1
|
Cheng M, Liu Y, Yan X. MmoD and MmoG Are Crucial for the Synthesis of Soluble Methane Monooxygenase in Methanotrophs. Mol Microbiol 2025; 123:362-377. [PMID: 39932830 DOI: 10.1111/mmi.15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Soluble methane monooxygenase (sMMO) from methanotrophs has been extensively investigated for decades. However, major knowledge gaps persist regarding the synthesis mechanism of sMMO, particularly concerning the ambiguous roles of mmoD and mmoG in the sMMO gene cluster. Here, the functions of mmoD and mmoG were investigated in a model methanotrophic strain, Methylotuvimicrobium buryatense 5GB1C. Both genes were found to be essential for the functional expression of sMMO. Genetic and biochemical data supported the hypothesis that MmoG acts as a folding chaperone for both MmoX and MmoR, while MmoD serves as an assembly chaperone for the hydroxylase component. The functional expression of sMMO in Escherichia coli was achieved in an mmoD- and mmoG-dependent manner. In addition, deletion of mmoD dramatically reduced the transcription of the sMMO cluster in M. buryatense 5GB1C, implying that MmoD may regulate the sMMO cluster via an unknown mechanism. Knockout of neither mmoD nor mmoG abolished the essential feature of "copper switch", indicating that they do not serve as the initial regulators of "copper switch". These results demonstrate the crucial roles of mmoD and mmoG in sMMO synthesis and offer new insights into heterologous expression of sMMO.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongchuang Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xin Yan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Rajeev A, Mohammed TP, George A, Sankaralingam M. Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies. CHEM REC 2025; 25:e202400186. [PMID: 39817884 PMCID: PMC11811604 DOI: 10.1002/tcr.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts. In this review, we outline the methane metabolism performed by methanotrophs and detail the latest advancements in the active site structures and catalytic mechanisms of both types of MMOs. Also, recent progress in the bioinspired approaches using various heterogeneous catalysts, especially first-row transition metal zeolites and the mechanistic insights are discussed. In addition, studies using molecular complexes such as "Periana catalyst" for methane to methanol conversion through methyl ester formation in the presence of strong acids are also detailed. Compared to the progress noted in the metal zeolites-mediated methane activation field, the utilisation of molecular catalysts or MMOs for this application is still in its nascent phase and further research is required to overcome the limitations of these methods effectively.
Collapse
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| |
Collapse
|
3
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Hwang Y, Na JG, Lee SJ. Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from Methylosinus sporium 5. Appl Environ Microbiol 2023; 89:e0210422. [PMID: 37668365 PMCID: PMC10537576 DOI: 10.1128/aem.02104-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 09/06/2023] Open
Abstract
Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including Alphaproteobacteria and Gammaproteobacteria, and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited. Herein, we elucidate the transcriptional pathway of sMMO depending on copper ion concentration, which affects the interaction of MmoR and sigma factor. MmoR and sigma-54 (σ54) from Methylosinus sporium 5 were successfully overexpressed in Escherichia coli and purified to investigate sMMO transcription in methanotrophs. The results indicated that σ54 binds to a promoter positioned -24 (GG) and -12 (TGC) upstream between mmoG and mmoX1. The binding affinity and selectivity are lower (Kd = 184.6 ± 6.2 nM) than those of MmoR. MmoR interacts with the upstream activator sequence (UAS) with a strong binding affinity (Kd = 12.5 ± 0.5 nM). Mutational studies demonstrated that MmoR has high selectivity to its binding partner (ACA-xx-TGT). Titration assays have demonstrated that MmoR does not coordinate with copper ions directly; however, its binding affinity to UAS decreases in a low-copper-containing medium. MmoR strongly interacts with adenosine triphosphate (Kd = 62.8 ± 0.5 nM) to generate RNA polymerase complex. This study demonstrated that the binding events of both MmoR and σ54 that regulate transcription in M. sporium 5 depend on the copper ion concentration. IMPORTANCE This study provides biochemical evidence of transcriptional regulation of soluble methane monooxygenase (sMMO) in methanotrophs that control methane levels in ecological systems. Previous studies have proposed transcriptional regulation of MMOs, including sMMO and pMMO, while we provide further evidence to elucidate its mechanism using a purified enhancer-binding protein (MmoR) and transcription factor (σ54). The characterization studies of σ54 and MmoR identified the promoter binding sites and enhancer-binding sequences essential for sMMO expression. Our findings also demonstrate that MmoR functions as a trigger for sMMO expression due to the high specificity and selectivity for enhancer-binding sequences. The UV-visible spectrum of purified MmoR suggested an iron coordination like other GAF domain, and that ATP is essential for the initiation of enhancer elements. Binding assays indicated that these interactions are blocked by the copper ion. These results provide novel insights into gene regulation of methanotrophs.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
| | - Jeong-Geol Na
- Department of Chemical Engineering, Sogang University , Seoul, South Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
- Institute of Molecular Biology and Genetics, Jeonbuk National University , Jeonju, South Korea
| |
Collapse
|
5
|
Huang X, Song Q, Guo S, Fei Q. Transcription regulation strategies in methylotrophs: progress and challenges. BIORESOUR BIOPROCESS 2022; 9:126. [PMID: 38647763 PMCID: PMC10992012 DOI: 10.1186/s40643-022-00614-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
As a promising industrial microorganism, methylotroph is capable of using methane or methanol as the sole carbon source natively, which has been utilized in the biosynthesis of various bioproducts. However, the relatively low efficiency of carbon conversion has become a limiting factor throughout the development of methanotrophic cell factories due to the unclear genetic background. To better highlight their advantages in methane or methanol-based biomanufacturing, some metabolic engineering strategies, including upstream transcription regulation projects, are being popularized in methylotrophs. In this review, several strategies of transcription regulations applied in methylotrophs are summarized and their applications are discussed and prospected.
