1
|
Ochoa-Sánchez LE, Martínez JL, Gil-Gil T. Evolution of Resistance against Ciprofloxacin, Tobramycin, and Trimethoprim/Sulfamethoxazole in the Environmental Opportunistic Pathogen Stenotrophomonas maltophilia. Antibiotics (Basel) 2024; 13:330. [PMID: 38667006 PMCID: PMC11047544 DOI: 10.3390/antibiotics13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that produces respiratory infections in immunosuppressed and cystic fibrosis patients. The therapeutic options to treat S. maltophilia infections are limited since it exhibits resistance to a wide variety of antibiotics such as β-lactams, aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, or carbapenems. The antibiotic combination trimethoprim/sulfamethoxazole (SXT) is the treatment of choice to combat infections caused by S. maltophilia, while ceftazidime, ciprofloxacin, or tobramycin are used in most SXT-resistant infections. In the current study, experimental evolution and whole-genome sequencing (WGS) were used to examine the evolutionary trajectories of S. maltophilia towards resistance against tobramycin, ciprofloxacin, and SXT. The genetic changes underlying antibiotic resistance, as well as the evolutionary trajectories toward that resistance, were determined. Our results determine that genomic changes in the efflux pump regulatory genes smeT and soxR are essential to confer resistance to ciprofloxacin, and the mutation in the rplA gene is significant in the resistance to tobramycin. We identified mutations in folP and the efflux pump regulator smeRV as the basis of SXT resistance. Detailed and reliable knowledge of ciprofloxacin, tobramycin, and SXT resistance is essential for safe and effective use in clinical settings. Herein, we were able to prove once again the extraordinary ability that S. maltophilia has to acquire resistance and the importance of looking for alternatives to combat this resistance.
Collapse
Affiliation(s)
- Luz Edith Ochoa-Sánchez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Estevens R, Mil-Homens D, Fialho AM. In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains. Microorganisms 2023; 11:1118. [PMID: 37317093 DOI: 10.3390/microorganisms11051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 06/16/2023] Open
Abstract
Burkholderia cenocepacia is a multi-drug-resistant lung pathogen. This species synthesizes various virulence factors, among which cell-surface components (adhesins) are critical for establishing the contact with host cells. This work in the first part focuses on the current knowledge about the adhesion molecules described in this species. In the second part, through in silico approaches, we perform a comprehensive analysis of a group of unique bacterial proteins possessing collagen-like domains (CLDs) that are strikingly overrepresented in the Burkholderia species, representing a new putative class of adhesins. We identified 75 CLD-containing proteins in Burkholderia cepacia complex (Bcc) members (Bcc-CLPs). The phylogenetic analysis of Bcc-CLPs revealed the evolution of the core domain denominated "Bacterial collagen-like, middle region". Our analysis remarkably shows that these proteins are formed by extensive sets of compositionally biased residues located within intrinsically disordered regions (IDR). Here, we discuss how IDR functions may increase their efficiency as adhesion factors. Finally, we provided an analysis of a set of five homologs identified in B. cenocepacia J2315. Thus, we propose the existence in Bcc of a new type of adhesion factors distinct from the described collagen-like proteins (CLPs) found in Gram-positive bacteria.
