Different feature extraction methods, such as SNP calling and counting nucleotide k-mers have been proposed for presenting DNA sequences to the model. However, there are trade-offs between interpretability, computational complexity and accuracy for different feature extraction methods. In this study, we have proposed a new feature extraction method, counting amino acid k-mers or oligopeptides, which provides easier model interpretation compared to counting nucleotide k-mers and reaches the same or even better accuracy in comparison with different methods. Additionally, we have trained machine learning algorithms using different feature extraction methods and compared the results in terms of accuracy, model interpretability and computational complexity. We have built a new feature selection pipeline for extraction of important features so that new AMR determinants can be discovered by analyzing these features. This pipeline allows the construction of models that only use a small number of features and can predict resistance accurately.
Collapse
|
19
|
Magalhães J, Franko N, Raboni S, Annunziato G, Tammela P, Bruno A, Bettati S, Mozzarelli A, Pieroni M, Campanini B, Costantino G. Inhibition of Nonessential Bacterial Targets: Discovery of a Novel Serine O-Acetyltransferase Inhibitor. ACS Med Chem Lett 2020; 11:790-797. [PMID: 32435386 DOI: 10.1021/acsmedchemlett.9b00627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022] Open
Abstract
In ϒ-proteobacteria and Actinomycetales, cysteine biosynthetic enzymes are indispensable during persistence and become dispensable during growth or acute infection. The biosynthetic machinery required to convert inorganic sulfur into cysteine is absent in mammals; therefore, it is a suitable drug target. We searched for inhibitors of Salmonella serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of l-cysteine biosynthesis. The virtual screening of three ChemDiv focused libraries containing 91 243 compounds was performed to identify potential SAT inhibitors. Scaffold similarity and the analysis of the overall physicochemical properties allowed the selection of 73 compounds that were purchased and evaluated on the recombinant enzyme. Six compounds displaying an IC50 <100 μM were identified via an indirect assay using Ellman's reagent and then tested on a Gram-negative model organism, with one of them being able to interfere with bacterial growth via SAT inhibition.
Collapse
Affiliation(s)
| | | | | | | | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki FI-00014, Finland
| | | | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
- Institute of Biophysics, CNR, 56124 Pisa, Italy
| | - Andrea Mozzarelli
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
- Institute of Biophysics, CNR, 56124 Pisa, Italy
| | - Marco Pieroni
- Centro Interdipartimentale “Biopharmanet-tec”, Università degli Studi di Parma, 43124 Parma, Italy
| | | | - Gabriele Costantino
- Centro Interdipartimentale “Biopharmanet-tec”, Università degli Studi di Parma, 43124 Parma, Italy
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| |
Collapse
|
20
|
Wallace MJ, Dharuman S, Fernando DM, Reeve SM, Gee CT, Yao J, Griffith EC, Phelps GA, Wright WC, Elmore JM, Lee RB, Chen T, Lee RE. Discovery and Characterization of the Antimetabolite Action of Thioacetamide-Linked 1,2,3-Triazoles as Disruptors of Cysteine Biosynthesis in Gram-Negative Bacteria. ACS Infect Dis 2020; 6:467-478. [PMID: 31887254 DOI: 10.1021/acsinfecdis.9b00406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasing rates of drug-resistant Gram-negative (GN) infections, combined with a lack of new GN-effective antibiotic classes, are driving the need for the discovery of new agents. Bacterial metabolism represents an underutilized mechanism of action in current antimicrobial therapies. Therefore, we sought to identify novel antimetabolites that disrupt key metabolic pathways and explore the specific impacts of these agents on bacterial metabolism. This study describes the successful application of this approach to discover a new series of chemical probes, N-(phenyl)thioacetamide-linked 1,2,3-triazoles (TAT), that target cysteine synthase A (CysK), an enzyme unique to bacteria that is positioned at a key juncture between several fundamental pathways. The TAT class was identified using a high-throughput screen against Escherichia coli designed to identify modulators of pathways related to folate biosynthesis. TAT analog synthesis demonstrated a clear structure-activity relationship, and activity was confirmed against GN antifolate-resistant clinical isolates. Spontaneous TAT resistance mutations were tracked to CysK, and mode of action studies led to the identification of a false product formation mechanism between the CysK substrate O-acetyl-l-serine and the TATs. Global transcriptional responses to TAT treatment revealed that these antimetabolites impose substantial disruption of key metabolic networks beyond cysteine biosynthesis. This study highlights the potential of antimetabolite drug discovery as a promising approach to the discovery of novel GN antibiotics and the pharmacological promise of TAT CysK probes.