Collapse
Affiliation(s)
- Xiaohan Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiaoqiao Song
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
6
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Khider MLK, Brautaset T, Irla M. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World J Microbiol Biotechnol 2021; 37:72. [PMID: 33765207 PMCID: PMC7994243 DOI: 10.1007/s11274-021-03038-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/02/2022]
Abstract
Worldwide, the use of methane is limited to generating power, electricity, heating, and for production of chemicals. We believe this valuable gas can be employed more widely. Here we review the possibility of using methane as a feedstock for biotechnological processes based on the application of synthetic methanotrophs. Methane monooxygenase (MMO) enables aerobic methanotrophs to utilize methane as a sole carbon and energy source, in contrast to industrial microorganisms that grow on carbon sources, such as sugar cane, which directly compete with the food market. However, naturally occurring methanotrophs have proven to be difficult to manipulate genetically and their current industrial use is limited to generating animal feed biomass. Shifting the focus from genetic engineering of methanotrophs, towards introducing metabolic pathways for methane utilization in familiar industrial microorganisms, may lead to construction of efficient and economically feasible microbial cell factories. The applications of a technology for MMO production are not limited to methane-based industrial synthesis of fuels and value-added products, but are also of interest in bioremediation where mitigating anthropogenic pollution is an increasingly relevant issue. Published research on successful functional expression of MMO does not exist, but several attempts provide promising future perspectives and a few recent patents indicate that there is an ongoing research in this field. Combining the knowledge on genetics and metabolism of methanotrophy with tools for functional heterologous expression of MMO-encoding genes in non-methanotrophic bacterial species, is a key step for construction of synthetic methanotrophs that holds a great biotechnological potential.
Collapse
Affiliation(s)
- May L K Khider
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
8
|
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021; 47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Thu Thi Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
9
|
Osborne CD, Haritos VS. Beneath the surface: Evolution of methane activity in the bacterial multicomponent monooxygenases. Mol Phylogenet Evol 2019; 139:106527. [PMID: 31173882 DOI: 10.1016/j.ympev.2019.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/09/2023]
Abstract
The bacterial multicomponent monooxygenase (BMM) family has evolved to oxidise a wide array of hydrocarbon substrates of importance to environmental emissions and biotechnology: foremost amongst these is methane, which requires among the most powerful oxidant in biology to activate. To understand how the BMM evolved methane oxidation activity, we investigated the changes in the enzyme family at different levels: operonic, phylogenetic analysis of the catalytic hydroxylase, subunit or folding factor presence, and sequence-function analysis across the entirety of the BMM phylogeny. Our results show that the BMM evolution of new activities was enabled by incremental increases in oxidative power of the active site, and these occur in multiple branches of the hydroxylase phylogenetic tree. While the hydroxylase primary sequence changes that resulted in increased oxidative power of the enzyme appear to be minor, the principle evolutionary advances enabling methane activity occurred in the other components of the BMM complex and in the recruitment of stability proteins. We propose that enzyme assembly and stabilization factors have independently-evolved multiple times in the BMM family to support enzymes that oxidise increasingly difficult substrates. Herein, we show an important example of evolution of catalytic function where modifications to the active site and substrate accessibility, which are the usual focus of enzyme evolution, are overshadowed by broader scale changes to structural stabilization and non-catalytic unit development. Retracing macroscale changes during enzyme evolution, as demonstrated here, should find ready application to other enzyme systems and in protein design.
Collapse
Affiliation(s)
- Craig D Osborne
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
10
|
|
11
|
McCarl V, Somerville MV, Ly MA, Henry R, Liew EF, Wilson NL, Holmes AJ, Coleman NV. Heterologous Expression of Mycobacterium Alkene Monooxygenases in Gram-Positive and Gram-Negative Bacterial Hosts. Appl Environ Microbiol 2018; 84:e00397-18. [PMID: 29802186 PMCID: PMC6052275 DOI: 10.1128/aem.00397-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 01/01/2023] Open
Abstract
Alkene monooxygenases (MOs) are soluble di-iron-containing enzymes found in bacteria that grow on alkenes. Here, we report improved heterologous expression systems for the propene MO (PmoABCD) and ethene MO (EtnABCD) from Mycobacterium chubuense strain NBB4. Strong functional expression of PmoABCD and EtnABCD was achieved in Mycobacterium smegmatis mc2155, yielding epoxidation activities (62 and 27 nmol/min/mg protein, respectively) higher than any reported to date for heterologous expression of a di-iron MO system. Both PmoABCD and EtnABCD were specialized for the oxidation of gaseous alkenes (C2 to C4), and their activity was much lower on liquid alkenes (C5 to C8). Despite intensive efforts to express the complete EtnABCD enzyme in Escherichia coli, this was not achieved, although recombinant EtnB and EtnD proteins could be purified individually in soluble form. The biochemical function of EtnD as an oxidoreductase was confirmed (1.36 μmol cytochrome c reduced/min/mg protein). Cloning the EtnABCD gene cluster into Pseudomonas putida KT2440 yielded detectable epoxidation of ethene (0.5 nmol/min/mg protein), and this could be stimulated (up to 1.1 nmol/min/mg protein) by the coexpression of cpn60 chaperonins from either Mycobacterium spp. or E. coli Successful expression of the ethene MO in a Gram-negative host was validated by both whole-cell activity assays and peptide mass spectrometry of induced proteins seen on SDS-PAGE gels.IMPORTANCE Alkene MOs are of interest for their potential roles in industrial biocatalysis, most notably for the stereoselective synthesis of epoxides. Wild-type bacteria that grow on alkenes have high activities for alkene oxidation but are problematic for biocatalysis, since they tend to consume the epoxide products. Using recombinant biocatalysts is the obvious alternative, but a major bottleneck is the low activities of recombinant alkene MOs. Here, we provide new high-activity recombinant biocatalysts for alkene oxidation, and we provide insights into how to further improve these systems.