Collapse
Affiliation(s)
- Ricardo Estevens
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Dalila Mil-Homens
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Health and Bioeconomic (i4HB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsenio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Institute for Health and Bioeconomic (i4HB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Wu WJH, Kim M, Chang LC, Assie A, Saldana-Morales FB, Zegarra-Ruiz DF, Norwood K, Samuel BS, Diehl GE. Interleukin-1β secretion induced by mucosa-associated gut commensal bacteria promotes intestinal barrier repair. Gut Microbes 2022; 14:2014772. [PMID: 34989321 PMCID: PMC8741296 DOI: 10.1080/19490976.2021.2014772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota is essential for maintenance and repair of the intestinal epithelial barrier. As shifts in both intestinal epithelial barrier function and microbiota composition are found in inflammatory bowel disease patients, it is critical to understand the role of distinct bacteria in regulating barrier repair. We identified a mouse commensal E. coli isolate, GDAR2-2, that protects mice from Citrobacter rodentium infection and dextran sulfate sodium-induced colitis. Colonization with GDAR2-2 in mice resulted in expansion of CX3CR1+ mononuclear phagocytes, including CX3CR1+ macrophages/dendritic cells and monocytes, along with IL-22-secreting type 3 innate lymphoid cells and improved epithelial barrier function. In vitro co-culture of macrophages with GDAR2-2 resulted in IL-1β production. In vivo, protection after GDAR2-2 colonization was lost after depletion of CX3CR1+ MNPs, or blockade of IL-1β or IL-22. We further identified human commensal E. coli isolates that similarly protect mice from C. rodentium infection through CX3CR1+ MNP and IL-1β production. Together, these findings demonstrate an unexpected role for commensal bacteria in promoting IL-1β secretion to support intestinal barrier repair.
Collapse
Affiliation(s)
- Wan-Jung H. Wu
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Memorial Sloan Kettering Cancer Center, Immunology Program of the Sloan Kettering Institute, New York, NY, USA
| | - Myunghoo Kim
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Present Address: Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Korea
| | - Lin-Chun Chang
- Memorial Sloan Kettering Cancer Center, Immunology Program of the Sloan Kettering Institute, New York, NY, USA
| | - Adrien Assie
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Fatima B. Saldana-Morales
- Memorial Sloan Kettering Cancer Center, Immunology Program of the Sloan Kettering Institute, New York, NY, USA
- Neuroscience Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Daniel F. Zegarra-Ruiz
- Memorial Sloan Kettering Cancer Center, Immunology Program of the Sloan Kettering Institute, New York, NY, USA
| | - Kendra Norwood
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Buck S. Samuel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Gretchen E. Diehl
- Memorial Sloan Kettering Cancer Center, Immunology Program of the Sloan Kettering Institute, New York, NY, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
He LH, Wang H, Liu Y, Kang M, Li T, Li CC, Tong AP, Zhu YB, Song YJ, Savarino SJ, Prouty MG, Xia D, Bao R. Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. PLoS Pathog 2020; 16:e1008848. [PMID: 33007034 PMCID: PMC7531860 DOI: 10.1371/journal.ppat.1008848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.
Collapse
Affiliation(s)
- Li-hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mei Kang
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-ping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J. Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Lithgow KV, Scott NE, Iwashkiw JA, Thomson ELS, Foster LJ, Feldman MF, Dennis JJ. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 2014; 92:116-37. [PMID: 24673753 DOI: 10.1111/mmi.12540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 01/25/2023]
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | | | | | | | |
Collapse
|
6
|
Dedeckova K, Kalferstova L, Strnad H, Vavrova J, Drevinek P. Novel diagnostic PCR assay for Burkholderia cenocepacia epidemic strain ST32 and its utility in monitoring infection in cystic fibrosis patients. J Cyst Fibros 2013; 12:475-81. [PMID: 23317764 DOI: 10.1016/j.jcf.2012.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND A highly transmissible Burkholderia cenocepacia sequence type (ST) 32 strain caused a major outbreak at the Prague Cystic Fibrosis (CF) Centre in the late 1990s and early 2000s. Because a large number of CF patients were affected by ST32, a rapid and easy-to-use diagnostic tool for ST32 infection was urgently needed for the detection of new cases as well as for long-term surveillance. The present study sought to identify unique DNA sequences within the ST32 genome to develop an ST32 strain-specific PCR assay. METHODS Genomic subtractive hybridisation between B. cenocepacia ST32 and the closely related genome-sequenced strain B. cenocepacia ST28 identified a 325 bp long region that was absent in all but one Burkholderia strain, as demonstrated by our newly designed PCR. RESULTS Out of 57 strains, only B. cenocepacia ST33 cross-reacted with ST32, resulting in a PCR specificity of 98.2%. This specificity was further tested by various genotyping methods, which revealed the practical indistinguishibility of ST32 and ST33. The PCR sensitivity, checked on a panel of 50 ST32 clinical isolates, was 100%. A closer examination of the ST32-specific sequence revealed no significant homology apart from a fragment of the ISBmu3 transposase. CONCLUSIONS This novel ST32-specific PCR assay allows the rapid and reliable detection of a globally distributed B. cenocepacia epidemic strain. Its routine use is especially well suited to infection surveillance programs for CF populations with a high rate of ST32 infection. This PCR method can also be used to detect ST33, a clonal variant of ST32.