Collapse
Affiliation(s)
- Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Clifford T. Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Elizabeth C. Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - John M. Elmore
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Robin B. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
21
|
Annunziato G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int J Mol Sci 2019; 20:E5844. [PMID: 31766441 PMCID: PMC6928725 DOI: 10.3390/ijms20235844] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Antibiotics have always been considered as one of the most relevant discoveries of the twentieth century. Unfortunately, the dawn of the antibiotic era has sadly corresponded to the rise of the phenomenon of antimicrobial resistance (AMR), which is a natural process whereby microbes evolve in such a way to withstand the action of drugs. In this context, the identification of new potential antimicrobial targets and/or the identification of new chemical entities as antimicrobial drugs are in great demand. To date, among the many possible approaches used to deal with antibiotic resistance is the use of antibiotic adjuvants that hit bacterial non-essential targets. In this review, the author focuses on the discovery of antibiotic adjuvants and on new tools to study and reduce the prevalence of resistant bacterial infections.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- Probes for Targets Group (P4T group), Department of food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
22
|
Combination of SAXS and Protein Painting Discloses the Three-Dimensional Organization of the Bacterial Cysteine Synthase Complex, a Potential Target for Enhancers of Antibiotic Action. Int J Mol Sci 2019; 20:ijms20205219. [PMID: 31640223 PMCID: PMC6829319 DOI: 10.3390/ijms20205219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023] Open
Abstract
The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein–protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.
Collapse
|
23
|
Villagra NA, Valenzuela LM, Mora AY, Millanao AR, Saavedra CP, Mora GC, Hidalgo AA. Cysteine auxotrophy drives reduced susceptibility to quinolones and paraquat by inducing the expression of efflux-pump systems and detoxifying enzymes in S. Typhimurium. Biochem Biophys Res Commun 2019; 515:339-344. [PMID: 31151825 DOI: 10.1016/j.bbrc.2019.05.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
Currently, Salmonella enterica serovar Typhimurium (S. Typhimurium), is a major global public health problem, which has caused food-borne illnesses in many countries. Today, with the extensive use of antimicrobials, antimicrobial resistance is increasing at a serious rate in S. Typhimurium isolates. The present study sought the role of cysteine (Cys) auxotrophy on the resistance to quinolones and paraquat in S. Typhimurium. Cys auxotrophy was achieved by deleting either the cysDNC, cysJIH or cysQ loci. Deletion of these loci resulted in loss of susceptibility against nalidixic acid, levofloxacin, ciprofloxacin (CIP) and paraquat. Further studies with cysJIH mutant indicated increased expression of multi-antibiotic resistance genes marA and ramA, and consequently increased expression of efflux-pump systems. The cysJIH mutant presented a smaller increase of reactive oxygen species (ROS) in presence of paraquat or CIP. Expression of katG and sodA (expressing for a catalase and a superoxide dismutase, respectively) genes was increased in presence of paraquat in the cysJIH mutant; while expression of the superoxide dismutase gene sodB was decreased. These results indicate that deletion of cysDNC, cysJIH or cysQ genes of S. Typhimurium renders Cys auxotrophy along with decreased susceptibility in response to quinolone and paraquat. Overexpression of efflux-pump systems AcrB-TolC and SmvA-OmpD and antioxidant enzymes KatG and SodA could explain the mechanisms of antimicrobial resistance in the Cys auxotrophic mutants.
Collapse
Affiliation(s)
| | | | - Aracely Y Mora
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Ana R Millanao
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile; Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Guido C Mora
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK), Facultad de Ciencias de la Salud, Universidad SEK, Santiago, Chile
| | | |
Collapse
|
24
|
Gómez-Baltazar A, Vázquez-Garcidueñas MS, Larsen J, Kuk-Soberanis ME, Vázquez-Marrufo G. Comparative stress response to food preservation conditions of ST19 and ST213 genotypes of Salmonella enterica serotype Typhimurium. Food Microbiol 2019; 82:303-315. [PMID: 31027788 DOI: 10.1016/j.fm.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 11/27/2022]
Abstract
The replacement of the most prevalent Salmonella enterica genotypes has been documented worldwide. Here we tested the hypothesis that the current prevalent sequence type ST213 of serotype Typhimurium in Mexico has a higher resistance to stressful food preservation conditions than the displaced sequence ST19. ST19 showed higher cell viability percentages than ST213 in osmotic (685 mM NaCl) and acidic (pH 3.5) stress conditions and in combination with refrigeration (4 °C) and ambient (≈22 °C) temperatures. Both genotypes showed the same poststress recovery growth. ST213 formed biofilm and filamentous cells (FCs) under stress, whereas ST19 did not. ST213 cells also showed higher motility. The capacity of ST213 to form FCs may explain its lower viability percentages when compared with ST19, i.e., ST213 cells divided less under stress conditions, but FCs had the same recovery capacity of ST19 cells. ST213 presented a higher unsaturated/saturated fatty acids ratio (0.5-0.6) than ST19 (0.2-0.5), which indicates higher membrane fluidity. The transcript levels of the rpoS gene were similar between genotypes under the experimental conditions employed. Biofilm formation, the generation of FCs, cell motility and membrane modification seem to make ST213 more resistant than ST19 to food preservation environments.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58893, Mexico.
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58020, Mexico.
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), Universidad Nacional Autónoma de México, Morelia, Michoacá, CP 58190, Mexico.
| | - Mariana Esther Kuk-Soberanis
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58020, Mexico.
