1
|
Sprankel L, Scheffer MP, Manger S, Ermel UH, Frangakis AS. Cryo-electron tomography reveals the binding and release states of the major adhesion complex from Mycoplasma genitalium. PLoS Pathog 2023; 19:e1011761. [PMID: 37939157 PMCID: PMC10659161 DOI: 10.1371/journal.ppat.1011761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
The nap particle is an immunogenic surface adhesion complex from Mycoplasma genitalium. It is essential for motility and responsible for binding sialylated oligosaccharides on the surface of the host cell. The nap particle is composed of two P140-P110 heterodimers, the structure of which was recently solved. However, the interpretation of the mechanism by which the mycoplasma cells orchestrate adhesion remained challenging. Here, we provide cryo-electron tomography structures at ~11 Å resolution, which allow for the distinction between the bound and released state of the nap particle, displaying the in vivo conformational states. Fitting of the atomically resolved structures reveals that bound sialylated oligosaccharides are stabilized by both P110 and P140. Movement of the stalk domains allows for the transfer of conformational changes from the interior of the cell to the binding pocket, thus having the capability of an active release process. It is likely that the same mechanism can be transferred to other Mycoplasma species that belong to the pneumoniae cluster.
Collapse
Affiliation(s)
- Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Margot P. Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Sina Manger
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Utz H. Ermel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Achilleas S. Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Ramos EI, Veerapandian R, Das K, Chacon JA, Gadad SS, Dhandayuthapani S. Pathogenic mycoplasmas of humans regulate the long noncoding RNAs in epithelial cells. Noncoding RNA Res 2023; 8:282-293. [PMID: 36970372 PMCID: PMC10031284 DOI: 10.1016/j.ncrna.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023] Open
Abstract
Non-coding RNAs (ncRNAs), specifically long ncRNAs (lncRNAs), regulate cellular processes by affecting gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging evidence indicates that pathogenic microbes dysregulate the expression of host lncRNAs to suppress cellular defense mechanisms and promote survival. To understand whether the pathogenic human mycoplasmas dysregulate host lncRNAs, we infected HeLa cells with Mycoplasma genitalium (Mg) and Mycoplasma penumoniae (Mp) and assessed the expression of lncRNAs by directional RNA-seq analysis. HeLa cells infected with these species showed up-and-down regulation of lncRNAs expression, indicating that both species can modulate host lncRNAs. However, the number of upregulated (200 for Mg and 112 for Mp) and downregulated lncRNAs (30 for Mg and 62 for Mp) differ widely between these two species. GREAT analysis of the noncoding regions associated with differentially expressed lncRNAs showed that Mg and Mp regulate a discrete set of lncRNA plausibly related to transcription, metabolism, and inflammation. Further, signaling network analysis of the differentially regulated lncRNAs exhibited diverse pathways such as neurodegeneration, NOD-like receptor signaling, MAPK signaling, p53 signaling, and PI3K signaling, suggesting that both species primarily target signaling mechanisms. Overall, the study's results suggest that Mg and Mp modulate lncRNAs to promote their survival within the host but in distinct manners.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A. Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
- Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA
| |
Collapse
|
3
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
4
|
Liao Y, Deng X, Peng K, Dai P, Luo D, Liu P, Chen L, Li X, Ye Y, Zeng Y. Identification of histone H2B as a potential receptor for Mycoplasma genitalium protein of adhesion. Pathog Dis 2021; 79:6424900. [PMID: 34755841 DOI: 10.1093/femspd/ftab053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma genitalium, the smallest prokaryotic microorganism capable of independent replication, is increasingly recognized as a sexually transmitted pathogen. M. genitalium protein of adhesion (MgPa) plays a pivotal role in the process of M. genitalium adhesion to host cells. We previously identified cyclophilin A as a cellular receptor of MgPa using the virus overlay protein binding assay (VOPBA) together with liquid chromatography-mass spectrometry (LC-MS). In the current study, we have evaluated H2B as an alternative cellular receptor for MgPa since H2B was assigned the second higher score as a potential binding partner of MgPa in the VOPBA and LC-MS screen. It was found that recombinant MgPa specifically bind to H2B both in the SV-HUC-1 cell membrane and in form of a recombinant protein. H2B was detected throughout the SV-HUC-1 cells, including the cytoplasmic membrane, cytosol and nucleus. Importantly, H2B partially inhibited the adhesion of M. genitalium to SV-HUC-1 cells. Finally, H2B was both co-precipitated with recombinant MgPa and co-localized with M. genitalium and recombinant MgPa in SV-HUC-1 cells. The above observations suggest that H2B may act as a potential cellular receptor of MgPa for mediating M. genitalium adhesion to host cells.
