1
|
Duncan JD, Setati ME, Divol B. The cellular symphony of redox cofactor management by yeasts in wine fermentation. Int J Food Microbiol 2025; 427:110966. [PMID: 39536648 DOI: 10.1016/j.ijfoodmicro.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Redox metabolism is pivotal in anaerobic fermentative processes such as winemaking where it results in the production of many metabolites that contribute to the aroma and flavour of wine. Key to this system are NAD+ and NADP+, which play essential roles as cofactors in maintaining cellular redox balance and regulating metabolism during fermentation. This review comprehensively explores redox metabolism under winemaking conditions, highlighting the influence of factors such as oxygen availability and vitamins including B3 and B1. Recent findings underscore the rapid assimilation and recycling dynamics of these vitamins during fermentation, reinforcing their critical role in yeast performance. Despite extensive research, the roles of diverse yeast species and specific vitamins remain insufficiently explored. By consolidating current knowledge, this review emphasises the implications of redox dynamics for metabolite synthesis and overall wine quality. Understanding these metabolic intricacies offers options to enhance fermentation efficiency and refine aroma profiles. The review also identifies gaps in studies for intracellular vitamin metabolism and underlines the need for deeper insights into non-Saccharomyces yeast metabolism. Future research directions should focus on elucidating specific metabolic responses, exploring environmental influences, and harnessing the potential of diverse yeasts to innovate and diversify wine production strategies.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
2
|
Duncan JD, Devillers H, Camarasa C, Setati ME, Divol B. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol 2024; 124:104624. [PMID: 39244375 DOI: 10.1016/j.fm.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hugo Devillers
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
3
|
Monnin L, Nidelet T, Noble J, Galeote V. Insights into intraspecific diversity of central carbon metabolites in Saccharomyces cerevisiae during wine fermentation. Food Microbiol 2024; 121:104513. [PMID: 38637075 DOI: 10.1016/j.fm.2024.104513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO2 with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations. S. cerevisiae is known for its great genetic diversity that is related to its natural or technological environment. However, the variation range of metabolic diversity which can be exploited to enhance wine quality depends on the pathway considered. Our experiment assessed the diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds. Results pointed out great yield differences depending on the metabolite considered, with ethanol having the lowest variation. A negative correlation between ethanol and glycerol was observed, confirming glycerol synthesis as a suitable lever to reduce ethanol yield. Genetic groups were linked to specific yields, such as the wine group and high α-ketoglutarate and low acetate yields. This research highlights the potential of using natural yeast diversity in winemaking. It also provides a detailed data set on production of well known (ethanol, glycerol, acetate) or little-known (lactate) primary metabolites.
Collapse
Affiliation(s)
- Ludovic Monnin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; Lallemand Oenology, Blagnac, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | | | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
4
|
Adnan AI, Ong MY, Mohamed H, Chia SR, Milano J, Nomanbhay S. Multi-objectives optimization on microwave-assisted-biological-based biogas upgrading and bio-succinic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131028. [PMID: 38914237 DOI: 10.1016/j.biortech.2024.131028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
This study represents the first investigation of bio-succinic acid (bio-SA) production with methane enrichment using carbon-dioxide-fixating bacteria in the co-culture of ragi tapai and macroalgae, Chaetomorpha. Microwave irradiation has also been introduced to enhance the biochemical processes as it could provide rapid and selective heating of substrates. In this research, microwave irradiation was applied on ragi tapai as a pre-treatment process. Factors such as microwave irradiation dose on ragi tapai, Chaetomorpha ratio in the co-culture, and pH value were studied. Optimal conditions were identified using Design-Expert software, resulting in optimal experimental biomethane and bio-SA production of 85.7 % and 0.65 g/L, respectively, at a microwave dose of 1.45 W/g, Chaetomorpha ratio of 0.9 and pH value of 7.8. The study provides valuable insights into microwave control for promoting simultaneous methane enrichment and bio-SA production, potentially reducing costs associated with CO2 capture and storage and biogas upgrading.
Collapse
Affiliation(s)
- Amir Izzuddin Adnan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Mei Yin Ong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
| | - Hassan Mohamed
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Shir Reen Chia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore.
| | - Jassinnee Milano
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Saifuddin Nomanbhay
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
5
|
Jabłoński SJ, Mielko-Niziałek KA, Leszczyński P, Gasiński A, Kawa-Rygielska J, Młynarz P, Łukaszewicz M. Examination of internal metabolome and VOCs profile of brewery yeast and their mutants producing beer with improved aroma. Sci Rep 2024; 14:14582. [PMID: 38918455 PMCID: PMC11199613 DOI: 10.1038/s41598-024-64899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Volatile organic compounds (VOCs) are metabolites pivotal in determining the aroma of various products. A well-known VOC producer of industrial importance is Saccharomyces cerevisiae, partially responsible for flavor of beers and wines. We identified VOCs in beers produced by yeast strains characterized by improved aroma obtained in UV-induced mutagenesis. We observed significant increase in concentration of compounds in strains: 1214uv16 (2-phenylethyl acetate, 2- phenylethanol), 1214uv31 (2-ethyl henxan-1-ol), 1214uv33 (ethyl decanoate, caryophyllene). We observed decrease in production of 2-phenyethyl acetate in strain 1214uv33. Analysis of intracellular metabolites based on 1H NMR revealed that intracellular phenylalanine concentration was not changed in strains producing more phenylalanine related VOCs (1214uv16 and 1214uv33), so regulation of this pathway seems to be more sophisticated than is currently assumed. Metabolome analysis surprisingly showed the presence of 3-hydroxyisobutyrate, a product of valine degradation, which is considered to be absent in S. cerevisiae. Our results show that our knowledge of yeast metabolism including VOC production has gaps regarding synthesis pathways for individual metabolites and regulation mechanisms. Detailed analysis of 1214uv16 and 1214uv33 may enhance our knowledge of the regulatory mechanisms of VOC synthesis in yeast, and analysis of strain 1214uv31 may reveal the pathway of 2-ethyl henxan-1-ol biosynthesis.
Collapse
Affiliation(s)
- Sławomir Jan Jabłoński
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Karolina Anna Mielko-Niziałek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Przemysław Leszczyński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Alan Gasiński
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Kawa-Rygielska
- Department of Fermentation and Cereals Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
6
|
Tomonaga K, Tanaka J, Kiyoshi K, Akao T, Watanabe K, Kadokura T, Nakayama S. Physiological role of the EHL gene in sake yeast and its effects on quality of sake. J Biosci Bioeng 2024; 137:195-203. [PMID: 38242756 DOI: 10.1016/j.jbiosc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/21/2024]
Abstract
The EHL1/2/3 genes were identified by whole-genome sequencing of Kyokai No. 7 (K7), which is a well-known representative Japanese sake yeast Saccharomyces cerevisiae. The genes are present in K7, but not in laboratory strain S288C. Although the genes were presumed to encode epoxide hydrolase based on homology analysis, their effect on cellular metabolism in sake yeast has not yet been clarified. We constructed ehl1/2/3 mutants harboring a stop codon in each gene using the haploid yeast strain H3 as the parental strain, which was derived from K701, and investigated the physiological role and effects of the EHL1/2/3 genes on sake quality. Metabolome analysis and vitamin requirement testing revealed that the EHL1/2/3 genes are partly responsible for the synthesis of pantothenate. For fermentation profiles, ethanol production by the ehl1/2/3 mutant was comparable with that of strain H3, but succinate production was decreased in the ehl1/2/3 mutant compared to strain H3 when cultured in yeast malt (YM) medium containing 10% glucose and during sake brewing. Ethyl hexanoate and isoamyl acetate levels in the ehl1/2/3 mutant strain were decreased compared to those of strain H3 during sake brewing. Thus, the EHL1/2/3 genes did not affect ethanol production but did affect the production of organic acids and aromatic components during sake brewing.