Collapse
Affiliation(s)
- Victoria McCarl
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mark V Somerville
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mai-Anh Ly
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Rebecca Henry
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Elissa F Liew
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Neil L Wilson
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Andrew J Holmes
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| |
Collapse
|
12
|
Abstract
Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.
Collapse
Affiliation(s)
- Grace E Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
13
|
Smirnova AV, Dunfield PF. Differential Transcriptional Activation of Genes Encoding Soluble Methane Monooxygenase in a Facultative Versus an Obligate Methanotroph. Microorganisms 2018; 6:microorganisms6010020. [PMID: 29509697 PMCID: PMC5874634 DOI: 10.3390/microorganisms6010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/24/2022] Open
Abstract
Methanotrophs are a specialized group of bacteria that can utilize methane (CH4) as a sole energy source. A key enzyme responsible for methane oxidation is methane monooxygenase (MMO), of either a soluble, cytoplasmic type (sMMO), or a particulate, membrane-bound type (pMMO). Methylocellasilvestris BL2 and Methyloferulastellata AR4 are closely related methanotroph species that oxidize methane via sMMO only. However, Methyloferulastellata is an obligate methanotroph, while Methylocellasilvestris is a facultative methanotroph able to grow on several multicarbon substrates in addition to methane. We constructed transcriptional fusions of the mmo promoters of Methyloferulastellata and Methylocellasilvestris to a promoterless gfp in order to compare their transcriptional regulation in response to different growth substrates, in the genetic background of both organisms. The following patterns were observed: (1) The mmo promoter of the facultative methanotroph Methylocella silvestris was either transcriptionally downregulated or repressed by any growth substrate other than methane in the genetic background of Methylocellasilvetris; (2) Growth on methane alone upregulated the mmo promoter of Methylocellasilvetris in its native background but not in the obligate methanotroph Methyloferulastellata; (3) The mmo promoter of Methyloferulastellata was constitutive in both organisms regardless of the growth substrate, but with much lower promoter activity than the mmo promoter of Methylocellasilvetris. These results support a conclusion that a different mode of transcriptional regulation of sMMO contributes to the facultative lifestyle of Methylocellasilvetris compared to the obligate methanotroph Methyloferulastellata.
Collapse
Affiliation(s)
- Angela V Smirnova
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
14
|
Kenney GE, Sadek M, Rosenzweig AC. Copper-responsive gene expression in the methanotroph Methylosinus trichosporium OB3b. Metallomics 2016; 8:931-40. [PMID: 27087171 PMCID: PMC6195801 DOI: 10.1039/c5mt00289c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methanotrophic bacteria convert methane to methanol using methane monooxygenase (MMO) enzymes. In many strains, either an iron-containing soluble (sMMO) or a copper-containing particulate (pMMO) enzyme can be produced depending on copper availability; the mechanism of this copper switch has not been elucidated. A key player in methanotroph copper homeostasis is methanobactin (Mbn), a ribosomally produced, post-translationally modified natural product with a high affinity for copper. The Mbn precursor peptide is encoded within an operon that contains a range of putative transporters, regulators, and biosynthetic proteins, but the involvement of these genes in Mbn-related processes remains unclear. Extensive time-dependent qRT-PCR studies of Methylosinus trichosporium OB3b and the constitutive sMMO-producing mutant M. trichosporium OB3b PP358 show that the Mbn operon is indeed copper-regulated, providing experimental support for its bioinformatics-based identification. Moreover, the Mbn operon is co-regulated with the sMMO operon and reciprocally regulated with the pMMO operon. Within the Mbn and sMMO operons, a subset of regulatory genes exhibits a distinct and shared pattern of expression, consistent with their proposed functions as internal regulators. In addition, genome sequencing of the M. trichosporium OB3b PP358 mutant provides new evidence for the involvement of genes adjacent to the pMMO operon in methanotroph copper homeostasis.
Collapse
Affiliation(s)
- Grace E. Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston,IL 60208, USA.
| | - Monica Sadek
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston,IL 60208, USA.
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Lawton TJ, Rosenzweig AC. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. J Am Chem Soc 2016; 138:9327-40. [PMID: 27366961 PMCID: PMC5242187 DOI: 10.1021/jacs.6b04568] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. Methanobactin and the Link between Copper and Bacterial Methane Oxidation. Microbiol Mol Biol Rev 2016; 80:387-409. [PMID: 26984926 PMCID: PMC4867365 DOI: 10.1128/mmbr.00058-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu(2+) to Cu(1+). In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs.
Collapse
Affiliation(s)
- Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Colin Murrell
- Earth and Life Systems Alliance, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Warren H Gallagher
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stéphane Vuilleumier
- Department of Microbiology, Genomics and the Environment, UMR 7156 UNISTRA-CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Lee SJ. Hydroxylation of methane through component interactions in soluble methane monooxygenases. J Microbiol 2016; 54:277-82. [DOI: 10.1007/s12275-016-5642-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|
18
|
Vita N, Platsaki S, Baslé A, Allen SJ, Paterson NG, Crombie AT, Murrell JC, Waldron KJ, Dennison C. A four-helix bundle stores copper for methane oxidation. Nature 2015; 525:140-3. [PMID: 26308900 PMCID: PMC4561512 DOI: 10.1038/nature14854] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/23/2015] [Indexed: 11/09/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase. Certain methanotrophs are also able to switch to using the iron-containing soluble methane monooxygenase to catalyse methane oxidation, with this switchover regulated by copper. Methane monooxygenases are nature's primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and methane monooxygenases have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. Here we discover and characterize a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for particulate methane monooxygenase. Csp1 is a tetramer of four-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realized. Cytosolic homologues of Csp1 are present in diverse bacteria, thus challenging the dogma that such organisms do not use copper in this location.
