1
|
Tran TH, F Escapa I, Roberts AQ, Gao W, Obawemimo AC, Segre JA, Kong HH, Conlan S, Kelly MS, Lemon KP. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. mSystems 2024; 9:e0113224. [PMID: 39508593 DOI: 10.1128/msystems.01132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the United States. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution spanning Africa and North America. All species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent versus accessory genome of each species indicating limited strain-level variability in metabolic capacity. Based on prevalence data, at least two Corynebacterium species likely coexist in the nasal microbiota of 82% of adults. So, it was surprising that core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the U.S. clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in most of the strains in the Botswana clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches. IMPORTANCE Pangenomic analysis with estimation of functional capabilities facilitates our understanding of the full biologic diversity of bacterial species. We performed systematic genomic, phylogenomic, and pangenomic analyses with qualitative estimation of the metabolic capabilities of four common human nasal Corynebacterium species, along with focused experimental validations, generating a foundational resource. The prevalence of each species in human nasal microbiota is consistent with the common coexistence of at least two species. We identified a notably high level of metabolic conservation within and among species indicating limited options for species to occupy distinct metabolic niches, highlighting the importance of investigating interactions among nasal Corynebacterium species. Comparing strains from two continents, C. pseudodiphtheriticum had restricted geographic strain distribution characterized by an evolutionarily recent loss of assimilatory sulfate reduction in U.S. strains. Our findings contribute to understanding the functions of Corynebacterium within human nasal microbiota and to evaluating their potential for future use as biotherapeutics.
Collapse
Affiliation(s)
- Tommy H Tran
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel F Escapa
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ari Q Roberts
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Gao
- The Forsyth Institute (Microbiology), Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Abiola C Obawemimo
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidi H Kong
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katherine P Lemon
- Alkek Center for Metagenomics & Microbiome Research, Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Division of Infectious Diseases, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve L-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res 2023; 272:127390. [PMID: 37087971 DOI: 10.1016/j.micres.2023.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Trehalose dicorynomycolates are structurally important constituents of the cell envelope in Corynebacterium glutamicum. The genes treS, treY, otsA, mytA and mytB are necessary for the biosynthesis of trehalose dicorynomycolates. In this study, the effect of biosynthesis of trehalose dicorynomycolates on L-isoleucine production in C. glutamicum has been investigated by deleting the genes treS, treY, otsA, mytA, and mytB in the L-isoleucine producing C. glutamicum WM001. L-isoleucine production was slightly improved in the mutants ΔtreY, ΔotsA, and ΔtreYA, and not improved in the single deletion mutant ΔtreS , but significantly improved in the triple deletion mutant ΔtreSYA. Deletion of mytA or mytB in ΔtreSYA could further improve L-isoleucine production. However, deletion of both mytA and mytB in ΔtreSYA significantly decreased L-isoleucine production. The final L-isoleucine producing C. glutamicum WL001 was constructed by deletion of treS, treY, otsA, and mytB, insertion of lrp, and replacement of the native promoter of ilvA with the L-isoleucine sensitive promoter PbrnFE7. WL001 grew worse than the control WM001, but produced 36.1% more L-isoleucine after 72 h shake flask cultivation than WM001.
Collapse
Affiliation(s)
- Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Daqing Xu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dezhi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guihong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ziwei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum. Microbiol Res 2022; 267:127260. [PMID: 36463830 DOI: 10.1016/j.micres.2022.127260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Corynebacterium glutamicum has been widely utilized for the industrial production of various amino acids. Trehalose is a prerequisite for the biosynthesis of mycolates which are structurally important constituents of the cell envelope in C. glutamicum. In this study, C. glutamicum mutant ΔSYA, which is unable to synthesize trehalose was constructed by deleting genes treS, treY and otsA in the three pathways of trehalose biosynthesis. In the fermentation medium, ΔSYA grew as well as the control C. glutamicum ATCC13869, synthesized similar levels of glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids to ATCC13869, but produced 12.5 times more L-glutamate than ATCC13869. Transcriptional levels of the genes relevant to L-arginine biosynthesis, encoding ODHC and relevant to the biosynthesis of sulfur-containing amino acids were down-regulated in ΔSYA. In minimal medium with different concentrations of glucose, ΔSYA grew worse than ATCC13869 but excreted more L-glutamate. When grown in minimal medium, phospholipids are the major lipid in ΔSYA, while glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids are the major lipid in ATCC13869. The transcriptional levels of mscCG in ΔSYA was significantly up-regulated when grown in minimal medium.
Collapse
|
4
|
Myofibrillar Protein Interacting with Trehalose Elevated the Quality of Frozen Meat. Foods 2022; 11:foods11071041. [PMID: 35407128 PMCID: PMC8997906 DOI: 10.3390/foods11071041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 12/10/2022] Open
Abstract
This work studied the interactions between trehalose/chitooligosaccharide (COS) and myofibrillar protein (MP), and the effect of such interactions on the quality of meat after freezing was also evaluated. Fourier transform infrared spectroscopy showed that both trehalose and COS could enhance the content of hydrogen bonds of MP. Zeta potential measurement displayed trehalose/COS reduced the absolute value of the surface potential of MP. The results of Raman spectroscopy suggested that the hydrophobic residues of MP were more exposed after treatment with trehalose/COS. Thus, trehalose and COS could both interact with MP through non-covalent bonds. Subsequently, the evaluation of the effect of trehalose and COS on the physicochemical properties of frozen meat was conducted. Results showed that both trehalose and COS significantly reduced thawing loss of frozen meat, and sensory evaluation showed that trehalose had a better performance from the perspective of smell, texture, and overall consumer acceptance. In conclusion, trehalose/COS interacting with MP can reduce meat thawing loss, which might provide technical guidance in the quality control of frozen meat.
Collapse
|
5
|
Onwe RO, Onwosi CO, Ezugworie FN, Ekwealor CC, Okonkwo CC. Microbial trehalose boosts the ecological fitness of biocontrol agents, the viability of probiotics during long-term storage and plants tolerance to environmental-driven abiotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150432. [PMID: 34560451 DOI: 10.1016/j.scitotenv.2021.150432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Despite the impressive gain in agricultural production and greater availability of food, a large portion of the world population is affected by food shortages and nutritional imbalance. This is due to abiotic stresses encountered by plants as a result of environmental-driven perturbations, loss of viability of starter cultures (probiotics) for functional foods during storage as well as the vulnerability of farm produce to postharvest pathogens. The use of compatible solutes (e.g., trehalose, proline, etc.) has been widely supported as a solution to these concerns. Trehalose is one of the widely reported microbial- or plant-derived metabolites that help microorganisms (e.g., biocontrol agents, probiotics and plant growth-promoting bacteria) and plants to tolerate harsh environmental conditions. Due to its recent categorization as generally regarded as safe (GRAS), trehalose is an essential tool for promoting nutrition-sensitive agriculture by replacing the overuse of chemical agents (e.g., pesticides, herbicides). Therefore, the current review evaluated the progress currently made in the application of trehalose in sustainable agriculture. The challenges, opportunities, and future of this biometabolite in food security were highlighted.
