1
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
García-Gutiérrez C, Aparicio T, Torres-Sánchez L, Martínez-García E, de Lorenzo V, Villar CJ, Lombó F. Multifunctional SEVA shuttle vectors for actinomycetes and Gram-negative bacteria. Microbiologyopen 2020; 9:1135-1149. [PMID: 32170856 PMCID: PMC7294301 DOI: 10.1002/mbo3.1024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 11/10/2022] Open
Abstract
Actinomycetales, such as the genus Streptomyces, are well‐known cell factories employed to produce a wide variety of secondary metabolites for industrial use. However, not only is the genetic engineering of Streptomyces more complicated and tedious than other model laboratory species, such as Escherichia coli, there is also a considerable lack of genetic tools, hindering its adoption as a common chassis for synthetic biology. In this work, 23 novel shuttle vectors are presented that follow the canonical SEVA (Standard European Vector Architecture) common architecture with the goal of increasing the genetic toolbox repertoire for Streptomyces and other actinomycetes. The ORI module of these plasmids is composed of the combination of two origins of replication, one for Gram‐negative bacteria and the other for Streptomyces, a Gram‐positive bacteria. Origins of replication have been included in the collection for integrative, low‐copy number, and medium‐to‐high‐copy number vectors for Streptomyces. Also, a new selection marker has been developed that confers resistance to apramycin. The functionality of these plasmids was tested via the heterologous expression of GFP and the heterologous production of the plant flavonoid apigenin in Streptomyces albus J1074, with successful results in both cases, therefore expanding the current repertoire of genetic manipulation tools in Streptomyces species.
Collapse
Affiliation(s)
- Coral García-Gutiérrez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Tomás Aparicio
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Lucía Torres-Sánchez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | | | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| |
Collapse
|
3
|
Musiol-Kroll EM, Tocchetti A, Sosio M, Stegmann E. Challenges and advances in genetic manipulation of filamentous actinomycetes - the remarkable producers of specialized metabolites. Nat Prod Rep 2019; 36:1351-1369. [PMID: 31517370 DOI: 10.1039/c9np00029a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to February 2019Actinomycetes are Gram positive bacteria of the phylum Actinobacteria. These organisms are one of the most important sources of structurally diverse, clinically used antibiotics and other valuable bioactive products, as well as biotechnologically relevant enzymes. Most strains were discovered by their ability to produce a given molecule and were often poorly characterized, physiologically and genetically. The development of genetic methods for Streptomyces and related filamentous actinomycetes has led to the successful manipulation of antibiotic biosynthesis to attain structural modification of microbial metabolites that would have been inaccessible by chemical means and improved production yields. Moreover, genome mining reveals that actinomycete genomes contain multiple biosynthetic gene clusters (BGCs), however only a few of them are expressed under standard laboratory conditions, leading to the production of the respective compound(s). Thus, to access and activate the so-called "silent" BGCs, to improve their biosynthetic potential and to discover novel natural products methodologies for genetic manipulation are required. Although different methods have been applied for many actinomycete strains, genetic engineering is still remaining very challenging for some "underexplored" and poorly characterized actinomycetes. This review summarizes the strategies developed to overcome the obstacles to genetic manipulation of actinomycetes and allowing thereby rational genetic engineering of this industrially relevant group of microorganisms. At the end of this review we give some tips to researchers with limited or no previous experience in genetic manipulation of actinomycetes. The article covers the most relevant literature published until February 2019.