Collapse
Affiliation(s)
- Klara Dedeckova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, Prague 5, 150 06, Czech Republic
| | | | | | | | | |
Collapse
|
7
|
Inhülsen S, Aguilar C, Schmid N, Suppiger A, Riedel K, Eberl L. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111. Microbiologyopen 2012; 1:225-42. [PMID: 22950027 PMCID: PMC3426421 DOI: 10.1002/mbo3.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia has emerged as an important pathogen for patients suffering from cystic fibrosis (CF). Previous work has shown that this organism employs the CepIR quorum-sensing (QS) system to control the expression of virulence factors as well as the formation of biofilms. To date, however, very little is known about the QS-regulated virulence factors and virtually nothing about the factors that link QS and biofilm formation. Here, we have employed a combined transcriptomic and proteomic approach to precisely define the QS regulon in our model strain B. cenocepacia H111, a CF isolate. Among the identified CepR-activated loci, three were analyzed in better detail for their roles in biofilm development: (i) a gene cluster coding for the BclACB lectins, (ii) the large surface protein BapA, and (iii) a type I pilus. The analysis of defined mutants revealed that BapA plays a major role in biofilm formation on abiotic surfaces while inactivation of the type I pilus showed little effect both in a static microtitre dish-based biofilm assay and in flow-through cells. Inactivation of the bclACB lectin genes resulted in biofilms containing hollow microcolonies, suggesting that the lectins are important for biofilm structural development.
Collapse
Affiliation(s)
- Silja Inhülsen
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Claudio Aguilar
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Nadine Schmid
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Angela Suppiger
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| | - Kathrin Riedel
- Institute of Microbiology, Ernst-Moritz-Arndt University of GreifswaldFriedrich-Ludwig-Jahn-Strasse 15, D-17487, Greifswald,, Germany
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of ZurichZollikerstrasse, 107, 8008 Zurich, Switzerland
| |
Collapse
|
8
|
Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2011; 16:821-30. [PMID: 20880411 DOI: 10.1111/j.1469-0691.2010.03237.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia cepacia complex (Bcc) bacteria have gained notoriety as pathogens in cystic fibrosis (CF) because they are difficult to identify and treat, and also have the ability to spread between CF individuals. Of the 17 formally named species within the complex, Burkholderia multivorans and Burkholderia cenocepacia dominate in CF. Multilocus sequence typing has proven to be a very useful tool for tracing the global epidemiology of Bcc bacteria and has shown that B. cenocepacia strains with high transmissibility, such as the ET-12 strain (ST-28) and the Czech strain (ST-32), have spread epidemically within CF populations in Canada and Europe. The majority of research on the molecular pathogenesis of Bcc bacteria has focused on the B. cenocepacia ET-12 epidemic lineage, with gene mutation, genome sequence analysis and, most recently, global gene expression studies shedding considerable light on the virulence and antimicrobial resistance of this pathogen. These studies demonstrate that the ability of B. cenocepacia to acquire foreign DNA (genomic islands, insertion sequences and other mobile elements), regulate gene expression via quorum sensing, compete for iron during infection, and mediate antimicrobial resistance and inflammation via its membrane and surface polysaccharides are key features that underpin the virulence of different strains. With the wealth of molecular knowledge acquired in the last decade on B. cenocepacia strains, we are now in a much better position to develop strategies for the treatment of pathogenic colonization with Bcc and to answer key questions on pathogenesis concerning, for example, the factors that trigger the rapid clinical decline in CF patients.