Collapse
Affiliation(s)
- Reuben O Onwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria
| | - Chigozie C Okonkwo
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
6
|
Park JC, Jeong H, Kim Y, Lee HS. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35040429 DOI: 10.1099/mic.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene whcE of Corynebacterium glutamicum plays a positive role in oxidative stress responses and the WhcE protein interacts with SpiE. By utilizing 2D-PAGE analysis, we identified the otsB gene to be under the control of whcE. The transcription of otsB, encoding trehalose 6-phosphatase, was stimulated by oxidative stress, and whcE and spiE were involved in diamide-mediated transcriptional stimulation. The ΔotsB strain was created and found to be sensitive to the thiol-specific oxidant diamide, suggesting a role of the gene in stress responses. Genes located upstream of otsB, such as NCgl2534 and otsA, formed an operon and purified WhcE was able to bind to the promoter region of the operon (PNCgl2534), but the binding was only possible in the presence of the oxidant diamide. In addition, the transcriptional activation of PNCgl2534 by WhcE was demonstrated in in vivo assays and the transcription was stimulated in cells exposed to the oxidant diamide. These findings indicate that WhcE is a transcriptional activator, and otsB, which is involved in trehalose biosynthesis, has a role in oxidative stress responses in C. glutamicum.
Collapse
Affiliation(s)
- Jung Chul Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| |
Collapse
|
7
|
Salt Stress Response of Sulfolobus acidocaldarius Involves Complex Trehalose Metabolism Utilizing a Novel Trehalose-6-Phosphate Synthase (TPS)/Trehalose-6-Phosphate Phosphatase (TPP) Pathway. Appl Environ Microbiol 2020; 86:AEM.01565-20. [PMID: 33008820 PMCID: PMC7688234 DOI: 10.1128/aem.01565-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
The crenarchaeon Sulfolobus acidocaldarius has been described to synthesize trehalose via the maltooligosyltrehalose synthase (TreY) and maltooligosyltrehalose trehalohydrolase (TreZ) pathway, and the trehalose glycosyltransferring synthase (TreT) pathway has been predicted. Deletion mutant analysis of strains with single and double deletions of ΔtreY and ΔtreT in S. acidocaldarius revealed that in addition to these two pathways, a third, novel trehalose biosynthesis pathway is operative in vivo: the trehalose-6-phosphate (T6P) synthase/T6P phosphatase (TPS/TPP) pathway. In contrast to known TPS proteins, which belong to the GT20 family, the S. acidocaldarius TPS belongs to the GT4 family, establishing a new function within this group of enzymes. This novel GT4-like TPS was found to be present mainly in the Sulfolobales The ΔtreY ΔtreT Δtps triple mutant of S. acidocaldarius, which lacks the ability to synthesize trehalose, showed no altered phenotype under standard conditions or heat stress but was unable to grow under salt stress. Accordingly, in the wild-type strain, a significant increase of intracellular trehalose formation was observed under salt stress. Quantitative real-time PCR showed a salt stress-mediated induction of all three trehalose-synthesizing pathways. This demonstrates that in Archaea, trehalose plays an essential role for growth under high-salt conditions.IMPORTANCE The metabolism and function of trehalose as a compatible solute in Archaea was not well understood. This combined genetic and enzymatic approach at the interface of microbiology, physiology, and microbial ecology gives important insights into survival under stress, adaptation to extreme environments, and the role of compatible solutes in Archaea Here, we unraveled the complexity of trehalose metabolism, and we present a comprehensive study on trehalose function in stress response in S. acidocaldarius This sheds light on the general microbiology and the fascinating metabolic repertoire of Archaea, involving many novel biocatalysts, such as glycosyltransferases, with great potential in biotechnology.
Collapse
|
8
|
Lee JH, Jeong H, Kim Y, Lee HS. Corynebacterium glutamicum whiA plays roles in cell division, cell envelope formation, and general cell physiology. Antonie van Leeuwenhoek 2019; 113:629-641. [DOI: 10.1007/s10482-019-01370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
|
9
|
Characterization of genes responsive to osmotic and oxidative stresses of the sugarcane bacterial pathogen Leifsonia xyli subsp. xyli. Braz J Microbiol 2019; 51:77-86. [PMID: 31758345 DOI: 10.1007/s42770-019-00163-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022] Open
Abstract
Leifsonia xyli subsp. xyli (Lxx) colonizes the xylem vessels of sugarcane, a plant niche where microorganisms are highly exposed to oxidative and osmotic stresses. This study performed an in silico analysis of the genome of Lxx and characterized 16 genes related to the detoxification of oxidative species (peroxidases, O2- dismutases, and methionine reductases) and to the production and transport of osmolytes and analyzed their expression in vitro after 30, 60, and 120 min of exposure to H2O2 or PEG. The PAGE activity of superoxide dismutase (Mn-SOD as confirmed by inhibition tests) and of catalase (CAT) and the accumulation of trehalose were also assessed. Exposure to H2O2 increased the expression of most oxidative-responsive genes and decreased the expression of those related to osmotic responses, whereas the opposite occurred after exposure to PEG. The isoform profiles of CAT and Mn-SOD shifted in response to H2O2 but not to PEG and Lxx cells accumulated more trehalose over time after exposure to PEG compared with non-exposed cells. The experimental results validated the in silico analysis and indicated that this obligate endophytic parasite has multiple and functional mechanisms to combat the stresses imposed by its host.
