1
|
Chen S, Qi H, Zhu X, Liu T, Fan Y, Su Q, Gong Q, Jia C, Liu T. Screening and identification of antimicrobial peptides from the gut microbiome of cockroach Blattella germanica. MICROBIOME 2024; 12:272. [PMID: 39709489 DOI: 10.1186/s40168-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The overuse of antibiotics has led to lethal multi-antibiotic-resistant microorganisms around the globe, with restricted availability of novel antibiotics. Compared to conventional antibiotics, evolutionarily originated antimicrobial peptides (AMPs) are promising alternatives to address these issues. The gut microbiome of Blattella germanica represents a previously untapped resource of naturally evolving AMPs for developing antimicrobial agents. RESULTS Using the in-house designed tool "AMPidentifier," AMP candidates were mined from the gut microbiome of B. germanica, and their activities were validated both in vitro and in vivo. Among filtered candidates, AMP1, derived from the symbiotic microorganism Blattabacterium cuenoti, demonstrated broad-spectrum antibacterial activity, low cytotoxicity towards mammalian cells, and a lack of hemolytic effects. Mechanistic studies revealed that AMP1 rapidly permeates the bacterial cell and accumulates intracellularly, resulting in a gradual and mild depolarization of the cell membrane during the initial incubation period, suggesting minimal direct impact on membrane integrity. Furthermore, observations from fluorescence microscopy and scanning electron microscopy indicated abnormalities in bacterial binary fission and compromised cell structure. These findings led to the hypothesis that AMP1 may inhibit bacterial cell wall synthesis. Furthermore, AMP1 showed potent antibacterial and wound healing effects in mice, with comparable performances of vancomycin. CONCLUSIONS This study exemplifies an interdisciplinary approach to screening safe and effective AMPs from natural biological tissues, and our identified AMP 1 holds promising potential for clinical application.
Collapse
Affiliation(s)
- Sizhe Chen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The Department of Medicine & Therapeutics, The Chinese University of Hong Kong, ShatinHong Kong SAR, NT, China
| | - Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xingzhuo Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiaan Jiaotong University, Xian, 710061, China
| | - Tianxiang Liu
- School of Science, Dalian Maritime University, Dalian, 116026, China
| | - Yuting Fan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- The Department of Medicine & Therapeutics, The Chinese University of Hong Kong, ShatinHong Kong SAR, NT, China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiaan Jiaotong University, Xian, 710061, China.
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian, 116026, China.
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
2
|
Ouyang X, Li B, Yang T, Yang Y, Ba Z, Zhang J, Yang P, Liu Y, Wang Y, Zhao Y, Mao W, Wu X, Zeng X, Zhong C, Liu H, Zhang Y, Gou S, Ni J. High Therapeutic Index α-Helical AMPs and Their Therapeutic Potential on Bacterial Lung and Skin Wound Infections. ACS Infect Dis 2024; 10:3138-3157. [PMID: 39141008 DOI: 10.1021/acsinfecdis.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial peptides (AMPs) possess strong antibacterial activity and low drug resistance, making them ideal candidates for bactericidal drugs for addressing the issue of traditional antibiotic resistance. In this study, a template (G(XXKK)nI, G = Gly; X = Leu, Ile, Phe, or Trp; n = 2, 3, or 4; K = Lys; I = Ile.) was employed for the devised of a variety of novel α-helical AMPs with a high therapeutic index. The AMP with the highest therapeutic index, WK2, was ultimately chosen following a thorough screening process. It demonstrates broad-spectrum and potent activity against both standard and multidrug-resistant bacteria, while also showing low hemolysis and rapid and efficient time-kill kinetics. Additionally, WK2 exhibits excellent efficacy in treating mouse models of Klebsiella pneumonia-induced lung infections and methicillin-resistant Staphylococcus aureus (MRSA)-induced skin wound infections while demonstrating good safety profiles in vivo. In conclusion, the template-based design methodology for novel AMPs with high therapeutic indices offers new insights into addressing antibiotic resistance problems. WK2 represents a promising antimicrobial agent.