Collapse
Affiliation(s)
- P Drevinek
- Paediatric Department, 2nd Medical School, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
9
|
Ammendolia MG, Bertuccini L, Iosi F, Minelli F, Berlutti F, Valenti P, Superti F. Bovine lactoferrin interacts with cable pili of Burkholderia cenocepacia. Biometals 2010; 23:531-42. [DOI: 10.1007/s10534-010-9333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/25/2010] [Indexed: 12/01/2022]
|
10
|
Mil-Homens D, Rocha EPC, Fialho AM. Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage. Microbiology (Reading) 2010; 156:1084-1096. [DOI: 10.1099/mic.0.032623-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) are respiratory pathogens in patients with cystic fibrosis (CF). Close repetitive DNA sequences often associate with surface antigens to promote genetic variability in pathogenic bacteria. The genome of Burkholderia cenocepacia J2315, a CF isolate belonging to the epidemic lineage Edinburgh–Toronto (ET-12), was analysed for the presence of close repetitive DNA sequences. Among the 422 DNA close repeats, 45 genes potentially involved in virulence were identified and grouped into 12 classes; of these, 13 genes were included in the antigens class. Two trimeric autotransporter adhesins (TAA) among the 13 putative antigens are absent from the other Burkholderia genomes and are clustered downstream of the cci island that is a marker for transmissible B. cenocepacia strains. This cluster contains four adhesins, one outer-membrane protein, one sensor histidine kinase and two transcriptional regulators. By using PCR, we analysed three genes among 47 Bcc isolates to determine whether the cluster was conserved. These three genes were present in the isolates of the ET-12 lineage but absent in all the other members. Furthermore, the BCAM0224 gene was exclusively detected in this epidemic lineage and may serve as a valuable new addition to the field of Bcc diagnostics. The BCAM0224 gene encodes a putative TAA that demonstrates adhesive properties to the extracellular matrix protein collagen type I. Quantitative real-time PCR analysis indicated that BCAM0224 gene expression occurred preferentially for cells grown under high osmolarity, oxygen-limited conditions and oxidative stress. Inactivation of BCAM0224 in B. cenocepacia attenuates the ability of the mutant to promote cell adherence in vitro and impairs the overall bacterial virulence against Galleria mellonella as a model of infection. Together, our data show that BCAM0224 from B. cenocepacia J2315 represents a new collagen-binding TAA with no bacterial orthologues which has an important role in cellular adhesion and virulence.
Collapse
Affiliation(s)
- Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics Group, CNRS URA2171, Institute Pasteur, F-75015 Paris, France
- Atelier de Bioinformatique, Université Pierre et Marie Curie-Paris 6, Paris, F-75005 France
| | - Arsenio M. Fialho
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon 1049-001, Portugal
| |
Collapse
|
11
|
The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 2008; 191:261-77. [PMID: 18931103 PMCID: PMC2612433 DOI: 10.1128/jb.01230-08] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.