Collapse
|
10
|
Kuyukina MS, Ivshina IB. Production of Trehalolipid Biosurfactants by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Krämer R, Seibold GM. Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 2018; 17:94. [PMID: 29908566 PMCID: PMC6004087 DOI: 10.1186/s12934-018-0939-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Background α-d-Glucosylglycerol (αGG) has beneficial functions as a moisturizing agent in cosmetics and potential as a health food material, and therapeutic agent. αGG serves as compatible solute in various halotolerant cyanobacteria such as Synechocystis sp. PCC 6803, which synthesizes αGG in a two-step reaction: The enzymatic condensation of ADP-glucose and glycerol 3-phosphate by GG-phosphate synthase (GGPS) is followed by the dephosphorylation of the intermediate by the GG-phosphate phosphatase (GGPP). The Gram-positive Corynebacterium glutamicum, an industrial workhorse for amino acid production, does not utilize αGG as a substrate and was therefore chosen for the development of a heterologous microbial production platform for αGG. Results Plasmid-bound expression of ggpS and ggpP from Synechocystis sp. PCC 6803 enabled αGG synthesis exclusively in osmotically stressed cells of C. glutamicum (pEKEx2-ggpSP), which is probably due to the unique intrinsic control mechanism of GGPS activity in response to intracellular ion concentrations. C. glutamicum was then engineered to optimize precursor supply for αGG production: The precursor for αGG synthesis ADP-glucose gets metabolized by both the glgA encoded glycogen synthase and the otsA encoded trehalose-6-phosphate synthase. Upon deletion of both genes the αGG concentration in culture supernatants was increased from 0.5 mM in C. glutamicum (pEKEx3-ggpSP) to 2.9 mM in C. glutamicum ΔotsA IMglgA (pEKEx3-ggpSP). Upon nitrogen limitation, which inhibits synthesis of amino acids as compatible solutes, C. glutamicum ΔotsA IMglgA (pEKEx3-ggpSP) produced more than 10 mM αGG (about 2 g L−1). Conclusions Corynebacterium glutamicum can be engineered as efficient platform for the production of the compatible solute αGG. Redirection of carbon flux towards αGG synthesis by elimination of the competing pathways for glycogen and trehalose synthesis as well as optimization of nitrogen supply is an efficient strategy to further optimize production of αGG. Electronic supplementary material The online version of this article (10.1186/s12934-018-0939-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin Roenneke
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany.,Gutachterbüro U. Borchardt, Hennef (Sieg), Germany
| | - Natalie Rosenfeldt
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Sami M Derya
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Jens F Novak
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Kay Marin
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany.,Evonik Degussa GmbH, Halle (Westphalia), Germany
| | - Reinhard Krämer
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Gerd M Seibold
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany. .,Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Toyoda K, Inui M. Extracytoplasmic function sigma factor σDconfers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures inCorynebacterium glutamicum. Mol Microbiol 2017; 107:312-329. [DOI: 10.1111/mmi.13883] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawa; Kyoto 619-0292 Japan
- Graduate School of Biological Sciences; Nara Institute of Science and Technology, 8916-5; Takayama, Ikoma, Nara 630-0101 Japan
| |
Collapse
|
13
|
Oide S, Inui M. Trehalose acts as a uridine 5'-diphosphoglucose-competitive inhibitor of trehalose 6-phosphate synthase in Corynebacterium glutamicum. FEBS J 2017; 284:4298-4313. [PMID: 29076621 DOI: 10.1111/febs.14309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 12/30/2022]
Abstract
Trehalose is a compatible solute widely distributed in nature. The most prevalent pathway for its synthesis starts from condensation of glucose 6-phosphate (Glc6P) and uridine 5'-diphosphoglucose (UDP-Glc) catalyzed by trehalose 6-phosphate synthase (TPS). A previous laboratory evolution experiment with the bacterium Corynebacterium glutamicum generated strains adapted to supraoptimal temperatures, and the R328H substitution of the TPS encoded by otsA was shown to be associated with thermotolerance acquired by the evolved strains. In this study, we found that the OtsA:R328H substitution promotes both intra- and extracellular trehalose accumulation and demonstrated that build-up of intracellular trehalose accounts for the OtsAR328H -dependent thermotolerance, using the mycobacterial trehalose-specific transporter. Counterintuitively, characterization of the recombinant OtsA proteins revealed that the mutation downshifts the temperature optimum of OtsA. A search for the molecular basis of OtsAR328H -dependent enhancement of trehalose synthesis led to the unexpected findings that trehalose is an effective inhibitor of OtsA and that OtsAR328H is highly tolerant to the trehalose-mediated inhibition. The only available report on such feedback regulation of TPS is for the silk moth from over 50 years ago [Murphy TA and Wyatt GR (1965) J Biol Chem 240, 1500-1508]. While trehalose acts as a Glc6P-competitive inhibitor in the silk moth, the disaccharide was found to inhibit OtsA in a UDP-Glc-competitive manner in C. glutamicum, suggesting independent origins of the negative feedback regulations found for the two species. We showed that overexpression of the wild-type OtsA counteracts the trehalose-dependent regulation and restores the evolved strain-like phenotype to the isogenic wild-type otsA revertant, demonstrating that thermotolerance conferred by OtsAR328H is attributable to its feedback-resistant property.
Collapse
Affiliation(s)
- Shinichi Oide
- Research Institute of Innovative Technology for the Earth, Kizugawa, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawa, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
14
|
Li H, Wu M, Shi Y, Javid B. Over-Expression of the Mycobacterial Trehalose-Phosphate Phosphatase OtsB2 Results in a Defect in Macrophage Phagocytosis Associated with Increased Mycobacterial-Macrophage Adhesion. Front Microbiol 2016; 7:1754. [PMID: 27867377 PMCID: PMC5095139 DOI: 10.3389/fmicb.2016.01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/19/2016] [Indexed: 01/31/2023] Open
Abstract
Trehalose-6-phosphate phosphatase (OtsB2) is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-bacillus calmette-guerin (BCG) over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage-mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host-pathogen interactions. Macrophage-mycobacteria phagocytic interactions are complex and merit further study.
Collapse
Affiliation(s)
- Hao Li
- Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | - Mei Wu
- Tsinghua Immunology Institute, School of Medicine, Tsinghua University Beijing, China
| | - Yan Shi
- Tsinghua Immunology Institute, School of Medicine, Tsinghua University Beijing, China
| | - Babak Javid
- Collaborative Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| |
Collapse
|
15
|
Tang B, Xie F, Zhao W, Wang J, Dai S, Zheng H, Ding X, Cen X, Liu H, Yu Y, Zhou H, Zhou Y, Zhang L, Goodfellow M, Zhao GP. A systematic study of the whole genome sequence of Amycolatopsis methanolica strain 239 T provides an insight into its physiological and taxonomic properties which correlate with its position in the genus. Synth Syst Biotechnol 2016; 1:169-186. [PMID: 29062941 PMCID: PMC5640789 DOI: 10.1016/j.synbio.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/01/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
The complete genome of methanol-utilizing Amycolatopsis methanolica strain 239T was generated, revealing a single 7,237,391 nucleotide circular chromosome with 7074 annotated protein-coding sequences (CDSs). Comparative analyses against the complete genome sequences of Amycolatopsis japonica strain MG417-CF17T, Amycolatopsis mediterranei strain U32 and Amycolatopsis orientalis strain HCCB10007 revealed a broad spectrum of genomic structures, including various genome sizes, core/quasi-core/non-core configurations and different kinds of episomes. Although polyketide synthase gene clusters were absent from the A. methanolica genome, 12 gene clusters related to the biosynthesis of other specialized (secondary) metabolites were identified. Complete pathways attributable to the facultative methylotrophic physiology of A. methanolica strain 239T, including both the mdo/mscR encoded methanol oxidation and the hps/hpi encoded formaldehyde assimilation via the ribulose monophosphate cycle, were identified together with evidence that the latter might be the result of horizontal gene transfer. Phylogenetic analyses based on 16S rDNA or orthologues of AMETH_3452, a novel actinobacterial class-specific conserved gene against 62 or 18 Amycolatopsis type strains, respectively, revealed three major phyletic lineages, namely the mesophilic or moderately thermophilic A. orientalis subclade (AOS), the mesophilic Amycolatopsis taiwanensis subclade (ATS) and the thermophilic A. methanolica subclade (AMS). The distinct growth temperatures of members of the subclades correlated with corresponding genetic variations in their encoded compatible solutes. This study shows the value of integrating conventional taxonomic with whole genome sequence data.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China.,CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Feng Xie
- CAS-Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Wei Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian Wang
- CAS-Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Shengwang Dai
- CAS-Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Xiaoming Ding
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Xufeng Cen
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haican Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yucong Yu
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Haokui Zhou
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China.,Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Lixin Zhang
- CAS-Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Michael Goodfellow
- School of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| | - Guo-Ping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200438, China.,CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China.,Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
16
|
da Silva PRA, Vidal MS, de Paula Soares C, Polese V, Simões-Araújo JL, Baldani JI. Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice. Antonie van Leeuwenhoek 2016; 109:1493-1502. [PMID: 27535840 DOI: 10.1007/s10482-016-0751-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.