Collapse
Affiliation(s)
- Kazuko Tomonaga
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jumpei Tanaka
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kota Watanabe
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
7
|
Tyibilika V, Setati ME, Bloem A, Divol B, Camarasa C. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. Int J Food Microbiol 2024; 411:110537. [PMID: 38150773 DOI: 10.1016/j.ijfoodmicro.2023.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and NADH intracellular pools. A comparative analysis of these data with the fermentation capacity and metabolic profiles of the strains revealed that Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans strains were able to reoxidise NADH to NAD throughout the fermentation, mainly by the formation of glycerol. These species exhibited good fermentation capacities. Conversely, Starmerella bacillaris and Metschnikowia pulcherrima species were unable to regenerate NAD as early as one third of sugars were consumed, explaining at least in part their poor growth and fermentation performances. The Kluyveromyces marxianus strain exhibited a specific behaviour, by maintaining similar levels of NAD and NADH throughout the process. This balance between oxidised and reduced redox cofactors ensured the consumption of a large part of sugars by this species, despite a low fermentation rate. In addition, the dynamics of redox cofactors affected the production of by-products by the various strains either directly or indirectly, through the formation of precursors. Major examples are the increased formation of glycerol by S. bacillaris and M. pulcherrima strains, as a way of trying to reoxidise NADH, and the greater capacity to produce acetate and derived metabolites of yeasts capable of maintaining their redox balance. Overall, this study provided new insight into the contribution of the management of redox status to the orientation of yeast metabolism during fermentation. This information should be taken into account when developing strategies for more efficient and effective fermentation.
Collapse
Affiliation(s)
- Viwe Tyibilika
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Audrey Bloem
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Carole Camarasa
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
8
|
Duncan JD, Setati ME, Divol B. Nicotinic acid availability impacts redox cofactor metabolism in Saccharomyces cerevisiae during alcoholic fermentation. FEMS Yeast Res 2024; 24:foae015. [PMID: 38637306 PMCID: PMC11055565 DOI: 10.1093/femsyr/foae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterized, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred premid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the wine-making industry.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
9
|
Balmaseda A, Rozès N, Bordons A, Reguant C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microb Biotechnol 2024; 17:e14302. [PMID: 37387409 PMCID: PMC10832531 DOI: 10.1111/1751-7915.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The potential use of Torulaspora delbrueckii as a starter culture for wine alcoholic fermentation has become a subject of interest in oenological research. The use of this non-Saccharomyces yeast can modulate different wine attributes, such as aromatic substances, organic acids and phenolic compound compositions. Thus, the obtained wines are different from those fermented with Saccharomyces cerevisiae as the sole starter. Nevertheless, information about the possible effects of T. delbrueckii chemical modulation on subsequent malolactic fermentation is still not fully explained. In general, T. delbrueckii is related to a decrease in toxic compounds that negatively affect Oenococcus oeni and an increase in others that are described as stimulating compounds. In this work, we aimed to compile the changes described in studies using T. delbrueckii in wine that can have a potential effect on O. oeni and highlight those works that directly evaluated O. oeni performance in T. delbrueckii fermented wines.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Nicolas Rozès
- Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'EnologiaUniversitat Rovira i VirgiliTarragonaCataloniaSpain
| |
Collapse
|
10
|
Patiño-Medina JA, Alejandre-Castañeda V, Valle-Maldonado MI, Martínez-Pacheco MM, Ruiz-Herrera LF, Ramírez-Emiliano J, Ramírez-Marroquín OA, Castro-Cerritos KV, Campos-García J, Ramírez-Díaz MI, Garre V, Binder U, Meza-Carmen V. Blood Serum Stimulates the Virulence Potential of Mucorales through Enhancement in Mitochondrial Oxidative Metabolism and Rhizoferrin Production. J Fungi (Basel) 2023; 9:1127. [PMID: 38132728 PMCID: PMC10744254 DOI: 10.3390/jof9121127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
This study analyzed the role of blood serum in enhancing the mitochondrial metabolism and virulence of Mucorales through rhizoferrin secretion. We observed that the spores of clinically relevant Mucorales produced in the presence of serum exhibited higher virulence in a heterologous infection model of Galleria mellonella. Cell-free supernatants of the culture broth obtained from spores produced in serum showed increased toxicity against Caenorhabditis elegans, which was linked with the enhanced secretion of rhizoferrin. Spores from Mucoralean species produced or germinated in serum showed increased respiration rates and reactive oxygen species levels. The addition of non-lethal concentrations of potassium cyanide and N-acetylcysteine during the aerobic or anaerobic growth of Mucorales decreased the toxicity of the cell-free supernatants of the culture broth, suggesting that mitochondrial metabolism is important for serum-induced virulence. In support of this hypothesis, a mutant strain of Mucor lusitanicus that lacks fermentation and solely relies on oxidative metabolism exhibited virulence levels comparable to those of the wild-type strain under serum-induced conditions. Contrary to the lower virulence observed, even in the serum, the ADP-ribosylation factor-like 2 deletion strain exhibited decreased mitochondrial activity. Moreover, spores produced in the serum of M. lusitanicus and Rhizopus arrhizus that grew in the presence of a mitophagy inducer showed low virulence. These results suggest that serum-induced mitochondrial activity increases rhizoferrin levels, making Mucorales more virulent.
Collapse
Affiliation(s)
- José Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - Viridiana Alejandre-Castañeda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | | | - Mauro Manuel Martínez-Pacheco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | | | | | | | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - Martha Isela Ramírez-Díaz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Universidad de Murcia, 30100 Murcia, Spain;
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (J.A.P.-M.); (V.A.-C.); (M.M.M.-P.); (L.F.R.-H.); (J.C.-G.); (M.I.R.-D.)
| |
Collapse
|
11
|
Chen L, Wei G, Zhang Y, Wang K, Wang C, Deng X, Li Y, Xie X, Chen J, Huang F, Chen H, Zhang B, Wei C, Qiu G. Candidatus Accumulibacter use fermentation products for enhanced biological phosphorus removal. WATER RESEARCH 2023; 246:120713. [PMID: 37839225 DOI: 10.1016/j.watres.2023.120713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kaiying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yaqian Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Puyo M, Mas P, Roullier-Gall C, Romanet R, Lebleux M, Klein G, Alexandre H, Tourdot-Maréchal R. Bioprotection Efficiency of Metschnikowia Strains in Synthetic Must: Comparative Study and Metabolomic Investigation of the Mechanisms Involved. Foods 2023; 12:3927. [PMID: 37959046 PMCID: PMC10649255 DOI: 10.3390/foods12213927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Three Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Perrine Mas
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR A 02.102, IUVV, 2 Rue Claude Ladrey, 21000 Dijon, France;
| | - Manon Lebleux
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| |
Collapse
|
13
|
Szatkowska R, Furmanek E, Kierzek AM, Ludwig C, Adamczyk M. Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis. Int J Mol Sci 2023; 24:14763. [PMID: 37834211 PMCID: PMC10572830 DOI: 10.3390/ijms241914763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.
Collapse
Affiliation(s)
- Roza Szatkowska
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Emil Furmanek
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| | - Andrzej M. Kierzek
- Certara UK Limited, Sheffield S1 2BJ, UK;
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drugs and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (R.S.)
| |
Collapse
|
14
|
Álvarez R, Garces F, Louis EJ, Dequin S, Camarasa C. Beyond S. cerevisiae for winemaking: Fermentation-related trait diversity in the genus Saccharomyces. Food Microbiol 2023; 113:104270. [PMID: 37098430 DOI: 10.1016/j.fm.2023.104270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Saccharomyces cerevisiae is the yeast of choice for most inoculated wine fermentations worldwide. However, many other yeast species and genera display phenotypes of interest that may help address the environmental and commercial challenges the wine industry has been facing in recent years. This work aimed to provide, for the first time, a systematic phenotyping of all Saccharomyces species under winemaking conditions. For this purpose, we characterized the fermentative and metabolic properties of 92 Saccharomyces strains in synthetic grape must at two different temperatures. The fermentative potential of alternative yeasts was higher than expected, as nearly all strains were able to complete fermentation, in some cases more efficiently than commercial S. cerevisiae strains. Various species showed interesting metabolic traits, such as high glycerol, succinate and odour-active compound production, or low acetic acid production, compared to S. cerevisiae. Altogether, these results reveal that non-cerevisiae Saccharomyces yeasts are especially interesting for wine fermentation, as they may offer advantages over both S. cerevisiae and non-Saccharomyces strains. This study highlights the potential of alternative Saccharomyces species for winemaking, paving the way for further research and, potentially, for their industrial exploitation.