Collapse
Affiliation(s)
- Ewa M Musiol-Kroll
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| | | | | | - Evi Stegmann
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
| |
Collapse
|
4
|
Kumelj T, Sulheim S, Wentzel A, Almaas E. Predicting Strain Engineering Strategies Using iKS1317: A Genome‐Scale Metabolic Model of
Streptomyces coelicolor. Biotechnol J 2019; 14:e1800180. [DOI: 10.1002/biot.201800180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 11/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tjaša Kumelj
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Snorre Sulheim
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- SINTEF IndustryDepartment of Biotechnology and NanomedicineTrondheimNorway
| | - Alexander Wentzel
- SINTEF IndustryDepartment of Biotechnology and NanomedicineTrondheimNorway
| | - Eivind Almaas
- Department of Biotechnology and Food ScienceNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- K.G. Jebsen Center for Genetic EpidemiologyNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
5
|
Grohmann E, Keller W, Muth G. Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Curr Top Microbiol Immunol 2017. [PMID: 29536357 DOI: 10.1007/978-3-319-75241-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, 13347, Berlin, Germany.
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed, University of Graz, 8010, Graz, Austria
| | - Günther Muth
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Conjugative DNA-transfer in Streptomyces, a mycelial organism. Plasmid 2016; 87-88:1-9. [PMID: 27687731 DOI: 10.1016/j.plasmid.2016.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 02/06/2023]
Abstract
Conjugative DNA-transfer in the Gram-positive mycelial soil bacterium Streptomyces, well known for the production of numerous antibiotics, is a unique process involving the transfer of a double-stranded DNA molecule. Apparently it does not depend on a type IV secretion system but resembles the segregation of chromosomes during bacterial cell division. A single plasmid-encoded protein, TraB, directs the transfer from the plasmid-carrying donor to the recipient. TraB is a FtsK-like DNA-translocase, which recognizes a specific plasmid sequence, clt, via interaction with specific 8-bp repeats. Chromosomal markers are mobilized by the recognition of clt-like sequences randomly distributed all over the Streptomyces chromosomes. Fluorescence microcopy with conjugative reporter plasmids and differentially labelled recipient strains revealed conjugative plasmid transfer at the lateral walls of the hyphae, when getting in contact. Subsequently, the newly transferred plasmids cross septal cross walls, which occur at irregular distances in the mycelium and invade the neighboring compartments, thus efficiently colonizing the recipient mycelium. This intramycelial plasmid spreading requires the DNA-translocase TraB and a complex of several Spd proteins. Inactivation of a single spd gene interferes with intramycelial plasmid spreading. The molecular function of the Spd proteins is widely unknown. Spd proteins of different plasmids are highly diverse, none showing sequence similarity to a functionally characterized protein. The integral membrane protein SpdB2 binds DNA, peptidoglycan and forms membrane pores in vivo and in vitro. Intramycelial plasmid spreading is an adaptation to the mycelial growth characteristics of Streptomyces and ensures the rapid dissemination of the plasmid within the recipient colony before the onset of sporulation.
Collapse
|
7
|
Bekker V, Dodd A, Brady D, Rumbold K. Tools for metabolic engineering in Streptomyces. Bioengineered 2015; 5:293-9. [PMID: 25482230 DOI: 10.4161/bioe.29935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the last few decades, Streptomycetes have shown to be a very important and adaptable group of bacteria for the production of various beneficial secondary metabolites. These secondary metabolites have been of great interest in academia and the pharmaceutical industries. To date, a vast variety of techniques and tools for metabolic engineering of relevant structural biosynthetic gene clusters have been developed. The main aim of this review is to summarize and discuss the published literature on tools for metabolic engineering of Streptomyces over the last decade. These strategies involve precursor engineering, structural and regulatory gene engineering, and the up or downregulation of genes, as well as genome shuffling and the use of genome scale metabolic models, which can reconstruct bacterial metabolic pathways to predict phenotypic changes and hence rationalize engineering strategies. These tools are continuously being developed to simplify the engineering strategies for this vital group of bacteria.