Collapse
|
12
|
Drevinek P, Holden MTG, Ge Z, Jones AM, Ketchell I, Gill RT, Mahenthiralingam E. Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect Dis 2008; 8:121. [PMID: 18801206 PMCID: PMC2559838 DOI: 10.1186/1471-2334-8-121] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/19/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bacteria from the Burkholderia cepacia complex (Bcc) are the only group of cystic fibrosis (CF) respiratory pathogens that may cause death by an invasive infection known as cepacia syndrome. Their large genome (> 7000 genes) and multiple pathways encoding the same putative functions make virulence factor identification difficult in these bacteria. METHODS A novel microarray was designed to the genome of Burkholderia cenocepacia J2315 and transcriptomics used to identify genes that were differentially regulated when the pathogen was grown in a CF sputum-based infection model. Sputum samples from CF individuals infected with the same B. cenocepacia strain as genome isolate were used, hence, other than a dilution into a minimal growth medium (used as the control condition), no further treatment of the sputum was carried out. RESULTS A total of 723 coding sequences were significantly altered, with 287 upregulated and 436 downregulated; the microarray-observed expression was validated by quantitative PCR on five selected genes. B. cenocepacia genes with putative functions in antimicrobial resistance, iron uptake, protection against reactive oxygen and nitrogen species, secretion and motility were among the most altered in sputum. Novel upregulated genes included: a transmembrane ferric reductase (BCAL0270) implicated in iron metabolism, a novel protease (BCAL0849) that may play a role in host tissue destruction, an organic hydroperoxide resistance gene (BCAM2753), an oxidoreductase (BCAL1107) and a nitrite/sulfite reductase (BCAM1676) that may play roles in resistance to the host defenses. The assumptions of growth under iron-depletion and oxidative stress formulated from the microarray data were tested and confirmed by independent growth of B. cenocepacia under each respective environmental condition. CONCLUSION Overall, our first full transcriptomic analysis of B. cenocepacia demonstrated the pathogen alters expression of over 10% of the 7176 genes within its genome when it grows in CF sputum. Novel genetic pathways involved in responses to antimicrobial resistance, oxidative stress, and iron metabolism were revealed by the microarray analysis. Virulence factors such as the cable pilus and Cenocepacia Pathogenicity Island were unaltered in expression. However, B. cenocepacia sustained or increased expression of motility-associated genes in sputum, maintaining a potentially invasive phenotype associated with cepacia syndrome.
Collapse
Affiliation(s)
- Pavel Drevinek
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Zhaoping Ge
- Center for Bioinformatics, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew M Jones
- Bradbury Cystic Fibrosis Unit, Wythenshawe Hospital, Manchester, UK
| | - Ian Ketchell
- Cardiff Adult Cystic Fibrosis Centre, Llandough Hospital, Penarth, UK
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
13
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
14
|
Cheung KJ, Li G, Urban TA, Goldberg JB, Griffith A, Lu F, Burns JL. Pilus-mediated epithelial cell death in response to infection with Burkholderia cenocepacia. Microbes Infect 2007; 9:829-37. [PMID: 17537663 DOI: 10.1016/j.micinf.2007.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 01/09/2007] [Accepted: 03/01/2007] [Indexed: 11/20/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that can cause serious infections in cystic fibrosis (CF) patients. The ET12 lineage appears particularly virulent in CF; however, its pathogenesis is poorly understood and may be associated with host response. To help characterize this response, the ability of B. cenocepacia to induce cytotoxicity and apoptosis in an epithelial cell model was examined. Upon infection with B. cenocepacia strain K56-2, A549 human lung epithelial cells underwent significant cell death; propidium iodine staining and DNA fragmentation assays suggested apoptosis. Initiation of cell death was independent of the type III secretion system, biofilm formation, and secreted bacterial cytotoxins. However, the frequency of cell death was lower in cells infected with a non-piliated mutant, K56-2 cblA::Tp. Furthermore, purified cbl pili were found to directly induce cytotoxicity in A549 cells and activate caspase-9, -8, -7, and -3, the major cysteine proteinases involved in apoptosis. It appears that B. cenocepacia cbl pili, which are a distinctive feature of the ET12 lineage, act as an initiator of cytotoxicity and apoptosis. Understanding the role of cbl pili in the pathogenesis of B. cenocepacia infections offers the potential for decreasing the virulence of these potentially life-threatening organisms in CF patients.