Collapse
|
15
|
Henriques D, Minebois R, dos Santos D, Barrio E, Querol A, Balsa-Canto E. A Dynamic Genome-Scale Model Identifies Metabolic Pathways Associated with Cold Tolerance in Saccharomyces kudriavzevii. Microbiol Spectr 2023; 11:e0351922. [PMID: 37227304 PMCID: PMC10269563 DOI: 10.1128/spectrum.03519-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Saccharomyces kudriavzevii is a cold-tolerant species identified as a good alternative for industrial winemaking. Although S. kudriavzevii has never been found in winemaking, its co-occurrence with Saccharomyces cerevisiae in Mediterranean oaks is well documented. This sympatric association is believed to be possible due to the different growth temperatures of the two yeast species. However, the mechanisms behind the cold tolerance of S. kudriavzevii are not well understood. In this work, we propose the use of a dynamic genome-scale model to compare the metabolic routes used by S. kudriavzevii at two temperatures, 25°C and 12°C, to decipher pathways relevant to cold tolerance. The model successfully recovered the dynamics of biomass and external metabolites and allowed us to link the observed phenotype with exact intracellular pathways. The model predicted fluxes that are consistent with previous findings, but it also led to novel results which we further confirmed with intracellular metabolomics and transcriptomic data. The proposed model (along with the corresponding code) provides a comprehensive picture of the mechanisms of cold tolerance that occur within S. kudriavzevii. The proposed strategy offers a systematic approach to explore microbial diversity from extracellular fermentation data at low temperatures. IMPORTANCE Nonconventional yeasts promise to provide new metabolic pathways for producing industrially relevant compounds and tolerating specific stressors such as cold temperatures. The mechanisms behind the cold tolerance of S. kudriavzevii or its sympatric relationship with S. cerevisiae in Mediterranean oaks are not well understood. This study proposes a dynamic genome-scale model to investigate metabolic pathways relevant to cold tolerance. The predictions of the model would indicate the ability of S. kudriavzevii to produce assimilable nitrogen sources from extracellular proteins present in its natural niche. These predictions were further confirmed with metabolomics and transcriptomic data. This finding suggests that not only the different growth temperature preferences but also this proteolytic activity may contribute to the sympatric association with S. cerevisiae. Further exploration of these natural adaptations could lead to novel engineering targets for the biotechnological industry.
Collapse
Affiliation(s)
- David Henriques
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
| | - Romain Minebois
- Systems Biology of Yeasts of Biotechnological Interest, IATA-CSIC, Paterna, Spain
| | | | - Eladio Barrio
- Genomics Department, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Systems Biology of Yeasts of Biotechnological Interest, IATA-CSIC, Paterna, Spain
| | - Eva Balsa-Canto
- Bioprocess and Biosystems Engineering, IIM-CSIC, Vigo, Spain
| |
Collapse
|
16
|
Alam S, Gu Y, Reichert P, Bähler J, Oliferenko S. Optimization of energy production and central carbon metabolism in a non-respiring eukaryote. Curr Biol 2023; 33:2175-2186.e5. [PMID: 37164017 PMCID: PMC7615655 DOI: 10.1016/j.cub.2023.04.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.
Collapse
Affiliation(s)
- Sara Alam
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Ying Gu
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Polina Reichert
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK; School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
17
|
Use of Fumaric Acid to Inhibit Malolactic Fermentation in Bottled Rioja Wines: Effect in pH and Volatile Acidity Control. BEVERAGES 2023. [DOI: 10.3390/beverages9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Fumaric acid (FH2) is an additive allowed by the Codex Alimentarius and the International Organization of Vine and Wine (OIV) that can be used for wine acidification but also to inhibit malolactic fermentation (MLF). FH2 has a positive effect in the reduction in SO2 doses by controlling LAB and other bacteria and by preserving molecular SO2 due to pH effect. This article reports the use of FH2 at 600 mg/L in wines produced with 3 varieties of Vitis vinifera L. grapes (Tempranillo, Garnacha and Viura) made in vintages 2018, 2020 and 2021. Wines treated with 600 mg/L of FH2 were more stable in the long term and showed lower pH by the preservation of malic acid due to both the absence of MLF (which reduced the pH in 0.1–0.2 units compared with controls) and the effect of FH2 acidification (what produced and additional reduction of 0.05–0.1 pH units). The wines treated with FH2 also remained with very low volatile acidity contents close to 0.2 mg/L or lower. These results corroborate that FH2 can be used to successfully control malolactic fermentation in all still wine types (red, white, and rose) from either of the studied varieties.
Collapse
|
18
|
Duncan JD, Setati ME, Divol B. Redox cofactor metabolism in Saccharomyces cerevisiae and its impact on the production of alcoholic fermentation end-products. Food Res Int 2023; 163:112276. [PMID: 36596186 DOI: 10.1016/j.foodres.2022.112276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The alcoholic fermentation of organic carbon sources by Saccharomyces cerevisiae produces many by-products, with the most abundant originating from central carbon metabolism. The production of these metabolites involves redox reactions and largely depends on the maintenance of redox homeostasis. Despite the metabolic pathways being mostly conserved across strains of S. cerevisiae, their production of various amounts of metabolic products suggests that their intracellular concentration of redox cofactors and/or redox balance differ. This study explored the redox status dynamics and NAD(H) and NADP(H) cofactor ratios throughout alcoholic fermentation in four S. cerevisiae strains that exhibit different carbon metabolic fluxes. This study focussed on the molecular end-products of fermentation, redox cofactor ratios and the impact thereof on redox homeostasis. Strain-dependent differences were identified in the redox cofactor levels, with NADP(H) ratios and levels remaining stable while NAD(H) levels decreased drastically as the fermentation progressed. Changes in the NAD+/NADH ratio were also observed. Total levels of NAD(H) decreased drastically as the fermentation progressed despite the cells remaining viable until the end of fermentation. NAD+ was found to be favoured initially while NADH was favoured towards the end of the fermentation. The change in the NAD+/NADH redox cofactor ratio during fermentation was linked with the production of end-products. The findings in this study could steer further research in the selection of S. cerevisiae wine strains for desirable aroma contributions based on their intracellular redox balance management.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
19
|
Girardi-Piva G, Casalta E, Legras JL, Nidelet T, Pradal M, Macna F, Ferreira D, Ortiz-Julien A, Tesnière C, Galeote V, Mouret JR. Influence of ergosterol and phytosterols on wine alcoholic fermentation with Saccharomyces cerevisiae strains. Front Microbiol 2022; 13:966245. [PMID: 36160262 PMCID: PMC9493300 DOI: 10.3389/fmicb.2022.966245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of cell membrane integrity and its good functionality. During alcoholic fermentation, they enhance yeast growth, metabolism and viability, as well as resistance to high sugar content and ethanol stress. Grape musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations. Two sterol sources can help Saccharomyces cerevisiae yeasts to adapt to fermentation stress conditions: ergosterol (synthesized by yeast under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts under anaerobiosis). Little is known about the physiological impact of phytosterols assimilation in comparison with ergosterol and the influence of sterol type on fermentation kinetics parameters. Moreover, studies to date have analyzed a limited number of yeast strains. Thus, the aim of this work was to compare the performances of a set of Saccharomyces cerevisiae wine strains that represent the diversity of industrial wine yeast, fermenting with phytosterols or ergosterol under two conditions: sterol limitation (sterol starvation) and high sugar content (the most common stress during fermentation). Results indicated that yeast cell viability was negatively impacted by both stressful conditions, resulting in sluggish and stuck fermentations. This study revealed the huge phenotype diversity of the S. cerevisiae strains tested, in particular in terms of cell viability. Indeed, strains with better viability maintenance completed fermentation earlier. Interestingly, we showed for the first time that sterol type differently affects a wide variety of phenotype, such as viability, biomass, fermentation kinetics parameters and biosynthesis of carbon central metabolism (CCM) metabolites. Ergosterol allowed preserving more viable cells at the end of fermentation and, as a consequence, a better completion of fermentation in both conditions tested, even if phytosterols also enabled the completion of alcoholic fermentation for almost all strains. These results highlighted the essential role of sterols during wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Finally, this study emphasizes the importance of taking into account sterol types available during wine fermentation.