Collapse
Affiliation(s)
- Valerie Bekker
- a School of Molecular and Cell Biology; University of the Witwatersrand; Johannesburg, South Africa
| | | | | | | |
Collapse
|
8
|
Thoma L, Sepulveda E, Latus A, Muth G. The stability region of the Streptomyces lividans plasmid pIJ101 encodes a DNA-binding protein recognizing a highly conserved short palindromic sequence motif. Front Microbiol 2014; 5:499. [PMID: 25295034 PMCID: PMC4170104 DOI: 10.3389/fmicb.2014.00499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/04/2014] [Indexed: 11/23/2022] Open
Abstract
Conjugation is a driving force in the evolution and shaping of bacterial genomes. In antibiotic producing streptomycetes even small plasmids replicating via the rolling-circle mechanism are conjugative. Although they encode only genes involved in replication and transfer, the molecular function of most plasmid encoded proteins is unknown. In this work we show that the conjugative plasmid pIJ101 encodes an overlooked protein, SpdA2. We show that SpdA2 is a DNA binding protein which specifically recognizes a palindromic DNA sequence (sps). sps is localized within the spdA2 coding region and highly conserved in many Streptomyces plasmids. Elimination of the palindrome or deletion of spdA2 in plasmid pIJ303 did not interfere with conjugative plasmid transfer or pock formation, but affected segregational stability.
Collapse
Affiliation(s)
- Lina Thoma
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Eberhard Karls Universität Tübingen Tübingen, Germany
| | - Edgardo Sepulveda
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Eberhard Karls Universität Tübingen Tübingen, Germany
| | - Annette Latus
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Eberhard Karls Universität Tübingen Tübingen, Germany
| | - Günther Muth
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen IMIT, Eberhard Karls Universität Tübingen Tübingen, Germany
| |
Collapse
|
9
|
Challis GL. Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 2013; 41:219-32. [PMID: 24322202 DOI: 10.1007/s10295-013-1383-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Abstract
Streptomyces, and related genera of Actinobacteria, are renowned for their ability to produce antibiotics and other bioactive natural products with a wide range of applications in medicine and agriculture. Streptomyces coelicolor A3(2) is a model organism that has been used for more than five decades to study the genetic and biochemical basis for the production of bioactive metabolites. In 2002, the complete genome sequence of S. coelicolor was published. This greatly accelerated progress in understanding the biosynthesis of metabolites known or suspected to be produced by S. coelicolor and revealed that streptomycetes have far greater potential to produce bioactive natural products than suggested by classical bioassay-guided isolation studies. In this article, efforts to exploit the S. coelicolor genome sequence for the discovery of novel natural products and biosynthetic pathways are summarized.
Collapse
Affiliation(s)
- Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK,
| |
Collapse
|
10
|
Chen Y, Tan H, Qin Z. Characterization of a replication locus and formation of a higher-order complex between RepA protein and two inverted repeats in Streptomyces plasmid pSV1. FEMS Microbiol Lett 2013; 349:144-52. [PMID: 24152230 DOI: 10.1111/1574-6968.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
We identified the minimal locus of 163-kb plasmid pSV1 of Streptomyces violaceoruber for the replication in S. lividans. This locus comprised a repA gene and an upstream 407-bp sequence containing two inverted repeats (IR-III and IR-IV) within an iteron, an AT-rich region and a 300-bp noncoding sequence (NCS). RepA protein bound specifically to a 94-bp sequence covering the intact IR-III and IR-IV to form multimers of DNA/protein complexes, but was unable to bind specifically to the NCS and the promoter of repA gene. Interestingly, this 'bound' region also leaves eight 1-bp 'unbound' spacers at 7-11-9-11-9-11-9-11-8-bp intervals. RepA protein-protein interaction could form dimers or trimers in vitro. These results suggest that a higher-order complex between pSV1 RepA protein and the long inverted repeats may be formed during the initiation of plasmid replication.