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58893, Mexico.
| |
Collapse
|
25
|
Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech 2019; 9:44. [PMID: 30675454 DOI: 10.1007/s13205-019-1572-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023] Open
Abstract
CysK (O-acetylserine sulfhydrylase) is a pyridoxal-5' phosphate-dependent enzyme which catalyzes the second step of the de novo cysteine biosynthesis pathway by converting O-acetyl serine (OAS) into l-cysteine in the presence of sulfide. The first step of the cysteine biosynthesis involves formation of OAS from serine and acetyl CoA by CysE (serine acetyltransferase). Apart from role of CysK in cysteine biosynthesis, recent studies have revealed various additional roles of this enzyme in bacterial physiology. Other than the suggested regulatory role in cysteine production, other activities of CysK include involvement of CysK-in contact-dependent toxin activation in Gram-negative pathogens, as a transcriptional regulator of CymR by stabilizing the CymR-DNA interactions, in biofilm formation by providing cysteine and via another mechanism not yet understood, in ofloxacin and tellurite resistance as well as in cysteine desulfurization. Some of these activities involve binding of CysK to another cellular partner, where the complex is regulated by the availability of OAS and/or sulfide (H2S). The aim of this study is to present an overview of current knowledge of multiple functions performed by CysK and identifying structural features involved in alternate functions. Due to possible role in disease, promoting or inhibiting a "moonlighting" function of CysK could be a target for developing novel therapeutic interventions.
Collapse
|
26
|
Magalhães J, Franko N, Annunziato G, Pieroni M, Benoni R, Nikitjuka A, Mozzarelli A, Bettati S, Karawajczyk A, Jirgensons A, Campanini B, Costantino G. Refining the structure-activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. J Enzyme Inhib Med Chem 2018; 34:31-43. [PMID: 30362368 PMCID: PMC6217552 DOI: 10.1080/14756366.2018.1518959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lack of efficacy of current antibacterials to treat multidrug resistant bacteria poses a life-threatening alarm. In order to develop enhancers of the antibacterial activity, we carried out a medicinal chemistry campaign aiming to develop inhibitors of enzymes that synthesise cysteine and belong to the reductive sulphur assimilation pathway, absent in mammals. Previous studies have provided a novel series of inhibitors for O-acetylsulfhydrylase – a key enzyme involved in cysteine biosynthesis. Despite displaying nanomolar affinity, the most active representative of the series was not able to interfere with bacterial growth, likely due to poor permeability. Therefore, we rationally modified the structure of the hit compound with the aim of promoting their passage through the outer cell membrane porins. The new series was evaluated on the recombinant enzyme from Salmonella enterica serovar Typhimurium, with several compounds able to keep nanomolar binding affinity despite the extent of chemical manipulation.
Collapse
Affiliation(s)
- Joana Magalhães
- a P4T group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Nina Franko
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy
| | | | - Marco Pieroni
- a P4T group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Roberto Benoni
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy
| | - Anna Nikitjuka
- c Latvian Institute of Organic Synthesis , Riga , Latvia
| | - Andrea Mozzarelli
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy.,d National Institute of Biostructures and Biosystems , Rome , Italy.,e Institute of Biophysics , Pisa , Italy
| | - Stefano Bettati
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy.,f Department of Neurosciences , University of Parma , Parma , Italy
| | | | | | - Barbara Campanini
- b Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug , University of Parma , Parma , Italy
| | - Gabriele Costantino
- a P4T group, Department of Food and Drug, University of Parma, Parma, Italy.,h Centro Interdipartimentale Misure (CIM)'G. Casnati', University of Parma , Parma , Italy
| |
Collapse
|
27
|
Hicks JL, Mullholland CV. Cysteine biosynthesis in Neisseria species. MICROBIOLOGY-SGM 2018; 164:1471-1480. [PMID: 30307392 DOI: 10.1099/mic.0.000728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The principal mechanism of reducing sulfur into organic compounds is via the synthesis of l-cysteine. Cysteine is used for protein and glutathione synthesis, as well as being the primary sulfur source for a variety of other molecules, such as biotin, coenzyme A, lipoic acid and more. Glutathione and other cysteine derivatives are important for protection against the oxidative stress that pathogenic bacteria such as Neisseria gonorrhoeae and Neisseria meningitidis encounter during infection. With the alarming rise of antibiotic-resistant strains of N. gonorrhoeae, the development of inhibitors for the future treatment of this disease is critical, and targeting cysteine biosynthesis enzymes could be a promising approach for this. Little is known about the transport of sulfate and thiosulfate and subsequent sulfate reduction and incorporation into cysteine in Neisseria species. In this review we investigate cysteine biosynthesis within Neisseria species and examine the differences between species and with other bacteria. Neisseria species exhibit different arrangements of cysteine biosynthesis genes and have slight differences in how they assimilate sulfate and synthesize cysteine, while, most interestingly, N. gonorrhoeae by virtue of a genome deletion, lacks the ability to reduce sulfate to bisulfide for incorporation into cysteine, and as such uses the thiosulfate uptake pathway for the synthesis of cysteine.
Collapse
Affiliation(s)
- Joanna L Hicks
- School of Science, University of Waikato, Gate 8 Hillcrest Road, Hamilton, 3216, New Zealand
| | - Claire V Mullholland
- School of Science, University of Waikato, Gate 8 Hillcrest Road, Hamilton, 3216, New Zealand
| |
Collapse
|
28
|
Franko N, Grammatoglou K, Campanini B, Costantino G, Jirgensons A, Mozzarelli A. Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. J Enzyme Inhib Med Chem 2018; 33:1343-1351. [PMID: 30251899 PMCID: PMC6161599 DOI: 10.1080/14756366.2018.1504040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.