Collapse
Affiliation(s)
| | - Erick Casalta
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Faïza Macna
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | | | | | - Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
- *Correspondence: Jean-Roch Mouret,
| |
Collapse
|
20
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
21
|
Mbuyane LL, Bauer FF, Bloem A, Camarasa C, Ortiz-Julien A, Divol B. Species-Dependent Metabolic Response to Lipid Mixtures in Wine Yeasts. Front Microbiol 2022; 13:823581. [PMID: 35677913 PMCID: PMC9168537 DOI: 10.3389/fmicb.2022.823581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lipids are essential energy storage compounds and are the core structural elements of all biological membranes. During wine alcoholic fermentation, the ability of yeasts to adjust the lipid composition of the plasma membrane partly determines their ability to cope with various fermentation-related stresses, including elevated levels of ethanol and the presence of weak acids. In addition, the lipid composition of grape juice also impacts the production of many wine-relevant aromatic compounds. Several studies have evaluated the impact of lipids and of their metabolism on fermentation performance and aroma production in the dominant wine yeast Saccharomyces cerevisiae, but limited information is available on other yeast species. Thus, the aim of this study was to evaluate the influence of specific fatty acid and sterol mixtures on various non-Saccharomyces yeast fermentation rates and the production of primary fermentation metabolites. The data show that the response to different lipid mixtures is species-dependent. For Metschnikowia pulcherrima, a slight increase in carbon dioxide production was observed in media enriched with unsaturated fatty acids whereas Kluyveromyces marxianus fermented significantly better in synthetic media containing a higher concentration of polyunsaturated fatty acids than monounsaturated fatty acids. Torulaspora delbrueckii fermentation rate increased in media supplemented with lipids present at an equimolar concentration. The data indicate that these different responses may be linked to variations in the lipid profile of these yeasts and divergent metabolic activities, in particular the regulation of acetyl-CoA metabolism. Finally, the results suggest that the yeast metabolic footprint and ultimately the wine organoleptic properties could be optimized via species-specific lipid adjustments.
Collapse
Affiliation(s)
- Lethiwe L Mbuyane
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Florian F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Audrey Bloem
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | | | - Benoit Divol
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
22
|
|
23
|
Godillot J, Sanchez I, Perez M, Picou C, Galeote V, Sablayrolles JM, Farines V, Mouret JR. The Timing of Nitrogen Addition Impacts Yeast Genes Expression and the Production of Aroma Compounds During Wine Fermentation. Front Microbiol 2022; 13:829786. [PMID: 35273585 PMCID: PMC8902367 DOI: 10.3389/fmicb.2022.829786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Among the different compounds present in the must, nitrogen is an essential nutrient for the management of fermentation kinetics but also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been implemented. The consequences of such additions on the main reaction are well known. However, their impact on aromas synthesis is still poorly understood. So, the main objective of this study was to determine the impact of nitrogen addition during the stationary phase on both the fermentation kinetics and aroma synthesis. To reach this goal, we used a transdisciplinary approach combining statistical modeling (Box-Behnken design and response surface modeling) and gene expression study (transcriptomic analysis). Our results indicated that nitrogen metabolism, central carbon metabolism (CCM), fermentation kinetics and aroma production were significantly impacted by nitrogen addition. The most remarkable point was the different regulation of the bioconversion of higher alcohols into acetate esters on one hand and of fatty acids into ethyl esters on the other hand. We highlighted that the conversion of higher alcohols into acetate esters was maximum when nitrogen was added at the beginning of the stationary phase. Conversely, the highest conversion of acids into ethyl esters was reached when nitrogen was added close to the end of the stationary phase. Moreover, even if the key element in the production of these two ester families appeared to be the enzymatic activity responsible for their production, rather than the availability of the corresponding precursors, these enzymatic activities were differently regulated. For acetate esters, the regulation occurred at gene level: the ATF2 gene was overexpressed following nitrogen addition during the stationary phase. On the opposite, no induction of gene expression was noted for ethyl esters; it seemed that there was an allosteric regulation.
Collapse
Affiliation(s)
- Joséphine Godillot
- SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France
| | | | - Marc Perez
- SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France
| | - Christian Picou
- SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France
| | - Virginie Galeote
- SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France
| | | | - Vincent Farines
- SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France
| | - Jean-Roch Mouret
- SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Effect of Yeast Assimilable Nitrogen Content on Fermentation Kinetics, Wine Chemical Composition and Sensory Character in the Production of Assyrtiko Wines. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two wild-type Saccharomyces cerevisiae yeast strains (Sa and Sb) were tested for white wine production using Assyrtiko grape of Santorini. A third commercial Saccharomyces strain was also studied for comparison reasons. Two concentrations of yeast extract and diammonium phosphate (DAP) were added to the must (150 and 250 mg/L) in order to evaluate the effect of nitrogen content on the final wine quality. Analytical methods (HPLC, GC-MS) and sensory analysis were employed to assess the quality of the wines. Fermentation kinetics were monitored throughout the experiment. By the second day of fermentation, all strains showed an approximate consumption of 70% of amino acids. Differences among strains were observed regarding inorganic nitrogen requirements. Sb strain resulted in higher concentrations of higher alcohols (1.9-fold) and ketones (5.6-fold) and lower concentrations of esters (1.2-fold) compared to the control, while Sa strain resulted in higher content of fatty acids (2.1-fold). Both indigenous strains scored better results in aroma quality, body and acidity compared to control. The overall evaluation of the data highlights the great potential of the indigenous S. cerevisiae strains as fermentation starters providing promising results in the sector of terroir wines.
Collapse
|
25
|
Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733513. [PMID: 37744152 PMCID: PMC10512321 DOI: 10.3389/ffunb.2021.733513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 09/26/2023]
Abstract
The identification of natural allelic variations controlling quantitative traits could contribute to decipher metabolic adaptation mechanisms within different populations of the same species. Such variations could result from human-mediated selection pressures and participate to the domestication. In this study, the genetic causes of the phenotypic variability of the central carbon metabolism of Saccharomyces cerevisiae were investigated in the context of the enological fermentation. The genetic determinism of this trait was found out by a quantitative trait loci (QTL) mapping approach using the offspring of two strains belonging to the wine genetic group of the species. A total of 14 QTL were identified from which 8 were validated down to the gene level by genetic engineering. The allelic frequencies of the validated genes within 403 enological strains showed that most of the validated QTL had allelic variations involving flor yeast specific alleles. Those alleles were brought in the offspring by one parental strain that contains introgressions from the flor yeast genetic group. The causative genes identified are functionally linked to quantitative proteomic variations that would explain divergent metabolic features of wine and flor yeasts involving the tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of adaptive divergence between flor yeast and wine yeast in the wine biotope. These results also reveal that introgressions originated from intraspecific hybridization events promoted phenotypic variability of carbon metabolism observed in wine strains.