Collapse
Affiliation(s)
- Yating Liao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Xiangying Deng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Kailan Peng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Pei Dai
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Dan Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Peng Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Xia Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, P.R. China.,Department of Dermatology and Venereology, The First Affiliated Hospital, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| |
Collapse
|
5
|
Ramos EI, Das K, Harrison AL, Garcia A, Gadad SS, Dhandayuthapani S. Mycoplasma genitalium and M. pneumoniae Regulate a Distinct Set of Protein-Coding Genes in Epithelial Cells. Front Immunol 2021; 12:738431. [PMID: 34707609 PMCID: PMC8544821 DOI: 10.3389/fimmu.2021.738431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mycoplasma genitalium and M. pneumoniae are two significant mycoplasmas that infect the urogenital and respiratory tracts of humans. Despite distinct tissue tropisms, they both have similar pathogenic mechanisms and infect/invade epithelial cells in the respective regions and persist within these cells. However, the pathogenic mechanisms of these species in terms of bacterium-host interactions are poorly understood. To gain insights on this, we infected HeLa cells independently with M. genitalium and M. pneumoniae and assessed gene expression by whole transcriptome sequencing (RNA-seq) approach. The results revealed that HeLa cells respond to M. genitalium and M. pneumoniae differently by regulating various protein-coding genes. Though there is a significant overlap between the genes regulated by these species, many of the differentially expressed genes were specific to each species. KEGG pathway and signaling network analyses revealed that the genes specific to M. genitalium are more related to cellular processes. In contrast, the genes specific to M. pneumoniae infection are correlated with immune response and inflammation, possibly suggesting that M. pneumoniae has some inherent ability to modulate host immune pathways.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L. Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Anissa Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, United States
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
6
|
Martínez-Torró C, Torres-Puig S, Marcos-Silva M, Huguet-Ramón M, Muñoz-Navarro C, Lluch-Senar M, Serrano L, Querol E, Piñol J, Pich OQ. Functional Characterization of the Cell Division Gene Cluster of the Wall-less Bacterium Mycoplasma genitalium. Front Microbiol 2021; 12:695572. [PMID: 34589065 PMCID: PMC8475190 DOI: 10.3389/fmicb.2021.695572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022] Open
Abstract
It is well-established that FtsZ drives peptidoglycan synthesis at the division site in walled bacteria. However, the function and conservation of FtsZ in wall-less prokaryotes such as mycoplasmas are less clear. In the genome-reduced bacterium Mycoplasma genitalium, the cell division gene cluster is limited to four genes: mraZ, mraW, MG_223, and ftsZ. In a previous study, we demonstrated that ftsZ was dispensable for growth of M. genitalium under laboratory culture conditions. Herein, we show that the entire cell division gene cluster of M. genitalium is non-essential for growth in vitro. Our analyses indicate that loss of the mraZ gene alone is more detrimental for growth of M. genitalium than deletion of ftsZ or the entire cell division gene cluster. Transcriptional analysis revealed a marked upregulation of ftsZ in the mraZ mutant. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics confirmed the overexpression of FtsZ in MraZ-deprived cells. Of note, we found that ftsZ expression was upregulated in non-adherent cells of M. genitalium, which arise spontaneously at relatively high rates. Single cell analysis using fluorescent markers showed that FtsZ localization varied throughout the cell cycle of M. genitalium in a coordinated manner with the chromosome and the terminal organelle (TMO). In addition, our results indicate a possible role for the RNA methyltransferase MraW in the regulation of FtsZ expression at the post-transcriptional level. Altogether, this study provides an extensive characterization of the cell division gene cluster of M. genitalium and demonstrates the existence of regulatory elements controlling FtsZ expression at the temporal and spatial level in mycoplasmas.
Collapse
Affiliation(s)
- Carlos Martínez-Torró
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Torres-Puig
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Marcos-Silva
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Huguet-Ramón
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Muñoz-Navarro
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oscar Q. Pich
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Institut d’Investigació i Innovació Parc Taulí (I3PT), Hospital Universitari Parc Taulí, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
7
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
8
|
Roachford O, Nelson KE, Mohapatra BR. Virulence and molecular adaptation of human urogenital mycoplasmas: a review. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1607556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Orville Roachford
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | | | - Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| |
Collapse
|
9
|
Seybert A, Gonzalez-Gonzalez L, Scheffer MP, Lluch-Senar M, Mariscal AM, Querol E, Matthaeus F, Piñol J, Frangakis AS. Cryo-electron tomography analyses of terminal organelle mutants suggest the motility mechanism of Mycoplasma genitalium. Mol Microbiol 2018; 108:319-329. [PMID: 29470847 DOI: 10.1111/mmi.13938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron-dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double-spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.