Collapse
Affiliation(s)
- Paula Renata Alves da Silva
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil
| | | | - Cleiton de Paula Soares
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil
| | - Valéria Polese
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil
| | | | - José Ivo Baldani
- Embrapa Agrobiologia, BR465, Km07, Seropédica, RJ, 23890-000, Brazil.
| |
Collapse
|
17
|
Abstract
Trehalose [alpha-D-glucopyranosyl-(1→1)-alpha-D-glucopyranoside] is a highly abundant disaccharide in mycobacteria that fulfills many biological roles and has a plethora of possible metabolic fates. Trehalose is synthesized in mycobacteria de novo either from glycolytic intermediates or from alpha-glucans via two alternative routes, the OtsA-OtsB and the TreY-TreZ pathways, respectively. Intracellular trehalose can serve as an endogenous remobilizable carbon storage compound and as a biocompatible stress protectant. Furthermore, trehalose functions as the sugar core of many glycolipids with important structural or immunomodulatory functions such as the cord factor trehalose dimycolate, sulfolipids, and polyacyltrehalose. Moreover, trehalose plays a central role in the formation of the mycolic acid cell wall layer because it serves as a carrier molecule that shuttles mycolic acids in the form of the glycolipid trehalose monomycolate between the cytoplasm and the periplasm. In this process, a specific importer recycles the free trehalose that is extracellularly released as a by-product during mycolate processing via the antigen 85 complex, which might represent a specific adaptation to the intracellular lifestyle of Mycobacterium tuberculosis with limited carbohydrate availability. Finally, trehalose is converted to glycogen-like branched alpha-glucans by a four-step metabolic pathway involving the essential maltosyltransferase GlgE, which may be further processed to derivatives with intracellular or extracellular destinations such as polymethylated lipopolysaccharides or capsular alpha-glucans, respectively. In this article we summarize the current knowledge of the genetic basis of trehalose biosynthesis and metabolism in mycobacteria, the biological functions of trehalose-based molecules, and their roles in virulence of the human pathogen M. tuberculosis.
Collapse
|
18
|
Thanna S, Sucheck SJ. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. MEDCHEMCOMM 2015; 7:69-85. [PMID: 26941930 PMCID: PMC4770839 DOI: 10.1039/c5md00376h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an epidemic disease and the growing burden of multidrug-resistant (MDR) TB world wide underlines the need to discover new drugs to treat the disease. Mycobacterium tuberculosis (Mtb) is the etiological agent of most cases of TB. Mtb is difficult to treat, in part, due to the presence of a sturdy hydrophobic barrier that prevents penetration of drugs through the cell wall. Mtb can also survive in a non-replicative state for long periods of time avoiding the action of common antibiotics. Trehalose is an essential metabolite in mycobacteria since it plays key roles in cell wall synthesis, transport of cell wall glycolipids, and energy storage. It is also known for its stress protective roles such as: protection from desiccation, freezing, starvation and osmotic stress in bacteria. In this review we discuss the drug discovery efforts against enzymes involved in the trehalose utilization pathways (TUPs) and their likelihood of becoming drug targets.
Collapse
Affiliation(s)
- Sandeep Thanna
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| |
Collapse
|
19
|
Wang L, Regina A, Butardo VM, Kosar-Hashemi B, Larroque O, Kahler CM, Wise MJ. Influence of in situ progressive N-terminal is still controversial truncation of glycogen branching enzyme in Escherichia coli DH5α on glycogen structure, accumulation, and bacterial viability. BMC Microbiol 2015; 15:96. [PMID: 25947105 PMCID: PMC4433092 DOI: 10.1186/s12866-015-0421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/01/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation. RESULTS A series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media. CONCLUSIONS Despite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.
Collapse
Affiliation(s)
- Liang Wang
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | - Ahmed Regina
- CSIRO Agriculture Flagship, Canberra, Australia.
| | - Vito M Butardo
- International Rice Research Institute, Los Baños, Philippines.
| | | | | | - Charlene M Kahler
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | - Michael J Wise
- School of Chemistry and Biochemistry, University of Western Australia, Perth, Australia.
| |
Collapse
|
20
|
Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 2015; 81:2284-98. [PMID: 25595768 PMCID: PMC4357955 DOI: 10.1128/aem.03973-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/20/2022] Open
Abstract
Reinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacterium Corynebacterium glutamicum under thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation on otsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes, pfk and pyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype of C. glutamicum and to investigate the molecular bases of stress tolerance.