Collapse
Affiliation(s)
- Nina Franko
- a Food and Drug Department , University of Parma , Parma , Italy
| | | | | | | | | | - Andrea Mozzarelli
- a Food and Drug Department , University of Parma , Parma , Italy.,c National Research Council , Institute of Biophysics , Pisa , Italy
| |
Collapse
|
29
|
Doyle CJ, O'Toole PW, Cotter PD. Genomic Characterization of Sulphite Reducing Bacteria Isolated From the Dairy Production Chain. Front Microbiol 2018; 9:1507. [PMID: 30026740 PMCID: PMC6041559 DOI: 10.3389/fmicb.2018.01507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Anaerobic sporeformers, specifically spoilage and pathogenic members of the genus Clostridium, are a concern for producers of dairy products, and of powdered dairy products in particular. As an alternative to testing for individual species, the traditional, and still current, approach to detecting these sporeformers, including non-spoilage/non-pathogenic species, in dairy products has involved testing for a sulphite reducing phenotype [Sulphite reducing Clostridia (SRCs)] under anaerobic conditions. This phenotype is conserved throughout the Order Clostridia. Unfortunately, however, this phenotype is exhibited by other sulphite reducing bacteria (SRBs) also, potentially leading to potential for false positives. Here, this risk was borne out through the identification of several SRBs from industry samples that were identified as Proteus mirabilis and various Bacillus/Paenibacillus sp. Genome wide comparison of a number of representative SRCs and SRBs was employed to determine phylogenetic relationships, especially among SRCs, and to characterize the genes responsible for the sulphite reducing phenotype. This screen identified two associated operons, i.e., asrABC in SRCs, and cysJI in Bacillus/Paenibacillus spp. and P. mirabilis. This screen identified spp. belonging to sensu stricto, Lachnospiraceae and Cluster XIV of the Clostridia all producing the SRC phenotype. This study highlights the inaccuracy of the industry standard SRC test but highlights the potential to generate an equivalent molecular test designed to detect the genes responsible for this phenotype in clostridia.
Collapse
Affiliation(s)
- Conor J Doyle
- Teagasc Food Research Centre, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
30
|
Genomic, Transcriptomic, and Phenotypic Analyses of Neisseria meningitidis Isolates from Disease Patients and Their Household Contacts. mSystems 2017; 2:mSystems00127-17. [PMID: 29152586 PMCID: PMC5686521 DOI: 10.1128/msystems.00127-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Neisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response. Neisseria meningitidis (meningococcus) can cause meningococcal disease, a rapidly progressing and often fatal disease that can occur in previously healthy children. Meningococci are found in healthy carriers, where they reside in the nasopharynx as commensals. While carriage is relatively common, invasive disease, associated with hypervirulent strains, is a comparatively rare event. The basis of increased virulence in some strains is not well understood. New Zealand suffered a protracted meningococcal disease epidemic, from 1991 to 2008. During this time, a household carriage study was carried out in Auckland: household contacts of index meningococcal disease patients were swabbed for isolation of carriage strains. In many households, healthy carriers harbored strains identical, as determined by laboratory typing, to the ones infecting the associated patient. We carried out more-detailed analyses of carriage and disease isolates from a select number of households. We found that isolates, although indistinguishable by laboratory typing methods and likely closely related, had many differences. We identified multiple genome variants and transcriptional differences between isolates. These studies enabled the identification of two new phase-variable genes. We also found that several carriage strains had lost their type IV pili and that this loss correlated with reduced tumor necrosis factor alpha (TNF-α) expression when cultured with epithelial cells. While nonpiliated meningococcal isolates have been previously found in carriage strains, this is the first evidence of an association between type IV pili from meningococci and a proinflammatory epithelial response. We also identified potentially important metabolic differences between carriage and disease isolates, including the sulfate assimilation pathway. IMPORTANCENeisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response.
Collapse
|
31
|
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli. J Bacteriol 2017; 199:JB.00117-17. [PMID: 28607157 DOI: 10.1128/jb.00117-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis.IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.
Collapse
|
32
|
Benoni R, De Bei O, Paredi G, Hayes CS, Franko N, Mozzarelli A, Bettati S, Campanini B. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett 2017; 591:1212-1224. [PMID: 28337759 DOI: 10.1002/1873-3468.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 11/09/2022]
Abstract
In bacteria and plants, serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase-A sulfhydrylase (CysK) collaborate to synthesize l-Cys from l-Ser. CysE and CysK bind one another with high affinity to form the cysteine synthase complex (CSC). We demonstrate that bacterial CysE is activated when bound to CysK. CysE activation results from the release of substrate inhibition, with the Ki for l-Ser increasing from 4 mm for free CysE to 16 mm for the CSC. Feedback inhibition of CysE by l-Cys is also relieved in the bacterial CSC. These findings suggest that the CysE active site is allosterically altered by CysK to alleviate substrate and feedback inhibition in the context of the CSC.