Collapse
Affiliation(s)
- Anja Seybert
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Luis Gonzalez-Gonzalez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Maria Lluch-Senar
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ana M Mariscal
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Franziska Matthaeus
- Faculty of Biological Sciences & FIAS, Goethe University Frankfurt, Ruth-Moufang-Straße 1, Frankfurt 60438, Germany
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
10
|
Martinelli L, García-Morales L, Querol E, Piñol J, Fita I, Calisto BM. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium. PLoS Pathog 2016; 12:e1005533. [PMID: 27082435 PMCID: PMC4833410 DOI: 10.1371/journal.ppat.1005533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle.
Collapse
Affiliation(s)
- Luca Martinelli
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Luis García-Morales
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Bárbara M. Calisto
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220, Grenoble, France and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
11
|
García-Morales L, González-González L, Querol E, Piñol J. A minimized motile machinery forMycoplasma genitalium. Mol Microbiol 2016; 100:125-38. [DOI: 10.1111/mmi.13305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Luis García-Morales
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Luis González-González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | | | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| |
Collapse
|
12
|
Veselenak RL, Miller AL, Milligan GN, Bourne N, Pyles RB. Development and utilization of a custom PCR array workflow: analysis of gene expression in mycoplasma genitalium and guinea pig (Cavia porcellus). Mol Biotechnol 2015; 57:172-83. [PMID: 25358686 PMCID: PMC4298676 DOI: 10.1007/s12033-014-9813-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcriptome analysis is a powerful tool for evaluating molecular pathways central to maturation of specific biological processes and disease states. Recently, PCR-based arrays have supplemented microarray and RNA-seq methodologies for studying changes in gene expression levels. PCR arrays are a more cost efficient alternative, however commercially available assemblies are generally limited to only a few more widely researched species (e.g., rat, human, and mouse). Consequently, the investigation of emerging or under-studied species is hindered until such assays are created. To address this need, we present data documenting the success of a developed workflow with enhanced potential to create and validate novel RT-PCR arrays for underrepresented species with whole or partial genome annotation. Utilizing this enhanced workflow, we have achieved a success rate of 80 % for first-round designs for over 400 primer pairs. Of these, ~160 distinct targets were sequence confirmed. Proof of concept studies using two unique arrays, one targeting the pathogenic bacterium Mycoplasma genitalium and the other specific for the guinea pig (Cavia porcellus), allowed us to identify significant (P < 0.05) changes in mRNA expression validated by subsequent qPCR. This flexible and adaptable platform provides a valuable and cost-effective alternative for gene expression analysis.
Collapse
Affiliation(s)
- Ronald L Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0436, USA
| | | | | | | | | |
Collapse
|
13
|
Torres-Puig S, Broto A, Querol E, Piñol J, Pich OQ. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium. Nucleic Acids Res 2015; 43:4923-36. [PMID: 25925568 PMCID: PMC4446450 DOI: 10.1093/nar/gkv422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 04/19/2015] [Indexed: 11/22/2022] Open
Abstract
The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N18/19-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved −10 and −35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alicia Broto
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Burgos R, Totten PA. MG428 is a novel positive regulator of recombination that triggers mgpB and mgpC gene variation in Mycoplasma genitalium. Mol Microbiol 2014; 94:290-306. [PMID: 25138908 DOI: 10.1111/mmi.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 01/01/2023]
Abstract
The human pathogen Mycoplasma genitalium employs homologous recombination to generate antigenic diversity in the immunodominant MgpB and MgpC proteins. Only recently, some of the molecular factors involved in this process have been characterized, but nothing is known about its regulation. Here, we show that M. genitalium expresses N-terminally truncated RecA isoforms via alternative translation initiation, but only the full-length protein is essential for gene variation. We also demonstrate that overexpression of MG428 positively regulates the expression of recombination genes, including recA, ruvA, ruvB and ORF2, a gene of unknown function co-transcribed with ruvAB. The co-ordinated induction of these genes correlated with an increase of mgpBC gene variation. In contrast, cells lacking MG428 were unable to generate variants despite expressing normal levels of RecA. Similarly, deletion analyses of the recA upstream region defined sequences required for gene variation without abolishing RecA expression. The requirement of these sequences is consistent with the presence of promoter elements associated with MG428-dependent recA induction. Sequences upstream of recA also influence the relative abundance of RecA isoforms, possibly through translational regulation. Overall, these results suggest that MG428 is a positive regulator of recombination and that precise control of recA expression is required to initiate mgpBC variation.