Collapse
Affiliation(s)
- K-John Cheung
- Division of Infectious Diseases, Immunology and Rheumatology, Children's Hospital and Regional Medical Center, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Urban TA, Goldberg JB, Forstner JF, Sajjan US. Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. Infect Immun 2005; 73:5426-37. [PMID: 16113259 PMCID: PMC1231069 DOI: 10.1128/iai.73.9.5426-5437.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia strains expressing both cable (Cbl) pili and the 22-kDa adhesin bind to cytokeratin 13 (CK13) strongly and invade squamous epithelium efficiently. It has not been established, however, whether the gene encoding the adhesin is located in the cbl operon or what specific contribution the adhesin and Cbl pili lend to binding and transmigration or invasion capacity of B. cenocepacia. By immunoscreening an expression library of B. cenocepacia isolate BC7, we identified a large gene (adhA) that encodes the 22-kDa adhesin. Isogenic mutants lacking expression of either Cbl pili (cblA or cblS mutants) or the adhesin (adhA mutant) were constructed to assess the individual role of Cbl pili and the adhesin in mediating B. cenocepacia binding to and transmigration across squamous epithelium. Relative to the parent strain, mutants of Cbl pili showed reduced binding (50%) to isolated CK13, while the adhesin mutant showed almost no binding (0 to 8%). Mutants lacking either cable pili or the adhesin were compromised in their ability to bind to and transmigrate across the squamous epithelium compared to the wild-type strain, although this deficiency was most pronounced in the adhA mutant. These results indicate that both Cbl pili and the 22-kDa adhesin are necessary for the optimal binding to CK13 and transmigration properties of B. cenocepacia.
Collapse
Affiliation(s)
- Teresa A Urban
- Department of Microbiology, University of Virginia Health Sciences, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
16
|
Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005; 3:144-56. [PMID: 15643431 DOI: 10.1038/nrmicro1085] [Citation(s) in RCA: 646] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of genetically distinct but phenotypically similar bacteria that are divided into at least nine species. Bcc bacteria are found throughout the environment, where they can have both beneficial and detrimental effects on plants and some members can also degrade natural and man-made pollutants. Bcc bacteria are now recognized as important opportunistic pathogens that can cause variable lung infections in cystic fibrosis patients, which result in asymptomatic carriage, chronic infection or 'cepacia syndrome', which is characterized by a rapid decline in lung function that can include invasive disease. Here we highlight the unique characteristics of the Bcc, focusing on the factors that determine virulence.
Collapse
|
17
|
Valvano MA, Keith KE, Cardona ST. Survival and persistence of opportunistic Burkholderia species in host cells. Curr Opin Microbiol 2005; 8:99-105. [PMID: 15694863 DOI: 10.1016/j.mib.2004.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Burkholderia are microorganisms that have a unique ability to adapt and survive in many different environments. They can also serve as biopesticides and be used for the biodegradation of organic compounds. Usually harmless while living in the soil, these bacteria are opportunistic pathogens of plants and immunocompromised patients, and occasionally infect healthy individuals. Some of the species in this genus can also be utilised as biological weapons. They all possess very large genomes and have two or more circular chromosomes. Their survival and persistence, not only in the environment but also in host cells, offers a remarkable example of bacterial adaptation.
Collapse
Affiliation(s)
- Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | |
Collapse
|
18
|
Anantha RP, McVeigh AL, Lee LH, Agnew MK, Cassels FJ, Scott DA, Whittam TS, Savarino SJ. Evolutionary and functional relationships of colonization factor antigen i and other class 5 adhesive fimbriae of enterotoxigenic Escherichia coli. Infect Immun 2004; 72:7190-201. [PMID: 15557644 PMCID: PMC529125 DOI: 10.1128/iai.72.12.7190-7201.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colonization factor antigen I (CFA/I) is the archetype of eight genetically related fimbriae of enterotoxigenic Escherichia coli (ETEC) designated class 5 fimbriae. Assembled by the alternate chaperone pathway, these organelles comprise a rigid stalk of polymerized major subunits and an apparently tip-localized minor adhesive subunit. We examined the evolutionary relationships of class 5-specific structural proteins and correlated these with functional properties. We sequenced the gene clusters encoding coli surface antigen 4 (CS4), CS14, CS17, CS19, and putative colonization factor antigen O71 (PCFO71) and analyzed the deduced proteins and the published homologs of CFA/I, CS1, and CS2. Multiple alignment and phylogenetic analysis of the proteins encoded by each operon define three subclasses, 5a (CFA/I, CS4, and CS14), 5b (CS1, CS17, CS19, and PCFO71), and 5c (CS2). These share distant evolutionary relatedness to fimbrial systems of three other genera. Subclass divisions generally correlate with distinguishing in vitro adherence phenotypes of strains bearing the ETEC fimbriae. Phylogenetic comparisons of the individual structural proteins demonstrated greater intrasubclass conservation among the minor subunits than the major subunits. To correlate this with functional attributes, we made antibodies against CFA/I and CS17 whole fimbriae and maltose-binding protein fusions with the amino-terminal half of the corresponding minor subunits. Anti-minor subunit Fab preparations showed hemagglutination inhibition (HAI) of ETEC expressing homologous and intrasubclass heterologous colonization factors while anti-fimbrial Fab fractions showed HAI activity limited to colonization factor-homologous ETEC. These results were corroborated with similar results from the Caco-2 cell adherence assay. Our findings suggest that the minor subunits of class 5 fimbriae may be superior to whole fimbriae in inducing antiadhesive immunity.