Collapse
Affiliation(s)
- Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
26
|
Scott WT, van Mastrigt O, Block DE, Notebaart RA, Smid EJ. Nitrogenous Compound Utilization and Production of Volatile Organic Compounds among Commercial Wine Yeasts Highlight Strain-Specific Metabolic Diversity. Microbiol Spectr 2021; 9:e0048521. [PMID: 34287034 PMCID: PMC8562342 DOI: 10.1128/spectrum.00485-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Genetic background and environmental conditions affect the production of sensory impact compounds by Saccharomyces cerevisiae. The relative importance of the strain-specific metabolic capabilities for the production of volatile organic compounds (VOCs) remains unclear. We investigated which amino acids contribute to VOC production and whether amino acid-VOC relations are conserved among yeast strains. Amino acid consumption and production of VOCs during grape juice fermentation was investigated using four commercial wine yeast strains: Elixir, Opale, R2, and Uvaferm. Principal component analysis of the VOC data demonstrated that Uvaferm correlated with ethyl acetate and ethyl hexanoate production, R2 negatively correlated with the acetate esters, and Opale positively correlated with fusel alcohols. Biomass formation was similar for all strains, pointing to metabolic differences in the utilization of nutrients to form VOCs. Partial least-squares linear regression showed that total aroma production is a function of nitrogen utilization (R2 = 0.87). We found that glycine, tyrosine, leucine, and lysine utilization were positively correlated with fusel alcohols and acetate esters. Mechanistic modeling of the yeast metabolic network via parsimonious flux balance analysis and flux enrichment analysis revealed enzymes with crucial roles, such as transaminases and decarboxylases. Our work provides insights in VOC production in wine yeasts. IMPORTANCE Saccharomyces cerevisiae is widely used in grape juice fermentation to produce wines. Along with the genetic background, the nitrogen in the environment in which S. cerevisiae grows impacts its regulation of metabolism. Also, commercial S. cerevisiae strains exhibit immense diversity in their formation of aromas, and a desirable aroma bouquet is an essential characteristic for wines. Since nitrogen affects aroma formation in wines, it is essential to know the extent of this connection and how it leads to strain-dependent aroma profiles in wines. We evaluated the differences in the production of key aroma compounds among four commercial wine strains. Moreover, we analyzed the role of nitrogen utilization on the formation of various aroma compounds. This work illustrates the unique aroma-producing differences among industrial yeast strains and suggests more intricate, nitrogen-associated routes influencing those aroma-producing differences.
Collapse
Affiliation(s)
- William T. Scott
- Department of Chemical Engineering, University of California, Davis, California, USA
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Oscar van Mastrigt
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - David E. Block
- Department of Chemical Engineering, University of California, Davis, California, USA
- Department of Viticulture and Enology, University of California, Davis, California, USA
| | - Richard A. Notebaart
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Eddy J. Smid
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the Saccharomyces Genus in Fermentation. mSystems 2021; 6:e0026021. [PMID: 34342535 PMCID: PMC8407324 DOI: 10.1128/msystems.00260-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. IMPORTANCE Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the Saccharomyces genus in rich medium fermentation. The study revealed that cryotolerant Saccharomyces species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Collapse
|
28
|
Su Y, Heras JM, Gamero A, Querol A, Guillamón JM. Impact of Nitrogen Addition on Wine Fermentation by S. cerevisiae Strains with Different Nitrogen Requirements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6022-6031. [PMID: 34014663 DOI: 10.1021/acs.jafc.1c01266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In modern oenology, supplementation of nitrogen sources is an important strategy to prevent sluggish or stuck fermentation. The present study thoroughly determined the effect of nitrogen addition timing and nitrogen source type on fermentation kinetics and aroma production, carried out by yeast strains with low and high nitrogen requirements. The results revealed that yeast strains with different nitrogen requirements have divergent reactions to nitrogen addition. Nitrogen addition clearly shortened the fermentation duration, especially for the high-nitrogen-demanding yeast strain. Nitrogen addition at 1/3 fermentation was the most effective in terms of fermentation activity, nitrogen assimilation, and production of acetate esters. Interestingly enough, yeast cells preferentially took up amino acids related to fermentative aroma synthesis with the addition at 2/3 fermentation. The addition of nitrogen sources also largely affected the production of important metabolites. Generally speaking, acetic acid, glycerol, and succinic acid reduced with the supplementation of nitrogen sources. The results revealed significant application importance for the winemaking industry.
Collapse
Affiliation(s)
- Ying Su
- Departamento de Biotecnología de, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Carrer del Catedrátic Agustín Escardino Benlloch, 46980Valencia, Spain
| | - José María Heras
- Lallemand Spain-Portugal, c/Tomas Edison No. 4, 28521 Madrid, Spain
| | - Amparo Gamero
- Departamento de Biotecnología de, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Carrer del Catedrátic Agustín Escardino Benlloch, 46980Valencia, Spain
- Área de Tecnología de Alimentos, Facultad de Farmacia, Universitat de València, 46100 Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Carrer del Catedrátic Agustín Escardino Benlloch, 46980Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Carrer del Catedrátic Agustín Escardino Benlloch, 46980Valencia, Spain
| |
Collapse
|
29
|
Ruiz J, de Celis M, Martín-Santamaría M, Benito-Vázquez I, Pontes A, Lanza VF, Sampaio JP, Santos A, Belda I. Global distribution of IRC7 alleles in Saccharomyces cerevisiae populations: a genomic and phenotypic survey within the wine clade. Environ Microbiol 2021; 23:3182-3195. [PMID: 33973343 DOI: 10.1111/1462-2920.15540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
The adaptation to the different biotic and abiotic factors of wine fermentation has led to the accumulation of numerous genomic hallmarks in Saccharomyces cerevisiae wine strains. IRC7, a gene encoding a cysteine-S-β-lyase enzyme related volatile thiols production in wines, has two alleles: a full-length allele (IRC7F ) and a mutated one (IRC7S ), harbouring a 38 bp-deletion. Interestingly, IRC7S -encoding a less active enzyme - appears widespread amongst wine populations. Studying the global distribution of the IRC7S allele in different yeast lineages, we confirmed its high prevalence in the Wine clade and demonstrated a minority presence in other domesticated clades (Wine-PDM, Beer and Bread) while it is completely missing in wild clades. Here, we show that IRC7S -homozygous (HS) strains exhibited both fitness and competitive advantages compared with IRC7F -homozygous (HF) strains. There are some pieces of evidence of the direct contribution of the IRC7S allele to the outstanding behaviour of HS strains (i.e., improved response to oxidative stress conditions and higher tolerance to high copper levels); however, we also identified a set of sequence variants with significant co-occurrence patterns with the IRC7S allele, which can be co-contributing to the fitness and competitive advantages of HS strains in wine fermentations.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - María Martín-Santamaría
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Iván Benito-Vázquez
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ana Pontes
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Val F Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Madrid, 28034, Spain
| | - José Paulo Sampaio
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology. Unit of Microbiology. Biology Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
30
|
Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Impact of CO 2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 2021; 348:109226. [PMID: 33964807 DOI: 10.1016/j.ijfoodmicro.2021.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| |
Collapse
|
31
|
Labuschagne PWJ, Rollero S, Divol B. Comparative uptake of exogenous thiamine and subsequent metabolic footprint in Saccharomyces cerevisiae and Kluyveromyces marxianus under simulated oenological conditions. Int J Food Microbiol 2021; 354:109206. [PMID: 34088559 DOI: 10.1016/j.ijfoodmicro.2021.109206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
Managed inoculation of non-Saccharomyces yeast species is regarded as a practical way to introduce new characteristics to wine. However, these yeasts struggle to survive until fermentation is complete. Kluyveromyces marxianus IWBT Y885 is one such yeast. Although it displays interesting oenological properties, a longer persistence during alcoholic fermentation would warranty a stronger impact on wine composition. A key factor for survival, growth and sustained metabolic activity of all yeasts is their nutrient requirements. Thus, identifying nutrients that are essential for maximising fermentation performance, and subsequently ensuring adequate levels of nutrients, is a means to ensure significant contribution of yeasts to wine properties. This study aimed to identify essential nutrients, other than previously studied sugars and nitrogen, for maximum impact of K. marxianus Y885, as well as to characterise the outcomes of their utilisation. A multifactorial experimental design was employed to investigate the impact of nutrient concentrations on fermentation performance with K. marxianus Y885 in synthetic must. B-complex vitamins most significantly impacted fermentation performance of K. marxianus Y885 compared to other nutrient groups investigated. Considering the well-established role of the vitamin, thiamine, for maximum fermentation performance during winemaking and the fact that it may be supplemented to wine fermentations legally, the responses to specifically exogenous thiamine concentration for K. marxianus Y885 and Saccharomyces cerevisiae EC1118 were compared in terms of population viability, fermentation rate, total sugars utilised, thiamine assimilation kinetics, and final wine composition. A saturation effect for initial thiamine concentration of K. marxianus Y885 fermentations was characterised, with a maximum fermentation rate and over 90% of available sugars utilisation obtained at 0.25 mg/L. An appreciably larger comparative increase in exponential cell growth rate, maximum population, fermentation rate and total CO2 production for K. marxianus Y885 compared to S. cerevisiae EC1118 revealed a greater necessity for thiamine to ensure maximum fermentation performance. A delayed uptake of thiamine at higher concentrations for K. marxianus Y885 suggested differential regulation of thiamine uptake compared to S. cerevisiae EC1118. In addition, different trends in metabolites produced between species suggest that thiamine concentration impacts the carbon metabolic flux differently in these two yeasts, potentially impacting final wine properties.