Collapse
Affiliation(s)
- Raul Burgos
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, WA, 98104, USA
| | | |
Collapse
|
15
|
Abstract
In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems.
Collapse
|
16
|
Chernov VM, Mouzykantov AA, Baranova NB, Medvedeva ES, Grygorieva TY, Trushin MV, Vishnyakov IE, Sabantsev AV, Borchsenius SN, Chernova OA. Extracellular membrane vesicles secreted by mycoplasma Acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics 2014; 110:117-28. [PMID: 25088052 DOI: 10.1016/j.jprot.2014.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/18/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Mycoplasmas (class Mollicutes), the smallest prokaryotes capable of self-replication, as well as Archaea, Gram-positive and Gram-negative bacteria constitutively produce extracellular vesicles (EVs). However, little is known regarding the content and functions of mycoplasma vesicles. Here, we present for the first time a proteomics-based characterisation of extracellular membrane vesicles from Acholeplasma laidlawii PG8. The ubiquitous mycoplasma is widespread in nature, found in humans, animals and plants, and is the causative agent of phytomycoplasmoses and the predominant contaminant of cell cultures. Taking a proteomics approach using LC-ESI-MS/MS, we identified 97 proteins. Analysis of the identified proteins indicated that A. laidlawii-derived EVs are enriched in virulence proteins that may play critical roles in mycoplasma-induced pathogenesis. Our data will help to elucidate the functions of mycoplasma-derived EVs and to develop effective methods to control infections and contaminations of cell cultures by mycoplasmas. In the present study, we have documented for the first time the proteins in EVs secreted by mycoplasma vesicular proteins identified in this study are likely involved in the adaptation of bacteria to stressors, survival in microbial communities and pathogen-host interactions. These findings suggest that the secretion of EVs is an evolutionally conserved and universal process that occurs in organisms from the simplest wall-less bacteria to complex organisms and indicate the necessity of developing new approaches to control infects.
Collapse
Affiliation(s)
- Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia; Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Natalia B Baranova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Elena S Medvedeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Tatiana Yu Grygorieva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia
| | - Maxim V Trushin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia; Kazan (Volga Region) Federal University, Kazan, Russia.
| | | | - Anton V Sabantsev
- Institute for Nanobiotechnologies, Saint Petersburg State Polytechnical University, St. Petersburg, Russia
| | | | - Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Centre of the Russian Academy of Sciences, Kazan, Russia; Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
17
|
Mycoplasma genitalium promotes epithelial crossing and peripheral blood mononuclear cell infection by HIV-1. Int J Infect Dis 2014; 23:31-8. [PMID: 24661929 DOI: 10.1016/j.ijid.2013.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/18/2013] [Accepted: 11/30/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Mycoplasma genitalium co-infection in HIV-infected individuals has been reported to increase the shedding of HIV in the urogenital region of females. To better understand this relationship, we investigated the influence of M. genitalium on the transmission and replication of HIV using an in vitro model. METHODS The Transwell co-culture system was employed to assess the crossing of an endocervical cell barrier by HIV-1. Immunocytochemistry and confocal microscopy were used to assess the distribution of the nectin-1 molecule on M. genitalium-infected epithelial cells of the End1/E6E7 endocervical cell line, grown as monolayers in the insert wells. Peripheral blood mononuclear cells (PBMC) were cultured in the bottom wells to assess the effects of M. genitalium, passing through the semipermeable culturing membrane, on subsequent HIV infection of susceptible target cells. RESULTS Infection of the endocervical cells with the adhesion-positive M. genitalium G37 strain (wild-type) significantly elevated the passage of HIV across the epithelial cell barrier relative to HIV transfer across endocervical cells infected with the adhesion-negative M. genitalium JB1 strain. Immunostaining of the M. genitalium-G37-infected epithelial cells disclosed capping and internalization of the junctional regulatory protein nectin-1, in association with reduced transepithelial resistance (TER) in the cell monolayer. When PBMC were cultured beneath insert wells containing M. genitalium-G37-infected epithelial cell monolayers, we observed significantly enhanced infectivity and replication of HIV added afterward to the cultures. CONCLUSIONS M. genitalium influences events on both sides of a cultured mucosal epithelial monolayer: (1) by infecting the epithelial cells and reducing the integrity of the barrier itself, and (2) by activating HIV target cells below it, thereby promoting HIV infection and progeny virus production.