Collapse
Affiliation(s)
- Yalan Chen
- Key laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
11
|
Peng S, Zeng A, Zhong L, Zhang R, Zhou M, Cheng Q, Zhao L, Wang T, Tan H, Qin Z. Three functional replication origins of the linear and artificially circularized plasmid SCP1 of Streptomyces coelicolor. Microbiology (Reading) 2013; 159:2127-2140. [DOI: 10.1099/mic.0.067363-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shiyuan Peng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ana Zeng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Li Zhong
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Zhang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Min Zhou
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Qiuxiang Cheng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Liqian Zhao
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Tao Wang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
12
|
Warth L, Altenbuchner J. The tyrosine recombinase MrpA and its target sequence: a mutational analysis of the recombination site mrpS resulting in a new left element/right element (LE/RE) deletion system. Arch Microbiol 2013; 195:617-36. [PMID: 23861149 DOI: 10.1007/s00203-013-0910-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 06/06/2013] [Accepted: 06/22/2013] [Indexed: 11/28/2022]
Abstract
MrpA is the multimer resolution protein of the Streptomyces coelicolor A3(2) plasmid SCP2*. Previously, MrpA was found to be a site-specific tyrosine recombinase that acts with the 36-bp recombination site mrpS. The present report gives a comprehensive characterization of the composition as well as the position of the spacer and MrpA binding sites within mrpS. Experiments revealed a spacer consisting of 6 remarkably variable nucleotides in the middle of the mrpS-site. A reduction in the spacer to 5 nucleotides abolished recombination. Investigation of the MrpA binding sites showed the importance of its 15 nucleotides on an effective recombination. Among almost randomly exchangeable nucleotides, two nucleotides were identified as essential for MrpA binding. Alteration of either of these nucleotides led to a reduction in MrpA binding down to 2 % or even to no binding. Based on these results, a new left element/right element (LE/RE) deletion system was developed. The constructed heteromeric mrpS-sites are efficiently resolved by MrpA. The resulting double mutated (LE/RE) site can no longer be used as a recombination site by MrpA. The system has been successfully applied for the generation of multiple-targeted deletions in the genome of E. coli.
Collapse
Affiliation(s)
- Lydia Warth
- Institut für Industrielle Genetik, Universität Stuttgart, Germany
| | | |
Collapse
|
13
|
Zhang R, Xia H, Xu Q, Dang F, Qin Z. Recombinational cloning of the antibiotic biosynthetic gene clusters in linear plasmid SCP1 ofStreptomyces coelicolorA3(2). FEMS Microbiol Lett 2013; 345:39-48. [DOI: 10.1111/1574-6968.12183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/19/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ran Zhang
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Haiyang Xia
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Qingyu Xu
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Fujun Dang
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Zhongjun Qin
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
14
|
Wang T, Chen Z, Cheng Q, Zhou M, Tian X, Xie P, Zhong L, Shen M, Qin Z. Characterization of replication and conjugation of plasmid pWTY27 from a widely distributed Streptomyces species. BMC Microbiol 2012; 12:253. [PMID: 23134842 PMCID: PMC3583192 DOI: 10.1186/1471-2180-12-253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptomyces species are widely distributed in natural habitats, such as soils, lakes, plants and some extreme environments. Replication loci of several Streptomyces theta-type plasmids have been reported, but are not characterized in details. Conjugation loci of some Streptomyces rolling-circle-type plasmids are identified and mechanism of conjugal transferring are described. RESULTS We report the detection of a widely distributed Streptomyces strain Y27 and its indigenous plasmid pWTY27 from fourteen plants and four soil samples cross China by both culturing and nonculturing methods. The complete nucleotide sequence of pWTY27 consisted of 14,288 bp. A basic locus for plasmid replication comprised repAB genes and an adjacent iteron sequence, to a long inverted-repeat (ca. 105 bp) of which the RepA protein bound specifically in vitro, suggesting that RepA may recognize a