Collapse
Affiliation(s)
- Nicolas Vita
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Semeli Platsaki
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Stephen J Allen
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Neil G Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
19
|
Nichol T, Murrell JC, Smith TJ. Controlling the Activities of the Diiron Centre in Bacterial Monooxygenases: Lessons from Mutagenesis and Biodiversity. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tim Nichol
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK, http://www.shu.ac.uk/research/bmrc/staff/professor‐tom‐smith
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Thomas J. Smith
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK, http://www.shu.ac.uk/research/bmrc/staff/professor‐tom‐smith
| |
Collapse
|
20
|
Kalyuzhnaya MG, Puri AW, Lidstrom ME. Metabolic engineering in methanotrophic bacteria. Metab Eng 2015; 29:142-152. [PMID: 25825038 DOI: 10.1016/j.ymben.2015.03.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/26/2015] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems.
Collapse
Affiliation(s)
- Marina G Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA 92182-4614, United States; Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - Aaron W Puri
- Department of Chemical Engineering, Seattle, WA 98195, United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, Seattle, WA 98195, United States; Department of Microbiology, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
21
|
Sazinsky MH, Lippard SJ. Methane Monooxygenase: Functionalizing Methane at Iron and Copper. Met Ions Life Sci 2015; 15:205-56. [DOI: 10.1007/978-3-319-12415-5_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Competition between metals for binding to methanobactin enables expression of soluble methane monooxygenase in the presence of copper. Appl Environ Microbiol 2014; 81:1024-31. [PMID: 25416758 DOI: 10.1128/aem.03151-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well known that copper is a key factor regulating expression of the two forms of methane monooxygenase found in proteobacterial methanotrophs. Of these forms, the cytoplasmic, or soluble, methane monooxygenase (sMMO) is expressed only at low copper concentrations. The membrane-bound, or particulate, methane monooxygenase (pMMO) is constitutively expressed with respect to copper, and such expression increases with increasing copper. Recent findings have shown that copper uptake is mediated by a modified polypeptide, or chalkophore, termed methanobactin. Although methanobactin has high specificity for copper, it can bind other metals, e.g., gold. Here we show that in Methylosinus trichosporium OB3b, sMMO is expressed and active in the presence of copper if gold is also simultaneously present. Such expression appears to be due to gold binding to methanobactin produced by M. trichosporium OB3b, thereby limiting copper uptake. Such expression and activity, however, was significantly reduced if methanobactin preloaded with copper was also added. Further, quantitative reverse transcriptase PCR (RT-qPCR) of transcripts of genes encoding polypeptides of both forms of MMO and SDS-PAGE results indicate that both sMMO and pMMO can be expressed when copper and gold are present, as gold effectively competes with copper for binding to methanobactin. Such findings suggest that under certain geochemical conditions, both forms of MMO may be expressed and active in situ. Finally, these findings also suggest strategies whereby field sites can be manipulated to enhance sMMO expression, i.e., through the addition of a metal that can compete with copper for binding to methanobactin.
Collapse
|
23
|
SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Microbiol 2014; 80:5801-6. [PMID: 25015887 DOI: 10.1128/aem.01338-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc(2)-155. Cells of mc(2)-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc(2)-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc(2)-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc(2)-155(pSmo) provides a new model for studying sMMO-like monooxygenases.
Collapse
|
24
|
Austin RN, Kenney GE, Rosenzweig AC. Perspective: what is known, and not known, about the connections between alkane oxidation and metal uptake in alkanotrophs in the marine environment. Metallomics 2014; 6:1121-5. [PMID: 24710692 PMCID: PMC4061484 DOI: 10.1039/c4mt00041b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Should iron and copper be added to the environment to stimulate the natural bioremediation of marine oil spills? The key enzymes that catalyze the oxidation of alkanes require either iron or copper, and the concentration of these ions in seawater is vanishingly low. Nevertheless, the dependence of alkane oxidation activity on external metal concentrations remains unclear. This perspective will summarize what is known about the co-regulation of alkane oxidation and metal acquisition and pose a series of critical questions to which, for the most part, we do not yet have answers. The paucity of answers points to the need for additional studies to illuminate the cellular biology connecting microbial growth on alkanes to the acquisition of metal ions.
Collapse
|
25
|
Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 2014; 32:596-614. [PMID: 24726715 DOI: 10.1016/j.biotechadv.2014.03.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/29/2014] [Accepted: 03/30/2014] [Indexed: 11/22/2022]
Abstract
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.