Collapse
|
18
|
Characterization of the operon encoding the Holliday junction helicase RuvAB from Mycoplasma genitalium and its role in mgpB and mgpC gene variation. J Bacteriol 2014; 196:1608-18. [PMID: 24532771 DOI: 10.1128/jb.01385-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycoplasma genitalium is an emerging sexually transmitted pathogen associated with reproductive tract disease in men and women, and it can persist for months to years despite the development of a robust antibody response. Mechanisms that may contribute to persistence in vivo include phase and antigenic variation of the MgpB and MgpC adhesins. These processes occur by segmental recombination between discrete variable regions within mgpB and mgpC and multiple archived donor sequences termed MgPa repeats (MgPars). The molecular factors governing mgpB and mgpC variation are poorly understood and obscured by the paucity of recombination genes conserved in the M. genitalium genome. Recently, we demonstrated the requirement for RecA using a quantitative PCR (qPCR) assay developed to measure recombination between the mgpB and mgpC genes and MgPars. Here, we expand these studies by examining the roles of M. genitalium ruvA and ruvB homologs. Deletion of ruvA and ruvB impaired the ability to generate mgpB and mgpC phase and sequence variants, and these deficiencies could be complemented with wild-type copies, including the ruvA gene from Mycoplasma pneumoniae. In contrast, ruvA and ruvB deletions did not affect the sensitivity to UV irradiation, reinforcing our previous findings that the recombinational repair pathway plays a minor role in M. genitalium. Reverse transcription-PCR (RT-PCR) and primer extension analyses also revealed a complex transcriptional organization of the RuvAB system of M. genitalium, which is cotranscribed with two novel open reading frames (ORFs) (termed ORF1 and ORF2 herein) conserved only in M. pneumoniae. These findings suggest that these novel ORFs may play a role in recombination in these two closely related bacteria.
Collapse
|
19
|
García-Morales L, González-González L, Costa M, Querol E, Piñol J. Quantitative assessment of Mycoplasma hemadsorption activity by flow cytometry. PLoS One 2014; 9:e87500. [PMID: 24498118 PMCID: PMC3907496 DOI: 10.1371/journal.pone.0087500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022] Open
Abstract
A number of adherent mycoplasmas have developed highly complex polar structures that are involved in diverse aspects of the biology of these microorganisms and play a key role as virulence factors by promoting adhesion to host cells in the first stages of infection. Attachment activity of mycoplasma cells has been traditionally investigated by determining their hemadsorption ability to red blood cells and it is a distinctive trait widely examined when characterizing the different mycoplasma species. Despite the fact that protocols to qualitatively determine the hemadsorption or hemagglutination of mycoplasmas are straightforward, current methods when investigating hemadsorption at the quantitative level are expensive and poorly reproducible. By using flow cytometry, we have developed a procedure to quantify rapidly and accurately the hemadsorption activity of mycoplasmas in the presence of SYBR Green I, a vital fluorochrome that stains nucleic acids, allowing to resolve erythrocyte and mycoplasma cells by their different size and fluorescence. This method is very reproducible and permits the kinetic analysis of the obtained data and a precise hemadsorption quantification based on standard binding parameters such as the dissociation constant Kd. The procedure we developed could be easily implemented in a standardized assay to test the hemadsorption activity of the growing number of clinical isolates and mutant strains of different mycoplasma species, providing valuable data about the virulence of these microorganisms.