Collapse
Affiliation(s)
- Shinichi Oide
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Wataru Gunji
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Yasuhiro Moteki
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Shogo Yamamoto
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Toru Jojima
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawa, Kyoto, Japan Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
21
|
The α-glucan phosphorylase MalP of Corynebacterium glutamicum is subject to transcriptional regulation and competitive inhibition by ADP-glucose. J Bacteriol 2015; 197:1394-407. [PMID: 25666133 DOI: 10.1128/jb.02395-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED α-Glucan phosphorylases contribute to degradation of glycogen and maltodextrins formed in the course of maltose metabolism in bacteria. Accordingly, bacterial α-glucan phosphorylases are classified as either glycogen or maltodextrin phosphorylase, GlgP or MalP, respectively. GlgP and MalP enzymes follow the same catalytic mechanism, and thus their substrate spectra overlap; however, they differ in their regulation: GlgP genes are constitutively expressed and the enzymes are controlled on the activity level, whereas expression of MalP genes are transcriptionally controlled in response to the carbon source used for cultivation. We characterize here the modes of control of the α-glucan phosphorylase MalP of the Gram-positive Corynebacterium glutamicum. In accordance to the proposed function of the malP gene product as MalP, we found transcription of malP to be regulated in response to the carbon source. Moreover, malP transcription is shown to depend on the growth phase and to occur independently of the cell glycogen content. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. Since the latter is considered a typical feature of GlgPs, we propose that C. glutamicum MalP acts as both maltodextrin and glycogen phosphorylase and, based on these findings, we question the current system for classification of bacterial α-glucan phosphorylases. IMPORTANCE Bacterial α-glucan phosphorylases have been classified conferring to their purpose as either glycogen or maltodextrin phosphorylases. We found transcription of malP in C. glutamicum to be regulated in response to the carbon source, which is recognized as typical for maltodextrin phosphorylases. Surprisingly, we also found MalP activity to be tightly regulated competitively by the presence of ADP-glucose, an intermediate of glycogen synthesis. The latter is considered a typical feature of GlgPs. These findings, taken together, suggest that C. glutamicum MalP is the first α-glucan phosphorylase that does not fit into the current system for classification of bacterial α-glucan phosphorylases and exemplifies the complex mechanisms underlying the control of glycogen content and maltose metabolism in this model organism.
Collapse
|
22
|
Goh YJ, Klaenhammer TR. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microb Cell Fact 2014; 13:94. [PMID: 25410006 PMCID: PMC4243779 DOI: 10.1186/s12934-014-0094-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023] Open
Abstract
In prokaryotic species equipped with glycogen metabolism machinery, the co-regulation of glycogen biosynthesis and degradation has been associated with the synthesis of energy storage compounds and various crucial physiological functions, including global cellular processes such as carbon and nitrogen metabolism, energy sensing and production, stress response and cell-cell communication. In addition, the glycogen metabolic pathway was proposed to serve as a carbon capacitor that regulates downstream carbon fluxes, and in some microorganisms the ability to synthesize intracellular glycogen has been implicated in host persistence. Among lactobacilli, complete glycogen metabolic pathway genes are present only in select species predominantly associated with mammalian hosts or natural environments. This observation highlights the potential involvement of glycogen biosynthesis in probiotic activities and persistence of intestinal lactobacilli in the human gastrointestinal tract. In this review, we summarize recent findings on (i) the presence and potential ecological distribution of glycogen metabolic pathways among lactobacilli, (ii) influence of carbon substrates and growth phases on glycogen metabolic gene expression and glycogen accumulation in L. acidophilus, and (iii) the involvement of glycogen metabolism on growth, sugar utilization and bile tolerance. Our present in vivo studies established the significance of glycogen biosynthesis on the competitive retention of L. acidophilus in the mouse intestinal tract, demonstrating for the first time that the ability to synthesize intracellular glycogen contributes to gut fitness and retention among probiotic microorganisms.
Collapse
Affiliation(s)
- Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh 27695, North Carolina, USA.
| | | |
Collapse
|
23
|
Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2014; 1850:13-21. [PMID: 25277548 PMCID: PMC4331664 DOI: 10.1016/j.bbagen.2014.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. Nucleotide-glucose synthesis in Mycobacterium tuberculosis was analyzed. The characterization of four enzymes involved in glucose-1P partitioning is reported. Mycobacterial ADP-glucose pyrophosphorylase is allosterically regulated. Trehalose-6P synthase exhibits higher catalytic efficiency for ADP-glucose. Trehalose-6P synthase is activated by fructose-6P.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Ana M Demonte
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Andrii Gorelik
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
24
|
Miah F, Koliwer-Brandl H, Rejzek M, Field RA, Kalscheuer R, Bornemann S. Flux through trehalose synthase flows from trehalose to the alpha anomer of maltose in mycobacteria. ACTA ACUST UNITED AC 2013; 20:487-93. [PMID: 23601637 PMCID: PMC3918855 DOI: 10.1016/j.chembiol.2013.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/12/2013] [Accepted: 02/28/2013] [Indexed: 11/16/2022]
Abstract
Trehalose synthase (TreS) was thought to catalyze flux from maltose to trehalose, a precursor of essential trehalose mycolates in mycobacterial cell walls. However, we now show, using a genetic approach, that TreS is not required for trehalose biosynthesis in Mycobacterium smegmatis, whereas two alternative trehalose-biosynthetic pathways (OtsAB and TreYZ) are crucial. Consistent with this direction of flux, trehalose levels in Mycobacterium tuberculosis decreased when TreS was overexpressed. In addition, TreS was shown to interconvert the α anomer of maltose and trehalose using (1)H and (19)F-nuclear magnetic resonance spectroscopies using its normal substrates and deoxyfluoromaltose analogs, with the nonenzymatic mutarotation of α/β-maltose being slow. Therefore, flux through TreS in mycobacteria flows from trehalose to α-maltose, which is the appropriate anomer for maltose kinase of the GlgE α-glucan pathway, which in turn contributes to intracellular and/or capsular polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Farzana Miah
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism. Biosci Rep 2013; 33:BSR20130076. [PMID: 23863124 PMCID: PMC3755335 DOI: 10.1042/bsr20130076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.
Collapse
|
26
|
Goh YJ, Klaenhammer TR. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon. Mol Microbiol 2013; 89:1187-200. [PMID: 23879596 PMCID: PMC4282360 DOI: 10.1111/mmi.12338] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2013] [Indexed: 01/19/2023]
Abstract
Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus.
Collapse
Affiliation(s)
- Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | | |
Collapse
|
27
|
|
28
|
Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. J Bacteriol 2013; 195:4283-96. [PMID: 23873914 DOI: 10.1128/jb.00265-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA affinity chromatography with the promoter region of the Corynebacterium glutamicum pck gene, encoding phosphoenolpyruvate carboxykinase, led to the isolation of four transcriptional regulators, i.e., RamA, GntR1, GntR2, and IolR. Determination of the phosphoenolpyruvate carboxykinase activity of the ΔramA, ΔgntR1 ΔgntR2, and ΔiolR deletion mutants indicated that RamA represses pck during growth on glucose about 2-fold, whereas GntR1, GntR2, and IolR activate pck expression about 2-fold irrespective of whether glucose or acetate served as the carbon source. The DNA binding sites of the four regulators in the pck promoter region were identified and their positions correlated with the predicted functions as repressor or activators. The iolR gene is located upstream and in a divergent orientation with respect to a iol gene cluster, encoding proteins involved in myo-inositol uptake and degradation. Comparative DNA microarray analysis of the ΔiolR mutant and the parental wild-type strain revealed strongly (>100-fold) elevated mRNA levels of the iol genes in the mutant, indicating that the primary function of IolR is the repression of the iol genes. IolR binding sites were identified in the promoter regions of iolC, iolT1, and iolR. IolR therefore is presumably subject to negative autoregulation. A consensus DNA binding motif (5'-KGWCHTRACA-3') which corresponds well to those of other GntR-type regulators of the HutC family was identified. Taken together, our results disclose a complex regulation of the pck gene in C. glutamicum and identify IolR as an efficient repressor of genes involved in myo-inositol catabolism of this organism.