Collapse
|
26
|
Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli. Appl Environ Microbiol 2013; 79:6033-9. [PMID: 23892738 DOI: 10.1128/aem.01856-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial binuclear iron monooxygenases play numerous physiological roles in oxidative metabolism. Monooxygenases of this type found in actinomycetes also catalyze various useful reactions and have attracted much attention as oxidation biocatalysts. However, difficulties in expressing these multicomponent monooxygenases in heterologous hosts, particularly in Escherichia coli, have hampered the development of engineered oxidation biocatalysts. Here, we describe a strategy to functionally express the mycobacterial binuclear iron monooxygenase MimABCD in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the mimABCD gene expression in E. coli revealed that the oxygenase components MimA and MimC were insoluble. Furthermore, although the reductase MimB was expressed at a low level in the soluble fraction of E. coli cells, a band corresponding to the coupling protein MimD was not evident. This situation rendered the transformed E. coli cells inactive. We found that the following factors are important for functional expression of MimABCD in E. coli: coexpression of the specific chaperonin MimG, which caused MimA and MimC to be soluble in E. coli cells, and the optimization of the mimD nucleotide sequence, which led to efficient expression of this gene product. These two remedies enabled this multicomponent monooxygenase to be actively expressed in E. coli. The strategy described here should be generally applicable to the E. coli expression of other actinomycetous binuclear iron monooxygenases and related enzymes and will accelerate the development of engineered oxidation biocatalysts for industrial processes.
Collapse
|
27
|
Furuya T, Hayashi M, Semba H, Kino K. The mycobacterial binuclear iron monooxygenases require a specific chaperonin-like protein for functional expression in a heterologous host. FEBS J 2013; 280:817-26. [PMID: 23171424 DOI: 10.1111/febs.12070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022]
Abstract
The mimABCD gene clusters in Mycobacterium smegmatis strain mc(2) 155 and Mycobacterium goodii strain 12523 encode binuclear iron monooxygenases that oxidize propane and phenol. In this study, we attempted to express each mimABCD gene cluster in a heterologous host. The actinomycetous strain Rhodococcus opacus B-4, which is phylogenetically close to Mycobacterium, was selected as the host. Each mimABCD gene cluster was cloned into the Rhodococcus-Escherichia coli shuttle vector, pTip-QC2, and then introduced into R. opacus cells. Although whole-cell assays were performed with phenol as a substrate, the transformed R. opacus cells did not oxidize this substrate. SDS/PAGE analysis revealed that the oxygenase large subunit MimA was expressed in the insoluble fraction of R. opacus cells. We found that a gene designated mimG, which lies downstream of mimABCD, exhibits similarity in the amino acid sequence of its product with the products of genes encoding the chaperonin GroEL. When the mimG gene was cloned and coexpressed with each mimABCD gene cluster in R. opacus strain B-4, this host successfully acquired oxidation activity towards phenol. SDS/PAGE and western blotting analyses demonstrated that MimA was clearly soluble when in the presence of MimG. These results indicated that MimG played essential roles in the productive folding of MimA, and that the resulting soluble MimA protein led to the active expression of MimABCD.
Collapse
Affiliation(s)
- Toshiki Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria, organisms that live on methane gas as their sole carbon source. Understanding pMMO function has important implications for bioremediation applications and for the development of new, environmentally friendly catalysts for the direct conversion of methane to methanol. Crystal structures of pMMOs from three different methanotrophs reveal a trimeric architecture, consisting of three copies each of the pmoB, pmoA, and pmoC subunits. There are three distinct metal centers in each protomer of the trimer, mononuclear and dinuclear copper sites in the periplasmic regions of pmoB and a mononuclear site within the membrane that can be occupied by copper or zinc. Various models for the pMMO active site have been proposed within these structural constraints, including dicopper, tricopper, and diiron centers. Biochemical and spectroscopic data on pMMO and recombinant soluble fragments, denoted spmoB proteins, indicate that the active site involves copper and is located at the site of the dicopper center in the pmoB subunit. Initial spectroscopic evidence for O(2) binding at this site has been obtained. Despite these findings, questions remain about the active site identity and nuclearity and will be the focus of future studies.
Collapse
Affiliation(s)
- Megen A. Culpepper
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
29
|
Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD, Ly MA, Crossett B, Holmes AJ. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:297-307. [PMID: 23761275 DOI: 10.1111/j.1758-2229.2010.00225.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mycobacterium strain NBB4 was isolated on ethene as part of a bioprospecting study searching for novel monooxygenase (MO) enzymes of interest to biocatalysis and bioremediation. Previous work indicated that strain NBB4 contained an unprecedented diversity of MO genes, and we hypothesized that each MO type would support growth on a distinct hydrocarbon substrate. Here, we attempted to untangle the relationships between MO types and hydrocarbon substrates. Strain NBB4 was shown to grow on C2 -C4 alkenes and C2 -C16 alkanes. Complete gene clusters encoding six different monooxygenases were recovered from a fosmid library, including homologues of ethene MO (etnABCD), propene MO (pmoABCD), propane MO (smoABCD), butane MO (smoXYB1C1Z), cytochrome P450 (CYP153; fdx-cyp-fdr) and alkB (alkB-rubA1-rubA2). Catabolic enzymes involved in ethene assimilation (EtnA, EtnC, EtnD, EtnE) and alkane assimilation (alcohol and aldehyde dehydrogenases) were identified by proteomics, and we showed for the first time that stress response proteins (catalase/peroxidase, chaperonins) were induced by growth on C2 -C5 alkanes and ethene. Surprisingly, none of the identified MO genes could be specifically associated with oxidation of small alkanes, and thus the nature of the gaseous alkane MO in NBB4 remains mysterious.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Molecular Bioscience, Building G08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. Biodegradation 2011; 22:1045-59. [DOI: 10.1007/s10532-011-9462-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/17/2011] [Indexed: 01/21/2023]
|
31
|
|
32
|
Iguchi H, Yurimoto H, Sakai Y. Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol Lett 2010; 312:71-6. [DOI: 10.1111/j.1574-6968.2010.02101.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F, Hommais F, Lièvremont D, Arsène-Ploetze F, Coppée JY, Bertin PN. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 2010; 10:53. [PMID: 20167112 PMCID: PMC2848651 DOI: 10.1186/1471-2180-10-53] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. RESULTS In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (sigma54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 sigma54-dependent promoter motif was identified upstream of aoxAB coding sequences. CONCLUSION These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.