Collapse
Affiliation(s)
- Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingting Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yao Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhuan Zhao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoxuan Zeng
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
4
|
Gao X, Han J, Zhu L, Nychas GJE, Mao Y, Yang X, Liu Y, Jiang X, Zhang Y, Dong P. The Effect of the PhoP/PhoQ System on the Regulation of Multi-Stress Adaptation Induced by Acid Stress in Salmonella Typhimurium. Foods 2024; 13:1533. [PMID: 38790833 PMCID: PMC11121531 DOI: 10.3390/foods13101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.
Collapse
Affiliation(s)
- Xu Gao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Jina Han
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China;
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - George-John E. Nychas
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xueqing Jiang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| |
Collapse
|
5
|
Zhu Y, Xu Y, Yan J, Fang Y, Dong N, Shan A. "AMP plus": Immunostimulant-Inspired Design Based on Chemotactic Motif -( PhHA hPH) n. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43563-43579. [PMID: 37691475 DOI: 10.1021/acsami.3c09353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Ability to stimulate antimicrobial immunity has proven to be a useful therapeutic strategy in treating infections, especially in the face of increasing antibiotic resistance. Natural antimicrobial peptides (AMPs) exhibiting immunomodulatory functions normally encompass complex activities, which make it difficult to optimize their therapeutic benefits. Here, a chemotactic motif was harnessed as a template to design a series of AMPs with immunostimulatory activities plus bacteria-killing activities ("AMP plus"). An amphipathic peptide ((PhHAhPH)n) was employed to improve the antimicrobial impact and expand the therapeutic potential of the chemotactic motif that lacked obvious bacteria-killing properties. A total of 18 peptides were designed and evaluated for their structure-activity relationships. Among the designed, KWH2 (1) potently killed bacteria and exhibited a narrow antimicrobial spectrum against Gram-negative bacteria and (2) activated macrophages (i.e., inducing Ca2+ influx, cell migration, and reactive oxygen species production) as a macrophage chemoattractant. Membrane permeabilization is the major antimicrobial mechanism of KWH2. Furthermore, the mouse subcutaneous abscess model supported the dual immunomodulatory and antimicrobial potential of KWH2 in vivo. The above results confirmed the efficiency of KWH2 in treating bacterial infection and provided a viable approach to develop immunomodulatory antimicrobial materials with desired properties.
Collapse
Affiliation(s)
- Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yinghan Xu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Jianming Yan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| |
Collapse
|
6
|
Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023; 68:100954. [PMID: 36905712 DOI: 10.1016/j.drup.2023.100954] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The problem of drug resistance due to long-term use of antibiotics has been a concern for years. As this problem grows worse, infections caused by multiple bacteria are expanding rapidly and are extremely detrimental to human health. Antimicrobial peptides (AMPs) are a good alternative to current antimicrobials with potent antimicrobial activity and unique antimicrobial mechanisms, which have advantages over traditional antibiotics in fighting against drug-resistant bacterial infections. Currently, researchers have conducted clinical investigations on AMPs for drug-resistant bacterial infections while integrating new technologies in the development of AMPs, such as changing amino acid structure of AMPs and using different delivery methods for AMPs. This article introduces the basic properties of AMPs, deliberates the mechanism of drug resistance in bacteria and the therapeutic mechanism of AMPs. The current disadvantages and advances of AMPs in combating drug-resistant bacterial infections are also discussed. This article provides important insights into the research and clinical application of new AMPs for drug-resistant bacterial infections.