Collapse
Affiliation(s)
- Luis García-Morales
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Luis González-González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Manuela Costa
- Servei de Cultius Cel·lulars, Producció d’Anticossos i Citometria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
20
|
Wood GE, Iverson-Cabral SL, Patton DL, Cummings PK, Cosgrove Sweeney YT, Totten PA. Persistence, immune response, and antigenic variation of Mycoplasma genitalium in an experimentally infected pig-tailed macaque (Macaca nemestrina). Infect Immun 2013; 81:2938-51. [PMID: 23732170 PMCID: PMC3719596 DOI: 10.1128/iai.01322-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma genitalium is a sexually transmitted pathogen associated with several acute and chronic reproductive tract disease syndromes in men and women. To evaluate the suitability of a pig-tailed macaque model of M. genitalium infection, we inoculated a pilot animal with M. genitalium strain G37 in the uterine cervix and in salpingeal pockets generated by transplanting autologous Fallopian tube tissue subcutaneously. Viable organisms were recovered throughout the 8-week experiment in cervicovaginal specimens and up to 2 weeks postinfection in salpingeal pockets. Humoral and cervicovaginal antibodies reacting to MgpB were induced postinoculation and persisted throughout the infection. The immunodominance of the MgpB adhesin and the accumulation of mgpB sequence diversity previously observed in persistent human infections prompted us to evaluate sequence variation in this animal model. We found that after 8 weeks of infection, sequences within mgpB variable region B were replaced by novel sequences generated by reciprocal recombination with an archived variant sequence located elsewhere on the chromosome. In contrast, mgpB region B of the same inoculum propagated for 8 weeks in vitro remained unchanged. Notably, serum IgG reacted strongly with a recombinant protein spanning MgpB region B of the inoculum, while reactivity to a recombinant protein representing the week 8 variant was reduced, suggesting that antibodies were involved in the clearance of bacteria expressing the original infecting sequence. Together these results suggest that the pig-tailed macaque is a suitable model to study M. genitalium pathogenesis, antibody-mediated selection of antigenic variants in vivo, and immune escape.
Collapse
Affiliation(s)
| | | | - Dorothy L. Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Peter K. Cummings
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | | | - Patricia A. Totten
- Department of Medicine, Division of Infectious Diseases,
- Global Health, Pathobiology Interdisciplinary Program,
| |
Collapse
|
21
|
Calisto BM, Broto A, Martinelli L, Querol E, Piñol J, Fita I. The EAGR box structure: a motif involved in mycoplasma motility. Mol Microbiol 2012; 86:382-93. [DOI: 10.1111/j.1365-2958.2012.08200.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Bárbara M. Calisto
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona); Parc Científic de Barcelona; Baldiri Reixac 10; 08028; Barcelona; Spain
| | - Alícia Broto
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Luca Martinelli
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona); Parc Científic de Barcelona; Baldiri Reixac 10; 08028; Barcelona; Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra; Barcelona; Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona); Parc Científic de Barcelona; Baldiri Reixac 10; 08028; Barcelona; Spain
| |
Collapse
|
22
|
Das K, De la Garza G, Maffi S, Saikolappan S, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS One 2012; 7:e36247. [PMID: 22558404 PMCID: PMC3340341 DOI: 10.1371/journal.pone.0036247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/29/2012] [Indexed: 02/02/2023] Open
Abstract
Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells.
Collapse
Affiliation(s)
- Kishore Das
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Georgina De la Garza
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Shivani Maffi
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Sankaralingam Saikolappan
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Subramanian Dhandayuthapani
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| |
Collapse
|
23
|
Mycoplasma genitalium: from Chrysalis to multicolored butterfly. Clin Microbiol Rev 2011; 24:498-514. [PMID: 21734246 DOI: 10.1128/cmr.00006-11] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The history, replication, genetics, characteristics (both biological and physical), and factors involved in the pathogenesis of Mycoplasma genitalium are presented. The latter factors include adhesion, the influence of hormones, motility, possible toxin production, and immunological responses. The preferred site of colonization, together with current detection procedures, mainly by PCR technology, is discussed. The relationships between M. genitalium and various diseases are highlighted. These diseases include acute and chronic nongonococcal urethritis, balanoposthitis, chronic prostatitis, and acute epididymitis in men and urethritis, bacterial vaginosis, vaginitis, cervicitis, pelvic inflammatory disease, and reproductive disease in women. A causative relationship, or otherwise strong association, between several of these diseases and M. genitalium is apparent, and the extent of this, on a subjective basis, is presented; also provided is a comparison between M. genitalium and two other genital tract-orientated mollicutes, namely, Mycoplasma hominis, the first mycoplasma of human origin to be discovered, and Ureaplasma species. Also discussed is the relationship between M. genitalium and infertility and also arthritis in both men and women, as is infection in homosexual and immunodeficient patients. Decreased immunity, as in HIV infections, may enhance mycoplasmal detection and increase disease severity. Finally, aspects of the antimicrobial susceptibility and resistance of M. genitalium, together with the treatment and possible prevention of mycoplasmal disease, are discussed.