Collapse
|
29
|
Rajvanshi M, Gayen K, Venkatesh KV. Lysine overproducing Corynebacterium glutamicum is characterized by a robust linear combination of two optimal phenotypic states. SYSTEMS AND SYNTHETIC BIOLOGY 2013; 7:51-62. [PMID: 24432142 DOI: 10.1007/s11693-013-9107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/09/2023]
Abstract
A homoserine auxotroph strain of Corynebacterium glutamicum accumulates storage compound trehalose with lysine when limited by growth. Industrially lysine is produced from C. glutamicum through aspartate biosynthetic pathway, where enzymatic activity of aspartate kinase is allosterically controlled by the concerted feedback inhibition of threonine plus lysine. Ample threonine in the medium supports growth and inhibits lysine production (phenotype-I) and its complete absence leads to inhibition of growth in addition to accumulating lysine and trehalose (phenotype-II). In this work, we demonstrate that as threonine concentration becomes limiting, metabolic state of the cell shifts from maximizing growth (phenotype-I) to maximizing trehalose phenotype (phenotype-II) in a highly sensitive manner (with a Hill coefficient of 4). Trehalose formation was linked to lysine production through stoichiometry of the network. The study demonstrated that the net flux of the population was a linear combination of the two optimal phenotypic states, requiring only two experimental measurements to evaluate the flux distribution. The property of linear combination of two extreme phenotypes was robust for various medium conditions including varying batch time, initial glucose concentrations and medium osmolality.
Collapse
Affiliation(s)
- Meghna Rajvanshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Kalyan Gayen
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
30
|
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Systems metabolic engineering of xylose-utilizingCorynebacterium glutamicumfor production of 1,5-diaminopentane. Biotechnol J 2013; 8:557-70. [DOI: 10.1002/biot.201200367] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/09/2022]
|
31
|
Cloning, Expression and Characterization of a Trehalose Synthase Gene From Rhodococcus opacus. Protein J 2013; 32:223-9. [DOI: 10.1007/s10930-013-9476-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN MICROBIOLOGY 2013; 2013:935736. [PMID: 23724339 PMCID: PMC3658426 DOI: 10.1155/2013/935736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
To date the genus Corynebacterium comprises 88 species. More than half of these are connected to human and animal infections, with the most prominent member of the pathogenic species being Corynebacterium diphtheriae, which is also the type species of the genus. Corynebacterium species are characterized by a complex cell wall architecture: the plasma membrane of these bacteria is followed by a peptidoglycan layer, which itself is covalently linked to a polymer of arabinogalactan. Bound to this, an outer layer of mycolic acids is found which is functionally equivalent to the outer membrane of Gram-negative bacteria. As final layer, free polysaccharides, glycolipids, and proteins are found. The composition of the different substructures of the corynebacterial cell envelope and their influence on pathogenicity are discussed in this paper.
Collapse
|
33
|
Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 2013; 6:493-502. [PMID: 23302511 PMCID: PMC3918152 DOI: 10.1111/1751-7915.12029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
Summary The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose-6-P, glucose-1-P and NDP-glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå University, Umeå, Sweden; Department of Biotechnology, IIT Roorkee, Roorkee, India.
| | | | | |
Collapse
|
34
|
Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 2012; 12:207. [PMID: 22985230 PMCID: PMC3518184 DOI: 10.1186/1471-2180-12-207] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 09/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The compatible solute trehalose is involved in the osmostress response of Rhizobium etli, the microsymbiont of Phaseolus vulgaris. In this work, we reconstructed trehalose metabolism in R. etli, and investigated its role in cellular adaptation and survival to heat and desiccation stress under free living conditions. RESULTS Besides trehalose as major compatible solute, R. etli CE3 also accumulated glutamate and, if present in the medium, mannitol. Putative genes for trehalose synthesis (otsAB/treS/treZY), uptake (aglEFGK/thuEFGK) and degradation (thuAB/treC) were scattered among the chromosome and plasmids p42a, p42c, p42e, and p42f, and in some instances found redundant. Two copies of the otsA gene, encoding trehalose-6-P-synthase, were located in the chromosome (otsAch) and plasmid p42a (otsAa), and the latter seemed to be acquired by horizontal transfer. High temperature alone did not influence growth of R. etli, but a combination of high temperature and osmotic stress was more deleterious for growth than osmotic stress alone. Although high temperature induced some trehalose synthesis by R. etli, trehalose biosynthesis was mainly triggered by osmotic stress. However, an otsAch mutant, unable to synthesize trehalose in minimal medium, showed impaired growth at high temperature, suggesting that trehalose plays a role in thermoprotection of R. etli. Desiccation tolerance by R. etli wild type cells was dependent of high trehalose production by osmotic pre-conditioned cells. Cells of the mutant strain otsAch showed ca. 3-fold lower survival levels than the wild type strain after drying, and a null viability after 4 days storage. CONCLUSIONS Our findings suggest a beneficial effect of osmotic stress in R. etli tolerance to desiccation, and an important role of trehalose on the response of R. etli to high temperature and desiccation stress.
Collapse
Affiliation(s)
- Mercedes Reina-Bueno
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, Seville, 41012, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
GntR-type transcriptional regulator PckR negatively regulates the expression of phosphoenolpyruvate carboxykinase in Corynebacterium glutamicum. J Bacteriol 2012; 194:2181-8. [PMID: 22366416 DOI: 10.1128/jb.06562-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pck (cg3169) gene of Corynebacterium glutamicum encodes a phosphoenolpyruvate carboxykinase (PEPCK). Here, a candidate transcriptional regulator that binds to the promoter region of pck was detected using a DNA affinity purification approach. An isolated protein was identified to be PckR (Cg0196), a GntR family transcriptional regulator which consists of 253 amino acids with a mass of 27 kDa as measured by peptide mass fingerprinting. The results of electrophoretic mobility shift assays verified that PckR specifically binds to the pck promoter. The putative regulator binding region extended from position -44 to -27 (an 18-bp sequence) relative to the transcriptional start point of the pck gene. We measured the expression of pck in a pckR deletion mutant by using quantitative real-time reverse transcription-PCR. The expression level of pck in the pckR mutant was 7.6 times higher than that in wild-type cells grown in glucose. Comparative DNA microarray hybridizations and bioinformatic searches revealed the gene composition of the transcriptional regulon of C. glutamicum. Based on these results, PckR seemed to play an important role in the regulation of PEPCK in C. glutamicum grown in glucose. In particular, these assays revealed that PckR acts as a repressor of pck expression during glucose metabolism.