Collapse
Affiliation(s)
- Pieter W J Labuschagne
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa
| | - Stéphanie Rollero
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
32
|
Pérez D, Jaehde I, Guillamón JM, Heras JM, Querol A. Screening of Saccharomyces strains for the capacity to produce desirable fermentative compounds under the influence of different nitrogen sources in synthetic wine fermentations. Food Microbiol 2021; 97:103763. [PMID: 33653514 DOI: 10.1016/j.fm.2021.103763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
A collection of 33 Saccharomyces yeasts were used for wine fermentation with a sole nitrogen source: ammonium and four individual aroma-inducing amino acids. The fermentation performance and chemical wine composition were evaluated. The most valuable nitrogen sources were valine as a fermentation promoter on non-cerevisiae strains, phenylalanine as fruity aromas enhancer whereas the ethanol yield was lessened by leucine and isoleucine. S. cerevisiae SC03 and S. kudriavzevii SK02 strains showed to be the greatest producers of fruity ethyl esters while S. kudriavzevii strains SK06 and SK07 by shortening the fermentation duration. S. uvarum strains produced the greatest succinic acid amounts and, together with S. eubayanus, they reached the highest production of 2-phenylethanol and its acetate ester; whereas S. kudriavzevii strains were found to be positively related to high glycerol production.
Collapse
Affiliation(s)
- Dolores Pérez
- Lallemand Bio S.L., 08028, Barcelona, Spain; Estación Experimental Agropecuaria Mendoza (EEA), Instituto Nacional de Tecnología Agropecuaria (INTA), 5507, Luján de Cuyo, Mendoza, Argentina; Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain
| | - Inés Jaehde
- Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain; University of Bonn, Regina-Pacis-Weg 3, 53113, Bonn, Germany
| | - José Manuel Guillamón
- Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain
| | | | - Amparo Querol
- Departamento de Biotecnología de Los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de Los Alimentos (IATA)-CSIC, 46980, Valencia, Spain.
| |
Collapse
|
33
|
Li C, Ong KL, Cui Z, Sang Z, Li X, Patria RD, Qi Q, Fickers P, Yan J, Lin CSK. Promising advancement in fermentative succinic acid production by yeast hosts. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123414. [PMID: 32763704 DOI: 10.1016/j.jhazmat.2020.123414] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 05/22/2023]
Abstract
As a platform chemical with various applications, succinic acid (SA) is currently produced by petrochemical processing from oil-derived substrates such as maleic acid. In order to replace the environmental unsustainable hydrocarbon economy with a renewable environmentally sound carbohydrate economy, bio-based SA production process has been developed during the past two decades. In this review, recent advances in the valorization of solid organic wastes including mixed food waste, agricultural waste and textile waste for efficient, green and sustainable SA production have been reviewed. Firstly, the application, market and key global players of bio-SA are summarized. Then achievements in SA production by several promising yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica are detailed, followed by calculation and comparison of SA production costs between oil-based substrates and raw materials. Lastly, challenges in engineered microorganisms and fermentation processes are presented together with perspectives on the development of robust yeast SA producers via genome-scale metabolic optimization and application of low-cost raw materials as fermentation substrates. This review provides valuable insights for identifying useful directions for future bio-SA production improvement.
Collapse
Affiliation(s)
- Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhenyu Sang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Li
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Raffel Dharma Patria
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech., Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
34
|
Pinheiro T, Lip KYF, García-Ríos E, Querol A, Teixeira J, van Gulik W, Guillamón JM, Domingues L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 2020; 10:22329. [PMID: 33339840 PMCID: PMC7749138 DOI: 10.1038/s41598-020-77846-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
Affiliation(s)
- Tânia Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
35
|
Malecki M, Kamrad S, Ralser M, Bähler J. Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast. EMBO Rep 2020; 21:e50845. [PMID: 32896087 PMCID: PMC7645267 DOI: 10.15252/embr.202050845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha‐ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK‐activating kinase Ssp1. The TOR‐controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle‐derived amino acids.
Collapse
Affiliation(s)
- Michal Malecki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Stephan Kamrad
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK.,Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
36
|
Mendes Ferreira A, Mendes-Faia A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020; 9:E1231. [PMID: 32899297 PMCID: PMC7555314 DOI: 10.3390/foods9091231] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition.
Collapse
Affiliation(s)
- Ana Mendes Ferreira
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Arlete Mendes-Faia
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
37
|
Minebois R, Pérez-Torrado R, Querol A. A time course metabolism comparison among Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii species in wine fermentation. Food Microbiol 2020; 90:103484. [DOI: 10.1016/j.fm.2020.103484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
|
38
|
Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media. Proc Natl Acad Sci U S A 2020; 117:21804-21812. [PMID: 32817546 PMCID: PMC7474676 DOI: 10.1073/pnas.1921890117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a well-studied organism, which is used as a model organism for studying eukaryal biology and as a cell factory for the production of fuels, chemicals, and pharmaceuticals. For both applications, the way that the cell utilizes its finite protein resource and how those inherent trade-offs manifest themselves is of interest, not least for their impact on cellular metabolism. Here we elucidate how alterations of protein-allocation allow for S. cerevisiae to increase its growth rate. Our results on cellular proteome-allocation may aid the engineering of more efficient strains in industrial biotechnology as well as improve our understanding toward phenotypes of cancer cells that grow faster than normal cells. Several recent studies have shown that the concept of proteome constraint, i.e., the need for the cell to balance allocation of its proteome between different cellular processes, is essential for ensuring proper cell function. However, there have been no attempts to elucidate how cells’ maximum capacity to grow depends on protein availability for different cellular processes. To experimentally address this, we cultivated Saccharomyces cerevisiae in bioreactors with or without amino acid supplementation and performed quantitative proteomics to analyze global changes in proteome allocation, during both anaerobic and aerobic growth on glucose. Analysis of the proteomic data implies that proteome mass is mainly reallocated from amino acid biosynthetic processes into translation, which enables an increased growth rate during supplementation. Similar findings were obtained from both aerobic and anaerobic cultivations. Our findings show that cells can increase their growth rate through increasing its proteome allocation toward the protein translational machinery.