Collapse
Affiliation(s)
- Ravi P Anantha
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tomich M, Mohr CD. Genetic characterization of a multicomponent signal transduction system controlling the expression of cable pili in Burkholderia cenocepacia. J Bacteriol 2004; 186:3826-36. [PMID: 15175296 PMCID: PMC419935 DOI: 10.1128/jb.186.12.3826-3836.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cable pili are peritrichous organelles expressed by certain strains of Burkholderia cenocepacia, believed to facilitate colonization of the lower respiratory tract in cystic fibrosis patients. The B. cenocepacia cblBACDS operon encodes the structural and accessory proteins required for the assembly of cable pili, as well as a gene designated cblS, predicted to encode a hybrid sensor kinase protein of bacterial two-component signal transduction systems. In this study we report the identification of two additional genes, designated cblT and cblR, predicted to encode a second hybrid sensor kinase and a response regulator, respectively. Analyses of the deduced amino acid sequences of the cblS and cblT gene products revealed that both putative sensor kinases have transmitter and receiver domains and that the cblT gene product has an additional C-terminal HPt domain. Mutagenesis of the cblS, cblT, or cblR gene led to a block in expression of CblA, the major pilin subunit, and a severe decrease in cblA transcript abundance. Using transcriptional fusion analyses, the decrease in the abundance of the cblA transcript in the cblS, cblT, and cblR mutants was shown to be due to a block in transcription from the cblB-proximal promoter, located upstream of the cblBACDS operon. Furthermore, ectopic expression of either cblS or cblR in wild-type B. cenocepacia strain BC7 led to a significant increase, while ectopic expression of cblT resulted in a dramatic decrease, in abundance of the CblA major pilin and the cblA transcript. Our results demonstrate that the B. cenocepacia cblS, cblT, and cblR genes are essential for cable pilus expression and that their effect is exerted at the level of transcription of the cblBACDS operon. These findings are consistent with the proposed function of the cblSTR gene products as a multicomponent signal transduction pathway controlling the expression of cable pilus biosynthetic genes in B. cenocepacia.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|
20
|
Meghdas I, Loïez C, Baïda N, Dabboussi F, Hamze M, Husson MO, Izard D. Épidémiologie des infections provoquées par les bactéries du « complexe Burkholderia cepacia » au cours de la mucoviscidose. Arch Pediatr 2004; 11:360-6. [PMID: 15139322 DOI: 10.1016/j.arcped.2003.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Within a few years bacteriological knowledge on Burkholderia cepacia species has progressed considerably. Within bacterial classification (taxonomy), B. cepacia gathers eight species and one species on standby of nomenclature (genomovar VI); the whole of these species constitutes the "B. cepacia complex" or B. cepacia "sensu lato" and the denomination B. cepacia "sensu stricto" is attributed to the genomovar I. These new data call into question the knowledge on the clinic and the epidemiology of B. cepacia "sensu lato" infection in the course of cystic fibrosis. Among these newly described species, B. cenocepacia (formerly genomovar III) and B. multivorans (formerly genomovar II) are the most frequent species and together they represent more than 90% of infections associated to "B. cepacia complex" in the course of cystic fibrosis. B. cenocepacia is often associated to the "cepacia syndrome" which is characterized as a fatal necrotizing pneumonia with bacteremia. The progress of molecular epidemiology allowed the description of bacterial clones of which some are highly transmissible from person-to-person. Their distribution varies according to the species and the geography. The identification of these new species appears particularly difficult and, by the fact, the data on taxonomy and molecular epidemiology can be provided only by highly specialized reference centers.