Collapse
|
24
|
Lluch-Senar M, Querol E, Piñol J. Cell division in a minimal bacterium in the absence of ftsZ. Mol Microbiol 2010; 78:278-89. [PMID: 20735775 DOI: 10.1111/j.1365-2958.2010.07306.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycoplasma genomes exhibit an impressively low amount of genes involved in cell division and some species even lack the ftsZ gene, which is found widespread in the microbial world and is considered essential for cell division by binary fission. We constructed a Mycoplasma genitalium ftsZ null mutant by gene replacement to investigate the role of this gene and the presence of alternative cell division mechanisms in this minimal bacterium. Our results demonstrate that ftsZ is non-essential for cell growth and reveal that, in the absence of the FtsZ protein, M. genitalium can manage feasible cell divisions and cytokinesis using the force generated by its motile machinery. This is an alternative mechanism, completely independent of the FtsZ protein, to perform cell division by binary fission in a microorganism. We also propose that the mycoplasma cytoskeleton, a complex network of proteins involved in many aspects of the biology of these microorganisms, may have taken over the function of many genes involved in cell division, allowing their loss in the regressive evolution of the streamlined mycoplasma genomes.
Collapse
Affiliation(s)
- Maria Lluch-Senar
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
25
|
Pich OQ, Burgos R, Querol E, Piñol J. P110 and P140 cytadherence-related proteins are negative effectors of terminal organelle duplication in Mycoplasma genitalium. PLoS One 2009; 4:e7452. [PMID: 19829712 PMCID: PMC2759538 DOI: 10.1371/journal.pone.0007452] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 09/22/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The terminal organelle is a complex structure involved in many aspects of the biology of mycoplasmas such as cell adherence, motility or cell division. Mycoplasma genitalium cells display a single terminal organelle and duplicate this structure prior to cytokinesis in a coordinated manner with the cell division process. Despite the significance of the terminal organelle in mycoplasma virulence, little is known about the mechanisms governing its duplication. METHODOLOGY/PRINCIPAL FINDINGS In this study we describe the isolation of a mutant, named T192, with a transposon insertion close to the 3' end of the mg192 gene encoding for P110 adhesin. This mutant shows a truncated P110, low levels of P140 and P110 adhesins, a large number of non-motile cells and a high frequency of new terminal organelle formation. Further analyses revealed that the high rates of new terminal organelle formation in T192 cells are a direct consequence of the reduced levels of P110 and P140 rather than to the expression of a truncated P110. Consistently, the phenotype of the T192 mutant was successfully complemented by the reintroduction of the mg192 WT allele which restored the levels of P110 and P140 to those of the WT strain. Quantification of DAPI-stained DNA also showed that the increase in the number of terminal organelles in T192 cells is not accompanied by a higher DNA content, indicating that terminal organelle duplication does not trigger DNA replication in mycoplasmas. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the existence of a mechanism regulating terminal organelle duplication in M. genitalium and strongly suggest the implication of P110 and P140 adhesins in this mechanism.
Collapse
Affiliation(s)
- Oscar Q. Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Burgos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
McGowin CL, Popov VL, Pyles RB. Intracellular Mycoplasma genitalium infection of human vaginal and cervical epithelial cells elicits distinct patterns of inflammatory cytokine secretion and provides a possible survival niche against macrophage-mediated killing. BMC Microbiol 2009; 9:139. [PMID: 19602269 PMCID: PMC2717097 DOI: 10.1186/1471-2180-9-139] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/14/2009] [Indexed: 11/21/2022] Open
Abstract
Background Mycoplasma genitalium is an emerging sexually transmitted pathogen that has been associated with significant reproductive tract inflammatory syndromes in women. In addition, the strong association between severity of M. genitalium infection and Human Immunodeficiency Virus type 1 (HIV-1) shedding from the cervix suggests that innate responses to M. genitalium may influence pathogenesis of other sexually transmitted infections. Epithelial cells (ECs) of the reproductive mucosa are the first cells contacted by sexually transmitted pathogens. Therefore, we first characterized the dynamics of intracellular and extracellular localization and resultant innate immune responses from human vaginal, ecto- and endocervical ECs to M. genitalium type strain G37 and a low-pass contemporary isolate, M2300. Results Both M. genitalium strains rapidly attached to vaginal and cervical ECs by 2 h post-infection (PI). By 3 h PI, M. genitalium organisms also were found in intracellular membrane-bound vacuoles of which approximately 60% were adjacent to the nucleus. Egress of M. genitalium from infected ECs into the culture supernatant was observed but, after invasion, viable intracellular titers were significantly higher than extracellular titers at 24 and 48 h PI. All of the tested cell types responded by secreting significant levels of pro-inflammatory cytokines and chemokines in a pattern consistent with recruitment and stimulation of monocytes and macrophages. Based on the elaborated cytokines, we next investigated the cellular interaction of M. genitalium with human monocyte-derived macrophages and characterized the resultant cytokine responses. Macrophages rapidly phagocytosed M. genitalium resulting in a loss of bacterial viability and a potent pro-inflammatory response that included significant secretion of IL-6 and other cytokines associated with enhanced HIV-1 replication. The macrophage-stimulating capacity of M. genitalium was independent of bacterial viability but was sensitive to heat denaturation and proteinase-K digestion suggesting that M. genitalium protein components are the predominant mediators of inflammation. Conclusion Collectively, the data indicated that human genital ECs were susceptible and immunologically responsive to M. genitalium infection that likely induced cellular immune responses. Although macrophage phagocytosis was an effective method for M. genitalium killing, intracellular localization within vaginal and cervical ECs may provide M. genitalium a survival niche and protection from cellular immune responses thereby facilitating the establishment and maintenance of reproductive tract infection.