Collapse
|
39
|
Murakami N, Kotaka A, Isogai S, Ashida K, Nishimura A, Matsumura K, Hata Y, Ishida H, Takagi H. Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing. J Ind Microbiol Biotechnol 2020; 47:715-723. [PMID: 32748014 PMCID: PMC7658068 DOI: 10.1007/s10295-020-02297-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
Sake is a traditional Japanese alcoholic beverage brewed with the yeast Saccharomyces cerevisiae. Sake taste is affected by sugars, organic acids, and amino acids. We previously isolated mutants resistant to the proline analogue azetidine-2-carboxylate derived from a diploid sake yeast strain. Some of the mutants produced a greater amount of proline in the brewed sake. One of them (strain K-9-AZC) carried a novel mutation in the PRO1 gene encoding the Gln79His variant of the γ-glutamyl kinase Pro1, a key enzyme in proline biosynthesis in S. cerevisiae. This mutation resulted in extreme desensitization to feedback inhibition by proline, leading to proline overproduction. Interestingly, sake brewed with K-9-AZC contained 3.7-fold more proline, but only 25% less succinate than sake brewed with the parent strain. Metabolome analysis suggests that the decrease in succinate was attributable to a lower level of 2-oxoglutarate, which is converted into glutamate. The approach here could be a practical method for breeding of yeast strains involved in the diversity of sake taste.
Collapse
Affiliation(s)
- Naoyuki Murakami
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Shota Isogai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Keiko Ashida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Akira Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto, 612-8385, Japan
| | - Hiroshi Takagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
40
|
Perpetuini G, Tittarelli F, Battistelli N, Suzzi G, Tofalo R. γ‐aminobutyric acid production by
Kluyveromyces marxianus
strains. J Appl Microbiol 2020; 129:1609-1619. [DOI: 10.1111/jam.14736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022]
Affiliation(s)
- G. Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - F. Tittarelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - N. Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - G. Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| | - R. Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment University of Teramo Teramo Italy
| |
Collapse
|
41
|
Hranilovic A, Gambetta JM, Jeffery DW, Grbin PR, Jiranek V. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. Int J Food Microbiol 2020; 329:108651. [PMID: 32512285 DOI: 10.1016/j.ijfoodmicro.2020.108651] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/30/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
In Latin, 'pulcherrima' is a superlative form of an adjective that translates as beautiful. Apart from being 'the most beautiful' yeast, Metschnikowia pulcherrima has a remarkable potential in production of wines with lower ethanol content. The oenological performance of six M. pulcherrima strains was hereby tested in sequential cultures with Saccharomyces cerevisiae. The best-performing strain MP2 was further characterised in fermentations with different S. cerevisiae inoculation delays in both white grape juice and Chemically Defined Grape Juice Medium (CDGJM). The analysis of main metabolites, undertaken prior to sequential inoculations and upon fermentation completion, highlighted metabolic interactions and carbon sinks other than ethanol in MP2 treatments. Depending on the inoculation delay, MP2 white wines contained between 0.6% and 1.2% (v/v) less ethanol than the S. cerevisiae monoculture, with even larger decreases detected in the CDGJM. The MP2 treatments also contained higher concentrations of TCA cycle by-products (i.e. fumarate and succinate) and glycerol, and lower concentrations of acetic acid. The analysis of volatile compounds showed increased production of acetate esters and higher alcohols in all MP2 wines, alongside other compositional alterations arising from the S. cerevisiae inoculation delay.
Collapse
Affiliation(s)
- Ana Hranilovic
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia.
| | - Joanna M Gambetta
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia
| | - David W Jeffery
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Paul R Grbin
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Vladimir Jiranek
- The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, South Australia 5064, Australia; Department of Wine and Food Science, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
42
|
Yan G, Zhang B, Joseph L, Waterhouse AL. Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiol 2020; 90:103460. [PMID: 32336379 DOI: 10.1016/j.fm.2020.103460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/04/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
The use of Saccharomyces and non-Saccharomyces yeast species as mixed starters has potential advantages over pure culture fermentation due to increased wine complexity based on modification of metabolites of oenological interest. In this work, the effects of initial oxygenation on fermentation performance, chemical and volatile composition of French Colombard wine fermented with Hanseniaspora vineae and Saccharomyces cerevisiae in sequential inoculations were investigated in 1 L flasks. Although dominated by S. cerevisiae at the middle-end of fermentation, initial aeration for 1 day boosted H. vineae populations, and allowed H. vineae to coexist longer with S. cerevisiae in mixed cultures compared to no aeration, and suppressed S. cerevisiae later in the fermentation, which resulted in extended fermentation time. More important, the major fermentation products and volatile compounds were significantly modified by aeration and different from no aeration fermentation. The wines produced by aeration of mixed fermentations were characterized with higher amounts of glycerol, lactic acid and acetate esters, and lower levels of ethanol, higher alcohol and ethyl fatty acid esters. The aeration had more potential to shape the quality of wines and diversify the aromatic characteristics relative to simple mixed inoculation, as indicated by PCA analysis. Our results suggested that the impact of early aeration on yeast physiology extends beyond the aeration phase and influences fermentation activity, chemical and aromatic compounds in the following anaerobic stage. The aeration for a short time during the cell growth stage in mixed fermentation is therefore a potential means to increase the aromatic diversity and quality of wine, possibly providing an alternative approach to meet the expectations of wine consumers for diverse aromatic qualities.
Collapse
Affiliation(s)
- Guoliang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Boqing Zhang
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lucy Joseph
- Department of Viticulture and Enology, University of California, Davis, CA, United States
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, United States.
| |
Collapse
|
43
|
Xu X, Song Y, Guo L, Cheng W, Niu C, Wang J, Liu C, Zheng F, Zhou Y, Li X, Mu Y, Li Q. Higher NADH Availability of Lager Yeast Increases the Flavor Stability of Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:584-590. [PMID: 31623437 DOI: 10.1021/acs.jafc.9b05812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flavor stability is a significant concern to brewers as the staling compounds impart unpleasant flavor to beer. Thus, yeasts with antistaling ability have been engineered to produce beer with improved flavor stability. Here, we proposed that increasing the NADH availability of yeast could improve the flavor stability of beer. By engineering endogenous pathways, we obtained an array of yeast strains with a higher reducing activity. Then, we carried out beer fermentation with these strains and found that the antistaling capacities of the beer samples were improved. For a better understanding of the underlying mechanism, we compared the flavor profiles of these strains. The production of staling components was significantly decreased, whereas the content of antistaling components, such as SO2, was increased, in line with the increased antistaling ability. The other aroma components were marginally changed, indicating that this concept was useful for improving the antistaling stability without changing the flavor of beer.