Collapse
Affiliation(s)
- Sandrine Koechler
- UMR7156 Génétique Moléculaire, Génomique et Microbiologie, CNRS Université de Strasbourg, 28 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
36
|
Scanlan J, Dumont MG, Murrell JC. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 2009; 301:181-7. [PMID: 19878324 DOI: 10.1111/j.1574-6968.2009.01816.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Methanotrophs oxidize methane to methanol using the enzyme methane monooxygenase. Methylosinus trichosporium OB3b has two such enzymes: a membrane-bound particulate methane monooxygenase (pMMO) and a soluble, cytoplasmic methane monooxygenase (sMMO). In methanotrophs possessing both enzymes, the expression of the genes encoding sMMO and pMMO is regulated by copper ions, with sMMO expressed solely when copper is limiting. Virtually nothing is known about the specific machinery involved in the copper-regulated transcription of mmo genes except the identification of two proteins necessary for the expression: a sigma(54)-dependent transcriptional activator, MmoR, and a putative GroEL-like chaperone, MmoG. Genes encoding mmoR and mmoG are located immediately upstream of those encoding sMMO in the genome of M. trichosporium OB3b. Here, we use a green fluorescent protein promoter probe vector to show that nearly the complete intergenic DNA sequence between mmoG and mmoX is absolutely required for transcriptional activation. Furthermore, we used gel-shift assays to demonstrate that both MmoR and MmoG were required for protein binding to this region of DNA.
Collapse
Affiliation(s)
- Julie Scanlan
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
37
|
Ukaegbu UE, Rosenzweig AC. Structure of the redox sensor domain of Methylococcus capsulatus (Bath) MmoS. Biochemistry 2009; 48:2207-15. [PMID: 19271777 PMCID: PMC2707821 DOI: 10.1021/bi8019614] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MmoS from Methylococcus capsulatus (Bath) is the multidomain sensor protein of a two-component signaling system proposed to play a role in the copper-mediated regulation of soluble methane monooxygenase (sMMO). MmoS binds an FAD cofactor within its N-terminal tandem Per-Arnt-Sim (PAS) domains, suggesting that it functions as a redox sensor. The crystal structure of the MmoS tandem PAS domains, designated PAS-A and PAS-B, has been determined to 2.34 A resolution. Both domains adopt the typical PAS domain alpha/beta topology and are structurally similar. The two domains are linked by a long alpha helix and do not interact with one another. The FAD cofactor is housed solely within PAS-A and is stabilized by an extended hydrogen bonding network. The overall fold of PAS-A is similar to those of other flavin-containing PAS domains, but homodimeric interactions in other structures are not observed in the MmoS sensor, which crystallized as a monomer. The structure both provides new insight into the architecture of tandem PAS domains and suggests specific residues that may play a role in MmoS FAD redox chemistry and subsequent signal transduction.
Collapse
Affiliation(s)
- Uchechi E. Ukaegbu
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
38
|
Ali H, Murrell JC. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology (Reading) 2009; 155:761-771. [DOI: 10.1099/mic.0.021816-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of integrative and versatile broad-host-range promoter-probe vectors carrying reporter genes encoding green fluorescent protein (GFP), catechol 2,3-dioxygenase (XylE) or β-galactosidase (LacZ) were constructed for use in methanotrophs. These vectors facilitated the measurement of in vivo promoter activity in methanotrophs under defined growth conditions. They were tested by constructing transcriptional fusions between the soluble methane monooxygenase (sMMO) σ
54 promoter or particulate methane monooxygenase (pMMO) σ
70 promoter from Methylococcus capsulatus and the reporter genes. Reporter gene activity was measured under high- and low-copper growth conditions and the data obtained closely reflected transcriptional regulation of the sMMO or pMMO operon, thus demonstrating the suitability of these vectors for assessing promoter activity in methanotrophs. When β-galactosidase expression was coupled with the fluorogenic substrate 4-methylumbelliferyl β-d-glucuronide it yielded a sensitive and powerful screening system for detecting cells expressing this reporter gene. These data were substantiated with independent experiments using RT-PCR and RNA dot-blot analysis.
Collapse
Affiliation(s)
- Hanif Ali
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - J. Colin Murrell
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
39
|
Trotsenko YA, Murrell JC. Metabolic aspects of aerobic obligate methanotrophy. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:183-229. [PMID: 18395128 DOI: 10.1016/s0065-2164(07)00005-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuri A Trotsenko
- G.K.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow 142290, Russia
| | | |
Collapse
|
40
|
Nakamura T, Hoaki T, Hanada S, Maruyama A, Kamagata Y, Fuse H. Soluble and particulate methane monooxygenase gene clusters in the marine methanotroph Methylomicrobium sp. strain NI. FEMS Microbiol Lett 2008; 277:157-64. [PMID: 18031335 DOI: 10.1111/j.1574-6968.2007.00953.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO) gene clusters in the marine methanotroph Methylomicrobium sp. strain NI were completely sequenced and analysed. Degenerated primers were newly designed and used to amplify the gene fragments containing intergenic mmoX-Y and mmoD-C regions and a partial pmoC region. Phylogenetic analysis of amino acid sequences deduced from mmoX and pmoA, as well as of 16S rRNA gene sequences, indicated that this strain was most closely related to the halotolerant methanotroph Methylomicrobium buryatense. There were putative sigma(54)- and sigma(70)-dependent promoter sequences upstream of the sMMO and pMMO genes, respectively, and mmoG, which is known to be related to the expression and assembly of sMMO, existed downstream of the sMMO genes. These findings suggest that the major components and regulation of MMOs in this marine methanotroph are quite similar to those in freshwater methane oxidizers, despite the difference in their habitats.