Collapse
Affiliation(s)
- Chris L McGowin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | | | |
Collapse
|
27
|
Chalker VJ, Jordan K, Ali T, Ison C. Real-time PCR detection of the mg219 gene of unknown function of Mycoplasma genitalium in men with and without non-gonococcal urethritis and their female partners in England. J Med Microbiol 2009; 58:895-899. [DOI: 10.1099/jmm.0.009977-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Real-time PCR was employed to detect a region of the Mycoplasma genitalium
mg219 gene, a gene of unknown function, in clinical samples. Amplification of DNA and signal production from 15 other species of human mycoplasmas and 14 other bacteria and viruses did not occur. Using a panel of 208 genital and rectal samples, the sensitivity when compared to the modified mgpa gene (encoding the major surface protein MgPa) real-time PCR assay was found to be 100 % and the specificity of the assay 99.5 % with a positive predictive value of 80 % and a negative predictive value of 100 %. The mg219 gene was found to be in all strains of M. genitalium and was highly conserved. M. genitalium was detected in 3.9 % (11/280, 95 % CI 2.1–6.9) of all male specimens, in 7.7 % (10/130, 95 % CI 4.1–13.7) of patients with non-gonococcal urethritis (NGU) and in 0.7 % (1/150, 95 % CI <0.01–4.1) of patients without urethritis. The presence of M. genitalium was significantly associated with NGU (P ≤0.01; 95 % Cl 0.88–0.98) and non-chlamydial-non-gonococcal urethritis (P=0.0005; 95 % Cl 0.84–0.97).
Collapse
Affiliation(s)
- Victoria J. Chalker
- Sexually Transmitted Bacteria Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Karen Jordan
- Microbiology Laboratory, Northampton General Hospital Trust, Billing Road, Northampton NN1 5BD, UK
| | - Tahir Ali
- Sexually Transmitted Bacteria Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Cathy Ison
- Sexually Transmitted Bacteria Reference Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
28
|
Boonmee A, Ruppert T, Herrmann R. The gene mpn310 (hmw2) from Mycoplasma pneumoniae encodes two proteins, HMW2 and HMW2-s, which differ in size but use the same reading frame. FEMS Microbiol Lett 2008; 290:174-81. [DOI: 10.1111/j.1574-6968.2008.01422.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Burgos R, Pich OQ, Querol E, Piñol J. Deletion of the Mycoplasma genitalium MG_217 gene modifies cell gliding behaviour by altering terminal organelle curvature. Mol Microbiol 2008; 69:1029-40. [PMID: 18573175 DOI: 10.1111/j.1365-2958.2008.06343.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Motility is often a virulence factor of pathogenic bacteria. Although recent works have identified genes involved in gliding motility of mycoplasmas, little is known about the mechanisms governing the cell gliding behaviour. Here, we report that Mycoplasma genitalium MG217 is a novel protein involved in the gliding apparatus of this organism and it is, at least, one of the genes that are directing cells to move in narrow circles when they glide. In the absence of MG_217 gene, cells are still able to glide but they mainly move drawing erratic or wide circular paths. This change in the gliding behaviour correlates with a rearrangement in the terminal organelle disposition, suggesting that the terminal organelle operates as a guide to steer the mycoplasma cell in a specific direction. Immunogold labelling reveals that MG217 protein is located intracellular at the distal end of the terminal organelle, between the cell membrane and the terminal button. Such location is consistent with the idea that MG217 could act as a modulator of the terminal organelle curvature, allowing cells to move in specific directions.
Collapse
Affiliation(s)
- Raul Burgos
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|