Collapse
Affiliation(s)
| | - Yumei Song
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | - Liyun Guo
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | | | | | | | | | | | | | | | - Yingjian Mu
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | | |
Collapse
|
44
|
Su Y, Gamero A, Rodríguez ME, Lopes CA, Querol A, Guillamón JM. Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations. Int J Food Microbiol 2019; 310:108331. [DOI: 10.1016/j.ijfoodmicro.2019.108331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
|
45
|
Gulli J, Cook E, Kroll E, Rosebrock A, Caudy A, Rosenzweig F. Diverse conditions support near-zero growth in yeast: Implications for the study of cell lifespan. MICROBIAL CELL 2019; 6:397-413. [PMID: 31528631 PMCID: PMC6717879 DOI: 10.15698/mic2019.09.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Baker's yeast has a finite lifespan and ages in two ways: a mother cell can only divide so many times (its replicative lifespan), and a non-dividing cell can only live so long (its chronological lifespan). Wild and laboratory yeast strains exhibit natural variation for each type of lifespan, and the genetic basis for this variation has been generalized to other eukaryotes, including metazoans. To date, yeast chronological lifespan has chiefly been studied in relation to the rate and mode of functional decline among non-dividing cells in nutrient-depleted batch culture. However, this culture method does not accurately capture two major classes of long-lived metazoan cells: cells that are terminally differentiated and metabolically active for periods that approximate animal lifespan (e.g. cardiac myocytes), and cells that are pluripotent and metabolically quiescent (e.g. stem cells). Here, we consider alternative ways of cultivating Saccharomyces cerevisiae so that these different metabolic states can be explored in non-dividing cells: (i) yeast cultured as giant colonies on semi-solid agar, (ii) yeast cultured in retentostats and provided sufficient nutrients to meet minimal energy requirements, and (iii) yeast encapsulated in a semisolid matrix and fed ad libitum in bioreactors. We review the physiology of yeast cultured under each of these conditions, and explore their potential to provide unique insights into determinants of chronological lifespan in the cells of higher eukaryotes.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eugene Kroll
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Adam Rosebrock
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Present address: Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Amy Caudy
- Donnelly Centre for Cellular and Biological Research and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
46
|
The Proteome of Tetrasphaera elongata is adapted to Changing Conditions in Wastewater Treatment Plants. Proteomes 2019; 7:proteomes7020016. [PMID: 31027192 PMCID: PMC6630437 DOI: 10.3390/proteomes7020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/04/2022] Open
Abstract
The activated sludge in wastewater treatment plants (WWTP) designed for enhanced biological phosphorus removal (EBPR) experiences periodically changing nutrient and oxygen availability. Tetrasphaera is the most abundant genus in Danish WWTP and represents up to 20–30% of the activated sludge community based on 16S rRNA amplicon sequencing and quantitative fluorescence in situ hybridization analyses, although the genus is in low abundance in the influent wastewater. Here we investigated how Tetrasphaera can successfully out-compete most other microorganisms in such highly dynamic ecosystems. To achieve this, we analyzed the physiological adaptations of the WWTP isolate T. elongata str. LP2 during an aerobic to anoxic shift by label-free quantitative proteomics and NMR-metabolomics. Escherichia coli was used as reference organism as it shares several metabolic capabilities and is regularly introduced to wastewater treatment plants without succeeding there. When compared to E. coli, only minor changes in the proteome of T. elongata were observed after the switch to anoxic conditions. This indicates that metabolic pathways for anaerobic energy harvest were already expressed during the aerobic growth. This allows continuous growth of Tetrasphaera immediately after the switch to anoxic conditions. Metabolomics furthermore revealed that the substrates provided were exploited far more efficiently by Tetrasphaera than by E. coli. These results suggest that T. elongata prospers in the dynamic WWTP environment due to adaptation to the changing environmental conditions.
Collapse
|
47
|
Sakihama Y, Hidese R, Hasunuma T, Kondo A. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respiratory conditions. Sci Rep 2019; 9:5319. [PMID: 30926897 PMCID: PMC6440987 DOI: 10.1038/s41598-019-41863-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 11/10/2022] Open
Abstract
Yeasts are extremely useful, not only for fermentation but also for a wide spectrum of fuel and chemical productions. We analyzed the overall metabolic turnover and transcript dynamics in glycolysis and the TCA cycle, revealing the difference in adaptive pyruvate metabolic response between a Crabtree-negative species, Kluyveromyces marxianus, and a Crabtree-positive species, Saccharomyces cerevisiae, during aerobic growth. Pyruvate metabolism was inclined toward ethanol production under aerobic conditions in S. cerevisiae, while increased transcript abundances of the genes involved in ethanol metabolism and those encoding pyruvate dehydrogenase were seen in K. marxianus, indicating the augmentation of acetyl-CoA synthesis. Furthermore, different metabolic turnover in the TCA cycle was observed in the two species: malate and fumarate production in S. cerevisiae was higher than in K. marxianus, irrespective of aeration; however, fluxes of both the reductive and oxidative TCA cycles were enhanced in K. marxianus by aeration, implying both the cycles contribute to efficient electron flux without producing ethanol. Additionally, decreased hexokinase activity under aerobic conditions is expected to be important for maintenance of suitable carbon flux. These findings demonstrate differences in the key metabolic trait of yeasts employing respiration or fermentation, and provide important insight into the metabolic engineering of yeasts.
Collapse
Affiliation(s)
- Yuri Sakihama
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Hidese
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Innovation, Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
48
|
Xu X, Niu C, Liu C, Li Q. Unraveling the Mechanisms for Low-Level Acetaldehyde Production during Alcoholic Fermentation in Saccharomyces pastorianus Lager Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2020-2027. [PMID: 30666873 DOI: 10.1021/acs.jafc.8b06868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acetaldehyde is produced by yeast during alcoholic fermentation, and its modification greatly affects beer flavor and quality. In the current study, we analyzed two yeast strains with a low level of acetaldehyde to reveal the potential mechanism underpinning the desirable low acetaldehyde production by these strains. We demonstrated that high alcohol dehydrogenase (ADH) activity and high NADH availability were the dominant factors for the low level of acetaldehyde in the fermentation liquor at the end of fermentation. High ADH activity resulted in reduced accumulation of acetaldehyde during the cell growth phase by increasing the flux to ethanol, whereas high NADH availability (in the cytosol or mitochondria) enhanced acetaldehyde reduction at the later phase of main fermentation. Furthermore, NADH availability is a more useful target trait than ADH activity for constructing yeast strains with a low level of acetaldehyde for industrial applications in terms of flavor contribution and unaltered fermentation period.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
49
|
Xu X, Bao M, Niu C, Wang J, Liu C, Zheng F, Li Y, Li Q. Engineering the cytosolic NADH availability in lager yeast to improve the aroma profile of beer. Biotechnol Lett 2019; 41:363-369. [PMID: 30707389 DOI: 10.1007/s10529-019-02653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To improve the aroma profile of beer by using metabolic engineering to increase the availability of cytosolic NADH in lager yeast. RESULTS To alter NADH levels in lager yeast, the native FDH1 (YOR388C) encoding NAD+-dependent formate dehydrogenase was overexpressed in the yeast strain M14, yielding strain M-FDH1. This led to a simultaneous increase of NADH availability and NADH/NAD+ ratio in the M-FDH1 strain during fermentation. At the end of the main fermentation period, ethanol production by strain M-FDH1 was decreased by 13.2%, while glycerol production was enhanced by 129.4%, compared to the parental strain respectively. The production of esters and fusel alcohols by strains M14 and M-FDH1 was similar. By contrast, strain M-FDH1 generally produced less organic acids and off-flavor components than strain M14, improving the beer aroma. CONCLUSIONS Increased NADH availability led to rerouting of the carbon flux toward NADH-consuming pathways and accelerated the NADH-dependent reducing reactions in yeast, greatly impacting the formation of aroma compounds and improving the beer aroma.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Min Bao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
50
|
Xu X, Wang J, Bao M, Niu C, Liu C, Zheng F, Li Y, Li Q. Reverse metabolic engineering in lager yeast: impact of the NADH/NAD + ratio on acetaldehyde production during the brewing process. Appl Microbiol Biotechnol 2018; 103:869-880. [PMID: 30535678 DOI: 10.1007/s00253-018-9517-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Acetaldehyde is synthesized by yeast during the main fermentation period of beer production, which causes an unpleasant off-flavor. Therefore, there has been extensive effort toward reducing acetaldehyde to obtain a beer product with better flavor and anti-staling ability. In this study, we discovered that acetaldehyde production in beer brewing is closely related with the intracellular NADH equivalent regulated by the citric acid cycle. However, there was no significant relationship between acetaldehyde production and amino acid metabolism. A reverse engineering strategy to increase the intracellular NADH/NAD+ ratio reduced the final acetaldehyde production level, and vice versa. This work offers new insight into acetaldehyde metabolism and further provides efficient strategies for reducing acetaldehyde production by the regulating the intracellular NADH/NAD+ ratio through cofactor engineering.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Min Bao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yongxian Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214000, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|