Collapse
|
41
|
Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA. Involvement of BmoR and BmoG in n-alkane metabolism in ‘Pseudomonas butanovora’. Microbiology (Reading) 2008; 154:139-147. [DOI: 10.1099/mic.0.2007/012724-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizabeth G. Kurth
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - David M. Doughty
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter J. Bottomley
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J. Arp
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Luis A. Sayavedra-Soto
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
42
|
Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2007; 74:1305-15. [PMID: 18165358 DOI: 10.1128/aem.02233-07] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Abstract
Methanotrophic bacteria oxidize methane to methanol in the first step of their metabolic pathway. Two forms of methane monooxygenase (MMO) enzymes catalyze this reaction: soluble MMO (sMMO) and membrane-bound or particulate MMO (pMMO). pMMO is expressed when copper is available, and its active site is believed to contain copper. Whereas sMMO is well characterized, most aspects of pMMO biochemistry remain unknown and somewhat controversial. This review emphasizes advances in the past two to three years related to pMMO and to copper uptake and copper-dependent regulation in methanotrophs. The pMMO metal centers have been characterized spectroscopically, and the first pMMO crystal structure has been determined. Significant effort has been devoted to improving in vitro pMMO activity. Proteins involved in sMMO regulation and additional copper-regulated proteins have been identified, and the Methylococcus capsulatus (Bath) genome has been sequenced. Finally, methanobactin (mb), a small copper chelator proposed to facilitate copper uptake, has been characterized.
Collapse
Affiliation(s)
- Amanda S Hakemian
- Department of Biochemistry, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
44
|
Borodina E, Nichol T, Dumont MG, Smith TJ, Murrell JC. Mutagenesis of the "leucine gate" to explore the basis of catalytic versatility in soluble methane monooxygenase. Appl Environ Microbiol 2007; 73:6460-7. [PMID: 17704278 PMCID: PMC2075044 DOI: 10.1128/aem.00823-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble methane monooxygenase (sMMO) from methane-oxidizing bacteria is a multicomponent nonheme oxygenase that naturally oxidizes methane to methanol and can also cooxidize a wide range of adventitious substrates, including mono- and diaromatic hydrocarbons. Leucine 110, at the mouth of the active site in the alpha subunit of the hydroxylase component of sMMO, has been suggested to act as a gate to control the access of substrates to the active site. Previous crystallography of the wild-type sMMO has indicated at least two conformations of the enzyme that have the "leucine gate" open to different extents, and mutagenesis of homologous enzymes has indicated a role for this residue in the control of substrate range and regioselectivity with aromatic substrates. By further refinement of the system for homologous expression of sMMO that we developed previously, we have been able to prepare a range of site-directed mutations at position 110 in the alpha subunit of sMMO. All the mutants (with Gly, Cys, Arg, and Tyr, respectively, at this position) showed relaxations of regioselectivity compared to the wild type with monoaromatic substrates and biphenyl, including the appearance of new products arising from hydroxylation at the 2- and 3- positions on the benzene ring. Mutants with the larger Arg and Trp residues at position 110 also showed shifts in regioselectivity during naphthalene hydroxylation from the 2- to the 1- position. No evidence that mutagenesis of Leu 110 could allow very large substrates to enter the active site was found, however, since the mutants (like the wild type) were inactive toward the triaromatic hydrocarbons anthracene and phenanthrene. Thus, our results indicate that the "leucine gate" in sMMO is more important in controlling the precision of regioselectivity than the sizes of substrates that can enter the active site.
Collapse
Affiliation(s)
- Elena Borodina
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Ali H, Scanlan J, Dumont MG, Murrell JC. Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. MICROBIOLOGY-SGM 2007; 152:2931-2942. [PMID: 17005974 DOI: 10.1099/mic.0.29031-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The soluble methane monooxygenase (sMMO) is a key enzyme for methane oxidation, and is found in only some methanotrophs, including Methylosinus sporium 5. sMMO expression is regulated at the level of transcription from a sigma(54) promoter by a copper-switch, and is only expressed when the copper-to-biomass ratio during growth is low. Extensive phylogenetic and genetic analyses of sMMOs and other soluble di-iron monooxygenases reveal that these enzymes have only been acquired relatively recently through horizontal gene transfer. In this study, further evidence of horizontal gene transfer was obtained, through cloning and sequencing of the genes encoding the sMMO enzyme complex plus the regulatory genes mmoG and mmoR, and identification of a duplicate copy of the mmoX gene in Ms. sporium. mmoX encodes the alpha subunit of the hydroxylase of the sMMO enzyme, which constitutes the active site (Prior & Dalton, 1985). The mmoX genes were characterized at the molecular and biochemical levels. Although both copies were transcribed, only mmoX copy 1 was essential for sMMO activity. Construction of an sMMO(-) mutant by marker-exchange mutagenesis gave some possible insights into the role of the water-soluble pigment in siderophore-mediated iron acquisition. Finally, the amenability of Ms. sporium to genetic manipulation was demonstrated by complementing the sMMO(-) mutant by heterologous expression of sMMO genes from Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath), and it was shown that Ms. sporium could be used as an alternative model organism for molecular analysis of MMO regulation.