Collapse
Affiliation(s)
- Roberto Benoni
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy
| | - Omar De Bei
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Gianluca Paredi
- Centro Interdipartimentale SITEIA.PARMA, Università di Parma, Italy
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Nina Franko
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy.,Istituto di Biofisica, CNR, Pisa, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| |
Collapse
|
33
|
Annunziato G, Pieroni M, Benoni R, Campanini B, Pertinhez TA, Pecchini C, Bruno A, Magalhães J, Bettati S, Franko N, Mozzarelli A, Costantino G. Cyclopropane-1,2-dicarboxylic acids as new tools for the biophysical investigation of O-acetylserine sulfhydrylases by fluorimetric methods and saturation transfer difference (STD) NMR. J Enzyme Inhib Med Chem 2016; 31:78-87. [DOI: 10.1080/14756366.2016.1218486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
| | | | - Roberto Benoni
- Department of Neurosciences, University of Parma, Parma, Italy,
| | | | - Thelma A. Pertinhez
- Department of Biochemical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy,
- Transfusion Medicine Unit, ASMN-IRCCS, Reggio, Emilia, Italy,
| | | | | | | | - Stefano Bettati
- National Institute of Biostructures and Biosystems, Rome, Italy, and
| | | | - Andrea Mozzarelli
- Department of Pharmacy, and
- National Institute of Biostructures and Biosystems, Rome, Italy, and
- Institute of Biophysics, CNR, Pisa, Italy
| | | |
Collapse
|
34
|
Frávega J, Álvarez R, Díaz F, Inostroza O, Tejías C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderón IL, Gil F. SalmonellaTyphimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. J Antimicrob Chemother 2016; 71:3409-3415. [DOI: 10.1093/jac/dkw311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
|
35
|
Monteiro R, Hébraud M, Chafsey I, Poeta P, Igrejas G. How different is the proteome of the extended spectrum β-lactamase producing Escherichia coli strains from seagulls of the Berlengas natural reserve of Portugal? J Proteomics 2016; 145:167-176. [PMID: 27118263 DOI: 10.1016/j.jprot.2016.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/19/2023]
Abstract
UNLABELLED β-Lactam antibiotics like cefotaxime are the most commonly used antibacterial agents. Escherichia coli strains 5A, 10A, 12A and 23B isolated from Seagulls feces, are cefotaxime-resistant strains that produces extended-spectrum beta-lactamases. Bacterial resistance to these antibiotics occurs predominantly through structural modification on the penicillin-binding proteins and enzymatic inactivation by extended-spectrum β-lactamases. Using classical proteomic techniques (2D-GE) coupled to mass spectrometry and bioinformatics extended analysis, in this study, we report several significant differences in cytoplasmic proteins expression when the strains were submitted to antibiotic stress and when the resistant strains were compared with a non-resistant strain. A total of 79 differentially expressed spots were collected for protein identification. Significant level of expression was found in antibiotic resistant proteins like β-lactamase CTX-M-1 and TEM and also in proteins related with oxidative stress. This approach might help us understand which pathways form barriers for antibiotics, another possible new pathways involved in antibiotic resistance to devise appropriate strategies for their control already recognized by the World Health Organization and the European Commission. BIOLOGICAL SIGNIFICANCE This study highlights the protein differences when a resistant strain is under antibiotic pressure and how different can be a sensible and resistant strain at the protein level. This survey might help us to understand the specifics barriers for antibiotics and which pathways are involved in its resistance crosswise the wildlife.
Collapse
Affiliation(s)
- R Monteiro
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - M Hébraud
- UR454 Microbiology, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France; Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France
| | - I Chafsey
- UR454 Microbiology, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France
| | - P Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal
| | - G Igrejas
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; UCIBIO-REQUIMTE, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, Portugal.