Collapse
|
36
|
Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One 2011; 6:e23695. [PMID: 21931609 PMCID: PMC3171402 DOI: 10.1371/journal.pone.0023695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/22/2011] [Indexed: 11/18/2022] Open
Abstract
We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3' half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1 promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression.
Collapse
|
37
|
Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ. The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2011; 157:3243-3251. [PMID: 21903753 DOI: 10.1099/mic.0.051565-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Corynebacterium glutamicum transiently accumulates glycogen as carbon capacitor during the early exponential growth phase in media containing carbohydrates. In some bacteria glycogen is synthesized by the consecutive action of ADP-glucose pyrophosphorylase (GlgC), glycogen synthase (GlgA) and glycogen branching enzyme (GlgB). GlgC and GlgA of C. glutamicum have been shown to be necessary for glycogen accumulation in this organism. However, although cg1381 has been annotated as the putative C. glutamicum glgB gene, cg1381 and its gene product have not been characterized and their role in transient glycogen accumulation has not yet been investigated. We show here that the cg1381 gene product of C. glutamicum catalyses the formation of α-1,6-glycosidic bonds in polysaccharides and thus represents a glycogen branching enzyme. RT-PCR experiments revealed glgB to be co-transcribed with glgE, probably encoding a maltosyltransferase. Promoter activity assays with the glgE promoter region revealed carbon-source-dependent expression of the glgEB operon. Characterization of the growth and glycogen content of glgB-deficient and glgB-overexpressing strains showed that the glycogen branching enzyme GlgB is essential for glycogen formation in C. glutamicum. Taken together these results suggest that an interplay of the enzymes GlgC, GlgA and GlgB is not essential for growth, but is required for synthesis of the transient carbon capacitor glycogen in C. glutamicum.
Collapse
Affiliation(s)
- Gerd M Seibold
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Katrin J Breitinger
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Raoul Kempkes
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Leonard Both
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Matthias Krämer
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Stefan Dempf
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
38
|
Chen XM, Jiang Y, Li YT, Zhang HH, Li J, Chen X, Zhao Q, Zhao J, Si J, Lin ZW, Zhang H, Dyson P, An LZ. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3. Extremophiles 2011; 15:499-508. [DOI: 10.1007/s00792-011-0380-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|
39
|
Kim HH, Jung JH, Seo DH, Ha SJ, Yoo SH, Kim CH, Park CS. Novel enzymatic production of trehalose from sucrose using amylosucrase and maltooligosyltrehalose synthase-trehalohydrolase. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0764-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 2010; 27:1281-96. [PMID: 25187127 DOI: 10.1007/s11274-010-0584-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.
Collapse
|
41
|
Fanous A, Hecker M, Görg A, Parlar H, Jacob F. Corynebacterium glutamicum as an indicator for environmental cobalt and silver stress--a proteome analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:666-675. [PMID: 20818520 DOI: 10.1080/03601234.2010.502442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cobalt and silver are toxic for cells, but mechanisms of this toxicity are largely unknown. Analysis of Corynebacterium glutamicum proteome from cells grown in control and cobalt or silver enriched media was performed by two dimensional gel electrophoresis (2DE) followed by mass spectrometry. Our results indicate that the cell adapted to cobalt stress by inducing five defense mechanisms: Scavenging of free radicals, promotion of the generation of energy, reparation of DNA, reparation and biogenesis of Fe-S cluster proteins and supporting and reparation of cell wall. In response to the detoxification of Ag+ many proteins were up-regulated, which involved reparation of damaged DNA, minimizing the toxic effect of reactive oxygen species (ROS) and energy generation. Overexpression of proteins involved in cell wall biosynthesis (1,4-alpha-glucan branching enzyme and nucleoside-diphosphate-sugar epimerase) upon cobalt stress and induction of proteins involved in energy metabolism (2-methylcitrate dehydratase and 1, 2-methylcitrate synthase) upon silver demonstrate the potential of these enzymes as biomarkers of sub-lethal Ag+ and Co toxicity.
Collapse
Affiliation(s)
- Ali Fanous
- Department for Chemical-Technical Analysis and Chemical Food Technology, Research Center Weihenstephan for Brewing and Food Quality, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
42
|
Woo HM, Noack S, Seibold GM, Willbold S, Eikmanns BJ, Bott M. Link between phosphate starvation and glycogen metabolism in Corynebacterium glutamicum, revealed by metabolomics. Appl Environ Microbiol 2010; 76:6910-9. [PMID: 20802079 PMCID: PMC2953031 DOI: 10.1128/aem.01375-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/14/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we analyzed the influence of phosphate (P(i)) limitation on the metabolism of Corynebacterium glutamicum. Metabolite analysis by gas chromatography-time-of-flight (GC-TOF) mass spectrometry of cells cultivated in glucose minimal medium revealed a greatly increased maltose level under P(i) limitation. As maltose formation could be linked to glycogen metabolism, the cellular glycogen content was determined. Unlike in cells grown under P(i) excess, the glycogen level in P(i)-limited cells remained high in the stationary phase. Surprisingly, even acetate-grown cells, which do not form glycogen under P(i) excess, did so under P(i) limitation and also retained it in stationary phase. Expression of pgm and glgC, encoding the first two enzymes of glycogen synthesis, phosphoglucomutase and ADP-glucose pyrophosphorylase, was found to be increased 6- and 3-fold under P(i) limitation, respectively. Increased glycogen synthesis together with a decreased glycogen degradation might be responsible for the altered glycogen metabolism. Independent from these experimental results, flux balance analysis suggested that an increased carbon flux to glycogen is a solution for C. glutamicum to adapt carbon metabolism to limited P(i) concentrations.