Collapse
|
7
|
The design of cell-selective tryptophan and arginine-rich antimicrobial peptides by introducing hydrophilic uncharged residues. Acta Biomater 2022; 153:557-572. [PMID: 36115654 DOI: 10.1016/j.actbio.2022.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) are considered to be powerful weapons in the fight against traditional antibiotic resistance due to their unique membrane-disruptive mechanism. The combination of traditional and classical hydrophobic tryptophan (W) residues and hydrophilic charged arginine (R) residues is considered as the first choice for the minimalist design of AMPs due to its potent performance in antibacterial activity. However, some W- and R-rich AMPs that are not rationally designed and contain excessive repeats of W and R residues may cause severe cytotoxicity and hemolysis. To address this issue, we designed the (WRX)n (where X = hydrophilic uncharged amino residues; n = number of repeat units) series engineered peptides with high cell selectivity by introducing hydrophilic uncharged threonine (T), serine (S), glutamine (Q) or asparagine (N) residues into the minimalist design of W- and R-rich AMPs. The results showed that the introduction of these hydrophilic uncharged amino residues, especially T residues, significantly improved the cell selectivity of the W- and R-rich engineered peptides. Among (WRX)n series engineered peptides, T6 presents a mixture structure of β-turn and α-helix. It has broad spectrum and potent antibacterial activity (no activity against probiotics), good biocompatibility, high selectivity index, strong tolerance (physiological salts, serum acid, alkali, and heat conditions), rapid and efficient time-kill kinetics, and no tendency of resistance. Studies on antibacterial mechanism show that T6 exert antibacterial activity mainly by disrupting bacterial cell membrane and inducing the accumulation of reactive oxygen species in bacterial cells. Furthermore, T6 exhibited potent antibacterial and anti-inflammatory capabilities in vivo in a mouse peritonitis-sepsis model infected with Escherichia coli. In conclusion, our study confirms an effective strategy for the minimalist design of highly cell selective W- and R-rich AMPs by introducing hydrophilic uncharged T residues, which may trigger widespread attention to hydrophilic uncharged amino acid residues, including T residues, and provide new insights into the design of peptide-based antibacterial biomaterials. STATEMENT OF SIGNIFICANCE: We have introduced hydrophilic uncharged T, S, Q or N residues into the minimalist design of W- and R-rich engineered peptides and found that the introduction of these hydrophilic uncharged amino residues, especially the T residues, can significantly improve the cell selectivity of W- and R-rich engineered peptides. The target compound T6 showed potent antibacterial activity, high cell selectivity, strong tolerance, good in vivo efficacy and killed bacteria through multiple mechanisms mainly membrane-disruptive. These findings may spark widespread interest in hydrophilic uncharged amino acid residues, and provide new insights into the design of peptide-based antimicrobial biomaterials.
Collapse
|
8
|
Gorr SU, Brigman HV, Anderson JC, Hirsch EB. The antimicrobial peptide DGL13K is active against drug-resistant gram-negative bacteria and sub-inhibitory concentrations stimulate bacterial growth without causing resistance. PLoS One 2022; 17:e0273504. [PMID: 36006947 PMCID: PMC9409508 DOI: 10.1371/journal.pone.0273504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides may be alternatives to traditional antibiotics with reduced bacterial resistance. The antimicrobial peptide GL13K was derived from the salivary protein BPIFA2. This study determined the relative activity of the L-and D-enantiomers of GL13K to wild-type and drug-resistant strains of three gram-negative species and against Pseudomonas aeruginosa biofilms. DGL13K displayed in vitro activity against extended-spectrum beta-lactamase (ESBL)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (MICs 16-32 μg/ml), MDR and XDR P. aeruginosa, and XDR Acinetobacter baumannii carrying metallo-beta-lactamases (MICs 8-32 μg/ml). P. aeruginosa showed low inherent resistance to DGL13K and the increased metabolic activity and growth caused by sub-MIC concentrations of GL13K peptides did not result in acquired bacterial resistance. Daily treatment for approximately two weeks did not increase the MIC of DGL13K or cause cross-resistance between LGL13K and DGL13K. These data suggest that DGL13K is a promising antimicrobial peptide candidate for further development.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Hunter V. Brigman
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America
| | - Jadyn C. Anderson
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America
| | - Elizabeth B. Hirsch
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America
| |
Collapse
|
9
|
Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Appl Microbiol Biotechnol 2022; 106:3879-3893. [PMID: 35604438 PMCID: PMC9125544 DOI: 10.1007/s00253-022-11940-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022]
Abstract
Abstract
It has been about a century since the discovery of the first antibiotic, and during this period, several antibiotics were produced and marketed. The production of high-potency antibiotics against infections led to victories, but these victories were temporary. Overuse and misuse of antibiotics have continued to the point that humanity today is almost helpless in the fight against infection. Researchers have predicted that by the middle of the new century, there will be a dark period after the production of antibiotics that doctors will encounter antibiotic-resistant infections for which there is no cure. Accordingly, researchers are looking for new materials with antimicrobial properties that will strengthen their ammunition to fight antibiotic-resistant infections. One of the most important alternatives to antibiotics introduced in the last three decades is antimicrobial peptides (AMPs), which affect a wide range of microbes. Due to their different antimicrobial properties from antibiotics, AMPs can fight and kill MDR, XDR, and colistin-resistant bacteria through a variety of mechanisms. Therefore, in this study, we intend to use the latest studies to give a complete description of AMPs, the importance of colistin-resistant bacteria, and their resistance mechanisms, and represent impact of AMPs on colistin-resistant bacteria. Key points • AMPs as limited options to kill colistin-resistant bacteria. • Challenge of antibiotics resistance, colistin resistance, and mechanisms. • What is AMPs in the war with colistin-resistant bacteria?