| |
Collapse
|
36
|
Pieroni M, Annunziato G, Beato C, Wouters R, Benoni R, Campanini B, Pertinhez TA, Bettati S, Mozzarelli A, Costantino G. Rational Design, Synthesis, and Preliminary Structure–Activity Relationships of α-Substituted-2-Phenylcyclopropane Carboxylic Acids as Inhibitors of Salmonella typhimurium O-Acetylserine Sulfhydrylase. J Med Chem 2016; 59:2567-78. [DOI: 10.1021/acs.jmedchem.5b01775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Stefano Bettati
- Department
of Neurosciences, University of Parma, Via Volturno, 39, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Andrea Mozzarelli
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Institute of Biophysics, CNR, /o
Area di Ricerca San Cataldo, Via G. Moruzzi N° 1, 56124 Pisa, Italy
| | | |
Collapse
|
37
|
Álvarez R, Frávega J, Rodas PI, Fuentes JA, Paredes-Sabja D, Calderón IL, Gil F. Participation of S. Typhimurium cysJIH Operon in the H2S-mediated Ciprofloxacin Resistance in Presence of Sulfate as Sulfur Source. Antibiotics (Basel) 2015. [PMCID: PMC4790288 DOI: 10.3390/antibiotics4030321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ricardo Álvarez
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
| | - Jorge Frávega
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
| | - Paula I. Rodas
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago 8370071, Chile; E-Mail:
| | - Juan A. Fuentes
- Laboratorio de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mail:
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 837014, Chile; E-Mail:
| | - Iván L. Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
| | - Fernando Gil
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +56-2-2661-8664
| |
Collapse
|
38
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|
39
|
Campanini B, Benoni R, Bettati S, Beck CM, Hayes CS, Mozzarelli A. Moonlighting O-acetylserine sulfhydrylase: New functions for an old protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1184-93. [PMID: 25731080 DOI: 10.1016/j.bbapap.2015.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
O-acetylserine sulfhydrylase A (CysK) is the pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final reaction of cysteine biosynthesis in bacteria. CysK was initially identified in a complex with serine acetyltransferase (CysE), which catalyzes the penultimate reaction in the synthetic pathway. This "cysteine synthase" complex is stabilized by insertion of the CysE C-terminus into the active-site of CysK. Remarkably, the CysK/CysE binding interaction is conserved in most bacterial and plant systems. For the past 40years, CysK was thought to function exclusively in cysteine biosynthesis, but recent studies have revealed a repertoire of additional "moonlighting" activities for this enzyme. CysK and its paralogs influence transcription in both Gram-positive bacteria and the nematode Caenorhabditis elegans. CysK also activates an antibacterial nuclease toxin produced by uropathogenic Escherichia coli. Intriguingly, each moonlighting activity requires a binding partner that invariably mimics the C-terminus of CysE to interact with the CysK active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
| | - Roberto Benoni
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Bettati
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Christina M Beck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Andrea Mozzarelli
- Dipartimento di Farmacia, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy; Institute of Biophysics, CNR, Pisa, Italy
| |
Collapse
|
40
|
Álvarez R, Neumann G, Frávega J, Díaz F, Tejías C, Collao B, Fuentes JA, Paredes-Sabja D, Calderón IL, Gil F. CysB-dependent upregulation of the Salmonella Typhimurium cysJIH operon in response to antimicrobial compounds that induce oxidative stress. Biochem Biophys Res Commun 2015; 458:46-51. [PMID: 25637663 DOI: 10.1016/j.bbrc.2015.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
It has been proposed that some antibiotics exert additional damage through reactive oxygen species (ROS) production. Since H₂S protects neurons and cardiac muscle from oxidative stress, it has been hypothesized that bacterial H₂S might, similarly, be a cellular protector against antibiotics. In Enterobacteriaceae, H₂S can be produced by the cysJIH pathway, which uses sulfate as the sulfur source. CysB, in turn, is a positive regulator of cysJIH. At present, the role of S. Typhimurium cysJIH operon in the protection to reactive oxygen species (ROS) induced by antimicrobial compounds remains to be elucidated. In this work, we evaluated the role of cysJIH and cysB in ROS accumulation, superoxide dismutase (SOD) activity, reduced thiol accumulation, and H₂S accumulation in S. Typhimurium, cultured in either sulfate or cysteine as the sole sulfur source. Furthermore, we assessed the effects of the addition of ceftriaxone (CEF) and menadione (MEN) in these same parameters. In sulfate as the sole sulfur source, we found that the cysJIH operon and the cysB gene were required to full growth in minimal media, independently on the addition of CEF or MEN. Most importantly, both cysJIH and cysB contributed to diminish ROS levels, increase the SOD activity, increase the reduced thiols, and increase the H₂S levels in presence of CEF or MEN. Moreover, the cysJIH operon exhibited a CysB-dependent upregulation in presence of these two antimicrobials compounds. On the other hand, when cysteine was used as the sole sulfur source, we found that cysJIH operon was completely negligible, were only cysB exhibited similar phenotypes than the described for sulfate as sulfur source. Unexpectedly, CysB downregulated cysJIH operon when cysteine was used instead of sulfate, suggesting a complex regulation of this system.
Collapse
Affiliation(s)
- Ricardo Álvarez
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - German Neumann
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Jorge Frávega
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Fernando Díaz
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Cristóbal Tejías
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Bernardo Collao
- Bionanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Fernando Gil
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
41
|
Endogenous synthesis of 2-aminoacrylate contributes to cysteine sensitivity in Salmonella enterica. J Bacteriol 2014; 196:3335-42. [PMID: 25002544 DOI: 10.1128/jb.01960-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5'-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes.
Collapse
|
42
|
Marvasi M, Noel JT, George AS, Farias MA, Jenkins KT, Hochmuth G, Xu Y, Giovanonni JJ, Teplitski M. Ethylene signalling affects susceptibility of tomatoes to Salmonella. Microb Biotechnol 2014; 7:545-55. [PMID: 24888884 PMCID: PMC4265073 DOI: 10.1111/1751-7915.12130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/07/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022] Open
Abstract
Fresh fruits and vegetables are increasingly recognized as important reservoirs of human pathogens, and therefore, significant attention has been directed recently to understanding mechanisms of the interactions between plants and enterics, like Salmonella. A screen of tomato cultivars for their susceptibility to Salmonella revealed significant differences in the ability of this human pathogen to multiply within fruits; expression of the Salmonella genes (cysB, agfB, fadH) involved in the interactions with tomatoes depended on the tomato genotype and maturity stage. Proliferation of Salmonella was strongly reduced in the tomato mutants with defects in ethylene synthesis, perception and signal transduction. While mutation in the ripening-related ethylene receptor Nr resulted only in a modest reduction in Salmonella numbers within tomatoes, strong inhibition of the Salmonella proliferation was observed in rin and nor tomato mutants. RIN and NOR are regulators of ethylene synthesis and ripening. A commercial tomato variety heterozygous for rin was less susceptible to Salmonella under the greenhouse conditions but not when tested in the field over three production seasons.