second structure (e.g. a long stem-loop) of the iteron DNA. A plasmid containing the locus propagated in linear mode when the telomeres of a linear plasmid were attached, indicating a bi-directional replication mode for pWTY27. As for rolling-circle plasmids, a single traA gene and a clt sequence (covering 16 bp within traA and its adjacent 159 bp) on pWTY27 were required for plasmid transfer. TraA recognized and bound specifically to the two regions of the clt sequence, one containing all the four DC1 of 7 bp (TGACACC) and one DC2 (CCCGCCC) and most of IC1, and another covering two DC2 and part of IC1, suggesting formation of a high-ordered DNA-protein complex. CONCLUSIONS This work (i) isolates a widespread Streptomyces strain Y27 and sequences its indigenous theta-type plasmid pWTY27; (ii) identifies the replication and conjugation loci of pWTY27 and; (iii) characterizes the binding sequences of the RepA and TraA proteins.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen Z, Zhong L, Shen M, Fang P, Qin Z. Characterization of Streptomyces plasmid-phage pFP4 and its evolutionary implications. Plasmid 2012; 68:170-8. [DOI: 10.1016/j.plasmid.2012.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 01/21/2023]
|
16
|
Chen W, Qin Z. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters. BMC Microbiol 2011; 11:243. [PMID: 22032628 PMCID: PMC3212956 DOI: 10.1186/1471-2180-11-243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 10/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. RESULTS We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. CONCLUSIONS We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed.
Collapse
Affiliation(s)
- Weihua Chen
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 20032, People's Republic of China
| | | |
Collapse
|
17
|
Warth L, Haug I, Altenbuchner J. Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*. Arch Microbiol 2010; 193:187-200. [DOI: 10.1007/s00203-010-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/18/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
18
|
Two internal origins of replication in Streptomyces linear plasmid pFRL1. Appl Environ Microbiol 2010; 76:5676-83. [PMID: 20601502 DOI: 10.1128/aem.02905-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports showed that Streptomyces linear plasmids usually contain one internal replication locus. Here, we identified two new replication loci on pFRL1, one (rep1A-ncs1) next to a telomere and another (rep2A-ncs2) approximately 10 kb from it. The rep1A-ncs1 locus was able to direct replication independently in both linear and circular modes, whereas rep2A-ncs2 required an additional locus, rlrA-rorA, in order to direct propagation in linear mode. Rep1A protein bound to ncs1 in vitro. By quantitative reverse transcription-PCR and Northern hybridization, we showed that transcription of rep1A and rep2A varied during development and that each dominated at different time points. pFRL1-derived linear plasmids were inherited through spores more stably than circular plasmids and were more stable with pSLA2 telomeres than with pFRL1 telomeres in Streptomyces lividans.
Collapse
|
19
|
Characterization of the replication, transfer, and plasmid/lytic phage cycle of the Streptomyces plasmid-phage pZL12. J Bacteriol 2010; 192:3747-54. [PMID: 20472796 DOI: 10.1128/jb.00123-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the isolation and recombinational cloning of a large plasmid, pZL12, from endophytic Streptomyces sp. 9R-2. pZL12 comprises 90,435 bp, encoding 112 genes, 30 of which are organized in a large operon resembling bacteriophage genes. A replication locus (repA) and a conjugal transfer locus (traA-traC) were identified in pZL12. Surprisingly, the supernatant of a 9R-2 liquid culture containing partially purified phage particles infected 9R-2 cured of pZL12 (9R-2X) to form plaques, and a phage particle (phiZL12) was observed by transmission electron microscopy. Major structural proteins (capsid, portal, and tail) of phiZL12 virions were encoded by pZL12 genes. Like bacteriophage P1, linear phiZL12 DNA contained ends from a largely random pZL12 sequence. There was also a hot end sequence in linear phiZL12. phiZL12 virions efficiently infected only one host, 9R-2X, but failed to infect and form plaques in 18 other Streptomyces strains. Some 9R-2X spores rescued from lysis by infection of phiZL12 virions contained a circular pZL12 plasmid, completing a cycle comprising autonomous plasmid pZL12 and lytic phage phiZL12. These results confirm pZL12 as the first example of a plasmid-phage in Streptomyces.