Collapse
|
10
|
Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, Zhu Q. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromol Biosci 2021; 21:e2100103. [PMID: 34405955 DOI: 10.1002/mabi.202100103] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/31/2021] [Indexed: 12/12/2022]
Abstract
Chronic wound infections have caused an increasing number of deaths and economic burden, which necessitates wound treatment options. Hitherto, the development of functional wound dressings has achieved reasonable progress. Antibacterial agents, growth factors, and miRNAs are incorporated in different wound dressings to treat various types of wounds. As an effective antimicrobial agent and emerging wound healing therapeutic, antimicrobial peptides (AMPs) have attracted significant attention. The present study focuses on the application of AMPs in wound healing and discusses the types, properties and formulation strategies of AMPs used for wound healing. In addition, the clinical trial and the current status of studies on "antimicrobial peptides and wound healing" are elaborated through bibliometrics. Also, the challenges and opportunities for further development and utilization of AMP formulations in wound healing are discussed.
Collapse
Affiliation(s)
- Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| | - Yong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yue Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China
| |
Collapse
|
11
|
Zhong C, Zhang F, Yao J, Zhu Y, Zhu N, Zhang J, Ouyang X, Zhang T, Li B, Xie J, Ni J. New Antimicrobial Peptides with Repeating Unit against Multidrug-Resistant Bacteria. ACS Infect Dis 2021; 7:1619-1637. [PMID: 33829758 DOI: 10.1021/acsinfecdis.0c00797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the aim of tackling the increasingly serious antimicrobial resistance and improving the clinical potential of AMPs, a facile de novo strategy was adopted in this study, and a series of new peptides comprising repeating unit (WRX)n (X represents I, L, F, W, and K; n = 2, 3, 4, or 5) and amidation at C-terminus were designed. Most of the newly designed peptides exhibited a broad range of excellent antimicrobial activities against various bacteria, especially difficult-to-kill multidrug-resistant bacteria clinical isolates. Among (WRK)4 and (WRK)5, with n = 4 and n = 5 of repeating unit WRK, the highest selectivity for anionic bacterial membranes over a zwitterionic mammalian cell membrane is presented with strong antimicrobial potential and low toxicity. Additionally, both (WRK)4 and (WRK)5 emerged with fast killing speed and low tendency of resistance in sharp contrast to the conventional antibiotics ciprofloxacin, gentamicin, and imipenem, as well as having antimicrobial activity through multiple mechanisms including a membrane-disruptive mechanism and an intramolecular mechanism (nucleic acid leakage, DNA binding and ROS generation) characterized by a series of assays. Furthermore, (WRK)4 exerted impressive therapeutic effects in vivo similarly to polymyxin B but displayed much lower toxicity in vivo than polymyxin B. Taken together, the newly designed peptides (WRK)4 and (WRK)5 presented tremendous potential as novel antimicrobial candidates in response to the growing antimicrobial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| |
Collapse
|
12
|
Attieh Z, Mouawad C, Rejasse A, Jehanno I, Perchat S, Hegna IK, Økstad OA, Kallassy Awad M, Sanchis-Borja V, El Chamy L. The fliK Gene Is Required for the Resistance of Bacillus thuringiensis to Antimicrobial Peptides and Virulence in Drosophila melanogaster. Front Microbiol 2020; 11:611220. [PMID: 33391240 PMCID: PMC7775485 DOI: 10.3389/fmicb.2020.611220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential effectors of the host innate immune system and they represent promising molecules for the treatment of multidrug resistant microbes. A better understanding of microbial resistance to these defense peptides is thus prerequisite for the control of infectious diseases. Here, using a random mutagenesis approach, we identify the fliK gene, encoding an internal molecular ruler that controls flagella hook length, as an essential element for Bacillus thuringiensis resistance to AMPs in Drosophila. Unlike its parental strain, that is highly virulent to both wild-type and AMPs deficient mutant flies, the fliK deletion mutant is only lethal to the latter's. In agreement with its conserved function, the fliK mutant is non-flagellated and exhibits highly compromised motility. However, comparative analysis of the fliK mutant phenotype to that of a fla mutant, in which the genes encoding flagella proteins are interrupted, indicate that B. thuringiensis FliK-dependent resistance to AMPs is independent of flagella assembly. As a whole, our results identify FliK as an essential determinant for B. thuringiensis virulence in Drosophila and provide new insights on the mechanisms underlying bacteria resistance to AMPs.