Collapse
Affiliation(s)
- Hanif Ali
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Julie Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marc G Dumont
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - J Colin Murrell
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
46
|
Molecular sequencing and analysis of soluble methane monooxygenase gene clusters from methanotroph Methylomonas sp. GYJ3. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9227-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Structure, Function and Formation of Bacterial Intracytoplasmic Membranes. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC. Regulation of methane oxidation in the facultative methanotrophMethylocella silvestrisBL2. Mol Microbiol 2005; 58:682-92. [PMID: 16238619 DOI: 10.1111/j.1365-2958.2005.04861.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular regulation of methane oxidation in the first fully authenticated facultative methanotroph Methylocella silvestris BL2 was assessed during growth on methane and acetate. Problems of poor growth of Methylocella spp. in small-scale batch culture were overcome by growth in fermentor culture. The genes encoding soluble methane monooxygenase were cloned and sequenced, which revealed that the structural genes for soluble methane monooxygenase, mmoXYBZDC, were adjacent to two genes, mmoR and mmoG, encoding a sigma54 transcriptional activator and a putative GroEL-like chaperone, located downstream (3') of mmoC. Transcriptional analysis revealed that the genes were all cotranscribed from a sigma54-dependent promoter located upstream (5') of mmo X. The transcriptional start site was mapped. Transcriptional analysis of soluble methane monooxygenase genes and expression studies on fermentor grown cultures showed that acetate repressed transcription of sMMO in M. silvestris BL2. The possibility of the presence of a particulate, membrane-bound methane monooxygenase enzyme in M. silvestris BL2 and the copper-mediated regulation of soluble methane monooxygenase was investigated. Both were shown to be absent. A promoter probe vector was constructed and used to assay transcription of the promoter of the soluble methane monoxygenase genes of M. silvestris BL2 grown under various conditions and with different substrates. These data represent the first insights into the molecular physiology of a facultative methanotroph.
Collapse
Affiliation(s)
- Andreas R Theisen
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dalton H. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc Lond B Biol Sci 2005; 360:1207-22. [PMID: 16147517 PMCID: PMC1569495 DOI: 10.1098/rstb.2005.1657] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2000] [Accepted: 12/17/2004] [Indexed: 11/12/2022] Open
Abstract
Methane gas is produced from many natural and anthropogenic sources. As such, methane gas plays a significant role in the Earth's climate, being 25 times more effective as a greenhouse gas than carbon dioxide. As with nearly all other naturally produced organic molecules on Earth, there are also micro-organisms capable of using methane as their sole source of carbon and energy. The microbes responsible (methanotrophs) are ubiquitous and, for the most part, aerobic. Although anaerobic methanotrophs are believed to exist, so far, none have been isolated in pure culture. Methanotrophs have been known to exist for over 100 years; however, it is only in the last 30 years that we have begun to understand their physiology and biochemistry. Their unique ability to use methane for growth is attributed to the presence of a multicomponent enzyme system-methane monooxygenase (MMO)-which has two distinct forms: soluble (sMMO) and membrane-associated (pMMO); however, both convert methane into the readily assimilable product, methanol. Our understanding of how bacteria are capable of effecting one of the most difficult reactions in chemistry-namely, the controlled oxidation of methane to methanol-has been made possible by the isolation, in pure form, of the enzyme components.The mechanism by which methane is activated by sMMO involves abstraction of a hydrogen atom from methane by a high-valence iron species (FeIV or possibly FeV) in the hydroxylase component of the MMO complex to form a methyl radical. The radical combines with a captive oxygen atom from dioxygen to form the reaction product, methanol, which is further metabolized by the cell to produce multicarbon intermediates. Regulation of the sMMO system relies on the remarkable properties of an effector protein, protein B. This protein is capable of facilitating component interactions in the presence of substrate, modifying the redox potential of the diiron species at the active site. These interactions permit access of substrates to the hydroxylase, coupling electron transfer by the reductase with substrate oxidation and affecting the rate and regioselectivity of the overall reaction. The membrane-associated form is less well researched than the soluble enzyme, but is known to contain copper at the active site and probably iron. From an applied perspective, methanotrophs have enjoyed variable successes. Whole cells have been used as a source of single-cell protein (SCP) since the 1970s, and although most plants have been mothballed, there is still one currently in production. Our earlier observations that sMMO was capable of inserting an oxygen atom from dioxygen into a wide variety of hydrocarbon (and some non-hydrocarbon) substrates has been exploited to either produce value added products (e.g. epoxypropane from propene), or in the bioremediation of pollutants such as chlorinated hydrocarbons. Because we have shown that it is now possible to drive the reaction using electricity instead of expensive chemicals, there is promise that the system could be exploited as a sensor for any of the substrates of the enzyme.
Collapse
Affiliation(s)
- Howard Dalton
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
50
|
Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA. Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 2004; 305:1612-5. [PMID: 15361623 DOI: 10.1126/science.1098322] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Siderophores are extracellular iron-binding compounds that mediate iron transport into many cells. We present evidence of analogous molecules for copper transport from methane-oxidizing bacteria, represented here by a small fluorescent chromopeptide (C45N12O14H62Cu, 1216 daltons) produced by Methylosinus trichosporium OB3b. The crystal structure of this compound, methanobactin, was resolved to 1.15 angstroms. It is composed of a tetrapeptide, a tripeptide, and several unusual moieties, including two 4-thionyl-5-hydroxy-imidazole chromophores that coordinate the copper, a pyrrolidine that confers a bend in the overall chain, and an amino-terminal isopropylester group. The copper coordination environment includes a dual nitrogen- and sulfur-donating system derived from the thionyl imidazolate moieties. Structural elucidation of this molecule has broad implications in terms of organo-copper chemistry, biological methane oxidation, and global carbon cycling.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|