Collapse
|
20
|
Linear plasmid SLP2 is maintained by partitioning, intrahyphal spread, and conjugal transfer in Streptomyces. J Bacteriol 2010; 192:307-15. [PMID: 19880600 DOI: 10.1128/jb.01192-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-copy-number plasmids generally encode a partitioning system to ensure proper segregation after replication. Little is known about partitioning of linear plasmids in Streptomyces. SLP2 is a 50-kb low-copy-number linear plasmid in Streptomyces lividans, which contains a typical parAB partitioning operon. In S. lividans and Streptomyces coelicolor, a parAB deletion resulted in moderate plasmid loss and growth retardation of colonies. The latter was caused by conjugal transfer from plasmid-containing hyphae to plasmidless hyphae. Deletion of the transfer (traB) gene eliminated conjugal transfer, lessened the growth retardation of colonies, and increased plasmid loss through sporulation cycles. The additional deletion of an intrahyphal spread gene (spd1) caused almost complete plasmid loss in a sporulation cycle and eliminated all growth retardation. Moreover, deletion of spd1 alone severely reduced conjugal transfer and stability of SLP2 in S. coelicolor M145 but had no effect on S. lividans TK64. These results revealed the following three systems for SLP2 maintenance: partitioning and spread for moving the plasmid DNA along the hyphae and into spores and conjugal transfer for rescuing plasmidless hyphae. In S. lividans, both spread and partitioning appear to overlap functionally, but in S. coelicolor, spread appears to play the main role.
Collapse
|
21
|
Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 2009; 26:1362-84. [PMID: 19844637 PMCID: PMC3063060 DOI: 10.1039/b817069j] [Citation(s) in RCA: 560] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora . These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references.
Collapse
Affiliation(s)
- Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 228-8555, Japan.
| | - Bradley S. Moore
- Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
22
|
Skálová T, Dohnálek J, Østergaard LH, Østergaard PR, Kolenko P, Dušková J, Štěpánková A, Hašek J. The Structure of the Small Laccase from Streptomyces coelicolor Reveals a Link between Laccases and Nitrite Reductases. J Mol Biol 2009; 385:1165-78. [DOI: 10.1016/j.jmb.2008.11.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/13/2008] [Accepted: 11/15/2008] [Indexed: 01/17/2023]
|
23
|
Characterization of replication and conjugation of Streptomyces circular plasmids pFP1 and pFP11 and their ability to propagate in linear mode with artificially attached telomeres. Appl Environ Microbiol 2008; 74:3368-76. [PMID: 18390681 DOI: 10.1128/aem.00402-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Streptomyces species harbor circular plasmids (8 to 31 kb) as well as linear plasmids (12 to 1,700 kb). We report the characterization of two newly detected circular plasmids, pFP11 (35,139 bp) and pFP1 (39,360 bp). As on linear plasmids, their replication loci comprise repA genes and adjacent iterons, to which RepA proteins bind specifically in vitro. Plasmids containing the minimal iterons plus the repA locus of pFP11 were inherited extremely unstably; par and additional loci were required for stable inheritance. Surprisingly, plasmids containing replication loci from pFP11 or Streptomyces circular plasmid SCP2 but not from pFP1, SLP1, or pIJ101 propagated in a stable linear mode when the telomeres of a linear plasmid were attached. These results indicate bidirectional replication for pFP11 and SCP2. Both pFP11 and pFP1 contain, for plasmid transfer, a major functional traB gene (encoding a DNA translocase typical for Streptomyces plasmids) as well as, surprisingly, a putative traA gene (encoding a DNA nickase, characteristic of single-stranded DNA transfer of gram-negative plasmids), but this did not appear to be functional, at least in isolation.