Collapse
Affiliation(s)
- Massimiliano Marvasi
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, FL, 32611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sub-inhibitory fosmidomycin exposures elicits oxidative stress in Salmonella enterica serovar Typhimurium LT2. PLoS One 2014; 9:e95271. [PMID: 24751777 PMCID: PMC3994034 DOI: 10.1371/journal.pone.0095271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 03/26/2014] [Indexed: 01/16/2023] Open
Abstract
Fosmidomycin is a time-dependent nanomolar inhibitor of methylerythritol phosphate (MEP) synthase, which is the enzyme that catalyzes the first committed step in the MEP pathway to isoprenoids. Importantly, fosmidomycin is one of only a few MEP pathway-specific inhibitors that exhibits antimicrobial activity. Most inhibitors identified to date only exhibit activity against isolated pathway enzymes. The MEP pathway is the sole route to isoprenoids in many bacteria, yet has no human homologs. The development of inhibitors of this pathway holds promise as novel antimicrobial agents. Similarly, analyses of the bacterial response toward MEP pathway inhibitors provides valuable information toward the understanding of how emergent resistance may ultimately develop to this class of antibiotics. We have examined the transcriptional response of Salmonella enterica serovar typhimurium LT2 to sub-inhibitory concentrations of fosmidomycin via cDNA microarray and RT-PCR. Within the regulated genes identified by microarray were a number of genes encoding enzymes associated with the mediation of reactive oxygen species (ROS). Regulation of a panel of genes implicated in the response of cells to oxidative stress (including genes for catalases, superoxide dismutases, and alkylhydrogen peroxide reductases) was investigated and mild upregulation in some members was observed as a function of fosmidomycin exposure over time. The extent of regulation of these genes was similar to that observed for comparable exposures to kanamycin, but differed significantly from tetracycline. Furthermore, S. typhimurium exposed to sub-inhibitory concentrations of fosmidomycin displayed an increased sensitivity to exogenous H2O2 relative to either untreated controls or kanamycin-treated cells. Our results suggest that endogenous oxidative stress is one consequence of exposures to fosmidomycin, likely through the temporal depletion of intracellular isoprenoids themselves, rather than other mechanisms that have been proposed to facilitate ROS accumulation in bacteria (e.g. cell death processes or the ability of the antibiotic to redox cycle).
Collapse
|
44
|
Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 2013; 8:e77558. [PMID: 24167577 PMCID: PMC3805590 DOI: 10.1371/journal.pone.0077558] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023] Open
Abstract
The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.
Collapse
Affiliation(s)
| | - Ratna Singh
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Pietro Cozzini
- Department of Food Sciences, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
| | - Barbara Campanini
- Department of Pharmacy, University of Parma, Parma, Italy
- * E-mail: (BC); (AM)
| | - Enea Salsi
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Paolo Felici
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Samanta Raboni
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | - Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul F. Cook
- Department of Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
- * E-mail: (BC); (AM)
| |
Collapse
|
45
|
Bruno A, Amori L, Costantino G. Computational Insights into the Mechanism of Inhibition of OASS-A by a Small Molecule Inhibitor. Mol Inform 2013; 32:447-57. [PMID: 27481665 DOI: 10.1002/minf.201200174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/09/2012] [Indexed: 11/09/2022]
Abstract
O-Acetylserine sulfhydrylase (isoform A, OASS-A) is a PLP-dependent enzyme involved in the last step of cysteine biosynthesis in many pathogens. Many microorganisms use cysteine as the main building block for sulfur-containing antioxidants, and cysteine depletion in several pathogens resulted in a reduced antibiotic resistance, thus leading to the identification of OASS as novel suitable molecular targets to overcome antimicrobial resistances. The precise molecular mechanism of OASS-A inhibition by small peptides or by small molecule inhibitors is still unclear. To shed more lights on the structural basis underlying the inhibition mechanism for OASS, we engaged ourselves in studying the dynamic properties of this enzyme. In this paper, we describe a computational study involving unbiased MD simulations of OASS-A from Haemophilus influenzae (HiOASS) in its inhibitor free, PLP-bound form, and in complex with a pentapeptide inhibitor and with UPAR40, a small molecule which we have recently reported as a potent OASS-A inhibitors. We proposed that UPAR40 inhibits HiOASS-A through the stabilization of a closed conformation. Moreover, preliminary docking studies and sequence analysis allow us to speculate about the non-specificity of UPAR40 toward a particular OASS enzyme species or isoforms.