Collapse
Affiliation(s)
- I Meghdas
- Laboratoire de bactériologie-hygiène, hôpital Calmette, Lille, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Tomich M, Mohr CD. Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia. J Bacteriol 2004; 186:1009-20. [PMID: 14761995 PMCID: PMC344204 DOI: 10.1128/jb.186.4.1009-1020.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia is an important member of the Burkholderia cepacia complex, a group of closely related bacteria that inhabits a wide variety of environmental niches in nature and that also colonizes the lungs of compromised humans. Certain strains of B. cenocepacia express peritrichous adherence organelles known as cable pili, thought to be important in the colonization of the lower respiratory tract. The genetic locus required for cable pilus biogenesis is comprised of at least five genes, designated cblB, cblA, cblC, cblD, and cblS. In this study a transcriptional analysis of cbl gene expression was undertaken. The principal promoter, located upstream of the cbl locus, was identified and characterized. By using lacZ transcriptional fusions, the effects of multiple environmental cues on cbl gene expression were examined. High osmolarity, temperature of 37 degrees C, acidic pH, and low iron bioavailability were found to induce cbl gene expression. Northern hybridization analysis of the cbl locus identified a single, stable transcript corresponding to cblA, encoding the major pilin subunit. Transcriptional fusion studies combined with reverse transcription-PCR analysis indicated that the stable cblA transcript is the product of an mRNA processing event. This event may ensure high levels of expression of the major pilin, relative to other components of the assembly pathway. Our findings lend further insight into the control of cable pilus biogenesis in B. cenocepacia and provide evidence for regulation of cbl gene expression on both the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
22
|
Tomich M, Mohr CD. Adherence and autoaggregation phenotypes of aBurkholderia cenocepaciacable pilus mutant. FEMS Microbiol Lett 2003; 228:287-97. [PMID: 14638436 DOI: 10.1016/s0378-1097(03)00785-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cable pili are unique peritrichous adherence organelles expressed by certain strains of the opportunistic human pathogen Burkholderia cenocepacia. Cable pili have been proposed to facilitate binding to human epithelial cells and mucin, and may play a role in the ability of B. cenocepacia to colonise the respiratory tract of compromised hosts. In this study, a genetic approach was undertaken to assess the role of cable pili in mediating adherence as well as bacterial cell-cell interactions. The cblA gene, encoding the major pilin subunit, was insertionally inactivated, and the resulting mutant was shown to be blocked in CblA expression and in cable pilus morphogenesis. Although non-piliated, the cblA mutant was not defective in adherence to either porcine mucin or to cultured A549 human respiratory epithelial cells. Microscopic and flow cytometric analyses of B. cenocepacia cultures revealed that cable pilus expression facilitated the formation of diffuse cell networks, whereas disruption of cable pilus biogenesis enhanced autoaggregation and the formation of compact cell aggregates. Autoaggregation was observed both in culture and during B. cenocepacia infection of A549 epithelial cell monolayers. These findings indicate that cable pilus expression plays an important role in mediating B. cenocepacia cell-cell interactions, and that both cable pilus-dependent and cable pilus-independent mechanisms may contribute to B. cenocepacia adherence to cellular and acellular surfaces.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455-0312, USA
| | | |
Collapse
|