Collapse
|
24
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 634] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The 8-9-Mb Streptomyces chromosome is linear, with a "core" containing essential genes and "arms" carrying conditionally adaptive genes that can sustain large deletions in the laboratory. Bidirectional chromosome replication from a central oriC is completed by "end-patching," primed from terminal proteins covalently bound to the free 5'-ends. Plasmid-mediated conjugation involves movement of double-stranded DNA by proteins resembling other bacterial motor proteins, probably via hyphal tip fusion, mediated by these transfer proteins. Circular plasmids probably transfer chromosomes by transient integration, but linear plasmids may lead the donor chromosome end-first into the recipient by noncovalent association of ends. Transfer of complete chromosomes may be the rule. The recipient mycelium is colonized by intramycelial spreading of plasmid copies, under the control of plasmid-borne "spread" genes. Chromosome partition into prespore compartments of the aerial mycelium is controlled in part by actin- and tubulin-like proteins, resembling MreB and FtsZ of other bacteria.
Collapse
Affiliation(s)
- David A Hopwood
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
26
|
Fong R, Vroom JA, Hu Z, Hutchinson CR, Huang J, Cohen SN, Cohen S, Kao CM, Kao C. Characterization of a large, stable, high-copy-number Streptomyces plasmid that requires stability and transfer functions for heterologous polyketide overproduction. Appl Environ Microbiol 2006; 73:1296-307. [PMID: 17142363 PMCID: PMC1828658 DOI: 10.1128/aem.01888-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance.
Collapse
Affiliation(s)
- Ryan Fong
- Department of Chemical Engineering, Stanford University, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stumpp T, Himbert S, Altenbuchner J. Cloning of the netropsin resistance genes from Streptomyces flavopersicus NRRL 2820. J Basic Microbiol 2005; 45:355-62. [PMID: 16187258 DOI: 10.1002/jobm.200410529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Streptomyces flavopersicus NRRL 2820 (synonym: Streptomyces netropsis DSM40093) is resistant to the N-methylpyrrole-containing oligopeptide antibiotic netropsin. A 9.38 kb DNA-fragment was isolated from a genomic library of Streptomyces flavopersicus using an Escherichia coli-Streptomyces lividans shuttle vector which enables S. lividans to grow on netropsin-containing agar plates. By subcloning, the resistance was conferred to a 5.9 kb Eco RV fragment. DNA sequence analysis of this Eco RV fragment revealed two open reading frames (netP1 , 1556 bp and netP2 , 1773 bp). The deduced proteins share significant similarity to each other (27% identity) and to the large family to ABC-type multidrug resistance proteins. In each protein a conserved transmembrane and ATP binding domain was identified. Deletion analysis showed that both proteins are necessary for netropsin resistance indicating that the proteins form a heterodimeric ABC-transporter exporting netropsin.
Collapse
Affiliation(s)
- Tina Stumpp
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
28
|
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711-21. [PMID: 16138099 DOI: 10.1038/nrmicro1234] [Citation(s) in RCA: 1289] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.
Collapse
Affiliation(s)
- Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
29
|
Marineo S, Lecat E, Cusimano MG, Giardina A, Di Caro V, Puglia AM. Identification of SCP2165, a new SCP2-derived plasmid of Streptomyces coelicolor A3(2). Lett Appl Microbiol 2005; 41:350-4. [PMID: 16162143 DOI: 10.1111/j.1472-765x.2005.01739.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Characterization of SCP2165, a plasmid identified in the Gram-positive bacterium Streptomyces coelicolor A3(2). METHODS AND RESULTS Pulsed-field gel electrophoresis (PFGE) of mycelia of a S. coelicolor strain embedded in low melting agarose revealed the presence of a plasmid. Restriction enzyme mapping and sequence analysis of a 2.1 kb fragment revealed that this plasmid could be SCP2. SCP2 and its spontaneous derivative SCP2* are self-transmissible plasmids and have chromosome mobilizing ability (c.m.a.). SCP2* has a c. 1000-fold increased c.m.a. compared with SCP2. Interestingly the plasmid, named SCP2165, shows a c.m.a. from 5x10(-2) to 1x10(-1) which is 50-100-fold higher than that described for crosses involving SCP2*. CONCLUSIONS SCP2165 is a SCP2 derivative plasmid with the highest c.m.a. so far described for SCP2 derivative plasmids. PFGE, under conditions we used, seems to be a fast way to identify large circular plasmids in Streptomyces strains. SIGNIFICANCE AND IMPACT OF THE STUDY Further knowledge of the SCP2 family may allow the construction of improved SCP2-derived cloning vectors. SCP2165 could be a potential tool for conjugational transfer of gene clusters between different Streptomyces species.