Collapse
Affiliation(s)
- Agostino Bruno
- Department of Pharmacy, Università degli Studi di Parma, Parco Area delle Scienze, Viale G. P. Usberti 27/A, 43124, Parma, Italy
| | - Laura Amori
- Department of Pharmacy, Università degli Studi di Parma, Parco Area delle Scienze, Viale G. P. Usberti 27/A, 43124, Parma, Italy
| | - Gabriele Costantino
- Department of Pharmacy, Università degli Studi di Parma, Parco Area delle Scienze, Viale G. P. Usberti 27/A, 43124, Parma, Italy.
| |
Collapse
|
46
|
Brandl MT, Cox CE, Teplitski M. Salmonella interactions with plants and their associated microbiota. PHYTOPATHOLOGY 2013; 103:316-325. [PMID: 23506360 DOI: 10.1094/phyto-11-12-0295-rvw] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increase in the incidence of gastroenteritis outbreaks linked to the consumption of foods of plant origin has ignited public concern and scientific interest in understanding interactions of human enteric pathogens with plants. Enteric disease caused by nontyphoidal Salmonella is a major public health burden, with the number of cases of illness linked to fresh produce, spices, and nuts surpassing those linked to foods of animal origin. Mounting evidence supports the hypothesis that colonization of plants is an important part of the life cycle of this human pathogen. Although plant responses to human pathogens are distinct from the more specific responses to phytopathogens, plants appear to recognize Salmonella, likely by detecting conserved microbial patterns, which subsequently activates basal defenses. Numerous Salmonella genes have been identified as playing a role in its colonization of plant surfaces and tissues, and in its various interactions with other members of the phyto-microbial community. Importantly, Salmonella utilizes diverse and overlapping strategies to interact with plants and their microflora, and to successfully colonize its vertebrate hosts. This review provides insight into the complex behavior of Salmonella on plants and the apparent remarkable adaptation of this human pathogen to a potentially secondary host.
Collapse
|
47
|
Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 2013; 4:20. [PMID: 23422936 PMCID: PMC3574975 DOI: 10.3389/fmicb.2013.00020] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022] Open
Abstract
Bacterial responses to antibiotics are concentration-dependent. At high concentrations, antibiotics exhibit antimicrobial activities on susceptible cells, while subinhibitory concentrations induce diverse biological responses in bacteria. At non-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses, which may include an altered antibiotic resistance/tolerance profile. In natural settings, microbes are typically in polymicrobial communities and antibiotic-mediated interactions between species may play a significant role in bacterial community structure and function. However, these aspects have not yet fully been explored at the community level. Here we discuss the different types of interactions mediated by antibiotics and non-antibiotic metabolites as a function of their concentrations and speculate on how these may amplify the overall antibiotic resistance/tolerance and the spread of antibiotic resistance determinants in a context of polymicrobial community.
Collapse
Affiliation(s)
- Steve P Bernier
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
48
|
Spyrakis F, Felici P, Bayden AS, Salsi E, Miggiano R, Kellogg GE, Cozzini P, Cook PF, Mozzarelli A, Campanini B. Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase isozymes with serine acetyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:169-81. [DOI: 10.1016/j.bbapap.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
49
|
Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium. J Bacteriol 2012; 194:4366-76. [PMID: 22685283 DOI: 10.1128/jb.00729-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cysteine is potentially toxic and can affect diverse functions such as oxidative stress, antibiotic resistance, and swarming motility. The contribution of cysteine catabolism in modulating responses to cysteine has not been examined, in part because the genes have not been identified and mutants lacking these genes have not been isolated or characterized. We identified the gene for a previously described cysteine desulfhydrase, which we designated cdsH (formerly STM0458). We also identified a divergently transcribed gene that regulates cdsH expression, which we designated cutR (formerly ybaO, or STM0459). CdsH appears to be the major cysteine-degrading and sulfide-producing enzyme aerobically but not anaerobically. Mutants with deletions of cdsH and ybaO exhibited increased sensitivity to cysteine toxicity and altered swarming motility but unaltered cysteine-enhanced antibiotic resistance and survival in macrophages.
Collapse
|
50
|
Turnbull AL, Kim W, Surette MG. Transcriptional regulation of sdiA by cAMP-receptor protein, LeuO, and environmental signals in Salmonella enterica serovar Typhimurium. Can J Microbiol 2012; 58:10-22. [DOI: 10.1139/w11-101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sdiA gene encodes for a LuxR-type transcription factor, which is active when bound to N-acyl homoserine lactones (AHLs). Because Salmonella enterica serovar Typhimurium does not produce AHLs, SdiA senses signals produced by other organisms. SdiA is not expressed constitutively, and response is limited to conditions in which elevated expression occurs, but little is known about the regulation of sdiA expression. Here we map the sdiA promoter and define several regulators that directly or indirectly act on the promoter. The major activator of sdiA expression is cAMP-receptor protein (CRP), and we define the CRP operator in the sdiA promoter using promoter and crp mutants. LeuO activates sdiA expression to a lesser extent than does CRP. We demonstrate that LeuO directly binds the sdiA promoter and the Rcs phosphorelay represses sdiA expression. In this study, NhaR, IlvY, and Fur affected sdiA expression indirectly and weakly. Expression in late-stationary phase depended on RpoS. AHL-dependent expression of the SdiA-regulated gene rck correlated to the observed sdiA transcriptional changes in regulator mutants. The data demonstrate that regulation of sdiA involves integration of multiple environmental and metabolic signals.
Collapse
Affiliation(s)
- Amy L. Turnbull
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Wook Kim
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Michael G. Surette
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|