Collapse
Affiliation(s)
- Han Min Woo
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Noack
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Gerd M. Seibold
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Willbold
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Bernhard J. Eikmanns
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| | - Michael Bott
- Institute of Biotechnology 1, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biotechnology 2, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Microbiology and Biotechnology, Ulm University, D-89081 Ulm, Germany, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany, Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
43
|
Mendes V, Maranha A, Lamosa P, da Costa MS, Empadinhas N. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG. BMC BIOCHEMISTRY 2010; 11:21. [PMID: 20507595 PMCID: PMC2885305 DOI: 10.1186/1471-2091-11-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/27/2010] [Indexed: 11/17/2022]
Abstract
Background Maltose-1-phosphate was detected in Mycobacterium bovis BCG extracts in the 1960's but a maltose-1-phosphate synthetase (maltokinase, Mak) was only much later purified from Actinoplanes missouriensis, allowing the identification of the mak gene. Recently, this metabolite was proposed to be the intermediate in a pathway linking trehalose with the synthesis of glycogen in M. smegmatis. Although the M. tuberculosis H37Rv mak gene (Rv0127) was considered essential for growth, no mycobacterial Mak has, to date, been characterized. Results The sequence of the Mak from M. bovis BCG was identical to that from M. tuberculosis strains (99-100% amino acid identity). The enzyme was dependent on maltose and ATP, although GTP and UTP could be used to produce maltose-1-phosphate, which we identified by TLC and characterized by NMR. The Km for maltose was 2.52 ± 0.40 mM and 0.74 ± 0.12 mM for ATP; the Vmax was 21.05 ± 0.89 μmol/min.mg-1. Divalent cations were required for activity and Mg2+ was the best activator. The enzyme was a monomer in solution, had maximal activity at 60°C, between pH 7 and 9 (at 37°C) and was unstable on ice and upon freeze/thawing. The addition of 50 mM NaCl markedly enhanced Mak stability. Conclusions The unknown role of maltokinases in mycobacterial metabolism and the lack of biochemical data led us to express the mak gene from M. bovis BCG for biochemical characterization. This is the first mycobacterial Mak to be characterized and its properties represent essential knowledge towards deeper understanding of mycobacterial physiology. Since Mak may be a potential drug target in M. tuberculosis, its high-level production and purification in bioactive form provide important tools for further functional and structural studies.
Collapse
Affiliation(s)
- Vítor Mendes
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
44
|
Seibold GM, Hagmann CT, Schietzel M, Emer D, Auchter M, Schreiner J, Eikmanns BJ. The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2010; 156:1256-1263. [PMID: 20056699 DOI: 10.1099/mic.0.036756-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When grown in glucose-, fructose- or sucrose-containing medium, the amino acid producer Corynebacterium glutamicum transiently accumulates large amounts of glycogen (up to 10% of its dry weight), whereas only a marginal amount of glycogen is formed during growth with acetate. This carbon-source-dependent regulation is at least partially due to transcriptional control of glgC, encoding ADP-glucose pyrophosphorylase, the first enzyme of glycogen synthesis from glucose-1-phosphate. Here, we have analysed a possible regulatory role for the transcriptional regulators RamA and RamB on glycogen content of the cells and on control of expression of glgC and of glgA, which encodes the second enzyme of glycogen synthesis, glycogen synthase. Determination of the glycogen content of RamA- and RamB-deficient C. glutamicum indicated that RamA and RamB influence glycogen synthesis positively and negatively, respectively. In accordance with the identification of putative RamA and RamB binding sites upstream of glgC and glgA, both regulators were found to bind specifically to the glgC-glgA intergenic promoter region. Promoter activity assays in wild-type and RamA- and RamB-deficient strains of C. glutamicum revealed that (i) RamA is a positive regulator of glgC and glgA, (ii) RamB is a negative regulator of glgA and (iii) neither RamA nor RamB alone is responsible for the carbon-source-dependent regulation of glycogen synthesis in C. glutamicum.
Collapse
Affiliation(s)
- Gerd M Seibold
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany.,Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Christian T Hagmann
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Melanie Schietzel
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Denise Emer
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Marc Auchter
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Joy Schreiner
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
45
|
Kuyukina MS, Ivshina IB. Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Xiuli W, Hongbiao D, Ming Y, Yu Q. Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens. Appl Microbiol Biotechnol 2009; 83:477-82. [DOI: 10.1007/s00253-009-1863-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
47
|
Seibold GM, Wurst M, Eikmanns BJ. Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2009; 155:347-358. [PMID: 19202084 DOI: 10.1099/mic.0.023614-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Corynebacterium glutamicum transiently accumulates large amounts of glycogen, when cultivated on glucose and other sugars as a source of carbon and energy. Apart from the debranching enzyme GlgX, which is required for the formation of maltodextrins from glycogen, alpha-glucan phosphorylases were assumed to be involved in glycogen degradation, forming alpha-glucose 1-phosphate from glycogen and from maltodextrins. We show here that C. glutamicum in fact possesses two alpha-glucan phosphorylases, which act as a glycogen phosphorylase (GlgP) and as a maltodextrin phosphorylase (MalP). By chromosomal inactivation and subsequent analysis of the mutant, cg1479 was identified as the malP gene. The deletion mutant C. glutamicum DeltamalP completely lacked MalP activity and showed reduced intracellular glycogen degradation, confirming the proposed pathway for glycogen degradation in C. glutamicum via GlgP, GlgX and MalP. Surprisingly, the DeltamalP mutant showed impaired growth, reduced viability and altered cell morphology on maltose and accumulated much higher concentrations of glycogen and maltodextrins than the wild-type during growth on this substrate, suggesting an additional role of MalP in maltose metabolism of C. glutamicum. Further assessment of enzyme activities revealed the presence of 4-alpha-glucanotransferase (MalQ), glucokinase (Glk) and alpha-phosphoglucomutase (alpha-Pgm), and the absence of maltose hydrolase, maltose phosphorylase and beta-Pgm, all three known to be involved in maltose utilization by Gram-positive bacteria. Based on these findings, we conclude that C. glutamicum metabolizes maltose via a pathway involving maltodextrin and glucose formation by MalQ, glucose phosphorylation by Glk and maltodextrin degradation via the reactions of MalP and alpha-Pgm, a pathway hitherto known to be present in Gram-negative rather than in Gram-positive bacteria.
Collapse
Affiliation(s)
- Gerd M Seibold
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany.,Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Martin Wurst
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
48
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
49
|
Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009; 82:115-21. [DOI: 10.1007/s00253-008-1751-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
50
|
Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Constant P, Levillain F, Neyrolles O, Gicquel B, Lemassu A, Daffé M, Jackson M. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 2008; 70:762-74. [PMID: 18808383 DOI: 10.1111/j.1365-2958.2008.06445.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves the alpha-1,4-glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP-glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production of capsular glucan and glycogen, respectively. Attempts to disrupt Rv3032 in the glgA mutant were unsuccessful, suggesting that a functional copy of at least one of the two alpha-1,4-glucosyltransferases is required for growth. Importantly, the glgA mutant was impaired in its ability to persist in mice, suggesting a role for the capsular glucan in the persistence phase of infection. Unexpectedly, GlgB was found to be an essential enzyme.
Collapse
Affiliation(s)
- Tounkang Sambou
- Université Paul Sabatier (Toulouse III) 118, route de Narbonne, 31062-Toulouse cedex 04, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|