Collapse
Affiliation(s)
- S Marineo
- Department of Cellular and Developmental Biology, Viale delle Scienze, University of Palermo, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. ADVANCES IN APPLIED MICROBIOLOGY 2004; 54:107-28. [PMID: 15251278 DOI: 10.1016/s0065-2164(04)54004-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bertolt Gust
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Yamasaki M, Kinashi H. Two chimeric chromosomes of Streptomyces coelicolor A3(2) generated by single crossover of the wild-type chromosome and linear plasmid scp1. J Bacteriol 2004; 186:6553-9. [PMID: 15375137 PMCID: PMC516589 DOI: 10.1128/jb.186.19.6553-6559.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor A3(2) strain 2106 carries a 1.85-Mb linear plasmid, SCP1'-cysD, in addition to a 7.2-Mb linear chromosome. Macrorestriction analysis indicated that both linear DNAs are hybrids of the wild-type chromosome and the linear plasmid SCP1 on each side. Nucleotide sequencing of the fusion junctions revealed no homology between the recombination regions. SCP1'-cysD contains an SCP1 telomere and a chromosomal telomere at each end and therefore does not have terminal inverted repeats. In addition, SCP1'-cysD could not be eliminated from strain 2106 by various mutagenic treatments. Thus, we concluded that both the 7.2-Mb chromosome and SCP1'-cysD are chimeric chromosomes generated by a single crossover of the wild-type chromosome and SCP1. This may be regarded as a model of chromosomal duplication in genome evolution.
Collapse
Affiliation(s)
- Masayuki Yamasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | |
Collapse
|
32
|
Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF. SCP1, a 356 023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 2004; 51:1615-28. [PMID: 15009889 DOI: 10.1111/j.1365-2958.2003.03949.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequencing of the entire genetic complement of Streptomyces coelicolor A3(2) has been completed with the determination of the 365,023 bp sequence of the linear plasmid SCP1. Remarkably, the functional distribution of SCP1 genes somewhat resembles that of the chromosome: predicted gene products/functions include ECF sigma factors, antibiotic biosynthesis, a gamma-butyrolactone signalling system, members of the actinomycete-specific Wbl class of regulatory proteins and 14 secreted proteins. Some of these genes are among the 18 that contain a TTA codon, making them targets for the developmentally important tRNA encoded by the bldA gene. RNA analysis and gene fusions showed that one of the TTA-containing genes is part of a large bldA-dependent operon, the gene products of which include three proteins isolated from the spore surface by detergent washing (SapC, D and E), and several probable metabolic enzymes. SCP1 shows much evidence of recombinational interactions with other replicons and transposable elements during its history. For example, it has two sets of partitioning genes (which may explain why an integrated copy of SCP1 partially suppressed the defective partitioning of a parAB-deleted chromosome during sporulation). SCP1 carries a cluster of probable transfer determinants and genes encoding likely DNA polymerase III subunits, but it lacks an obvious candidate gene for the terminal protein associated with its ends. This may be related to atypical features of its end sequences.
Collapse
Affiliation(s)
- S D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|