Collapse
Affiliation(s)
- Zaynoun Attieh
- UR-EGP, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Carine Mouawad
- UR-EGP, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Isabelle Jehanno
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Stéphane Perchat
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Ida K. Hegna
- Department of Pharmacy, Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Ole A. Økstad
- Department of Pharmacy, Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laure El Chamy
- UR-EGP, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| |
Collapse
|
13
|
Izadi N, Keikha M, Ghazvini K, Karbalaei M. Oral antimicrobial peptides and new therapeutic strategies for plaque-mediated diseases. GENE REPORTS 2020; 21:100811. [DOI: 10.1016/j.genrep.2020.100811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
|
15
|
Mücke PA, Ostrzinski A, Hammerschmidt S, Maaß S, Becher D. Proteomic Adaptation of Streptococcus pneumoniae to the Antimicrobial Peptide Human Beta Defensin 3 (hBD3) in Comparison to Other Cell Surface Stresses. Microorganisms 2020; 8:microorganisms8111697. [PMID: 33143252 PMCID: PMC7694020 DOI: 10.3390/microorganisms8111697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The antimicrobial peptide human Beta defensin 3 (hBD3) is an essential part of the innate immune system and is involved in protection against respiratory pathogens by specifically permeabilizing bacterial membranes. The Gram-positive bacterium Streptococcus pneumoniae causes serious diseases including pneumonia, meningitis, and septicemia, despite being frequently exposed to human defense molecules, including hBD3 during colonization and infection. Thus, the question arises how pneumococci adapt to stress caused by antimicrobial peptides. We addressed this subject by analyzing the proteome of S. pneumoniae after treatment with hBD3 and compared our data with the proteomic changes induced by LL-37, another crucial antimicrobial peptide present in the human respiratory tract. As antimicrobial peptides usually cause membrane perturbations, the response to the membrane active cationic detergent cetyltrimethylammonium bromide (CTAB) was examined to assess the specificity of the pneumococcal response to antimicrobial peptides. In brief, hBD3 and LL-37 induce a similar response in pneumococci and especially, changes in proteins with annotated transporter and virulence function have been identified. However, LL-37 causes changes in the abundance of cell surface modification proteins that cannot be observed after treatment with hBD3. Interestingly, CTAB induces unique proteomic changes in S. pneumoniae. Though, the detergent seems to activate a two-component system that is also activated in response to antimicrobial peptide stress (TCS 05). Overall, our data represent a novel resource on pneumococcal adaptation to specific cell surface stresses on a functional level. This knowledge can potentially be used to develop strategies to circumvent pneumococcal resistance to antimicrobial peptides.
Collapse
Affiliation(s)
- Pierre-Alexander Mücke
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Anne Ostrzinski
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| |
Collapse
|
16
|
Rodríguez-Rojas A, Nath A, El Shazely B, Santi G, Kim JJ, Weise C, Kuropka B, Rolff J. Antimicrobial Peptide Induced-Stress Renders Staphylococcus aureus Susceptible to Toxic Nucleoside Analogs. Front Immunol 2020; 11:1686. [PMID: 33133056 PMCID: PMC7550632 DOI: 10.3389/fimmu.2020.01686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides (AMPs) are active immune effectors of multicellular organisms and are also considered as new antimicrobial drug candidates. One of the problems encountered when developing AMPs as drugs is the difficulty of reaching sufficient killing concentrations under physiological conditions. Here, using pexiganan, a cationic peptide derived from a host defense peptide of the African clawed frog and the first AMP developed into an antibacterial drug, we studied whether sub-lethal effects of AMPs can be harnessed to devise treatment combinations. We studied the pexiganan stress response of Staphylococcus aureus at sub-lethal concentrations using quantitative proteomics. Several proteins involved in nucleotide metabolism were elevated, suggesting a metabolic demand. We then show that Staphylococcus aureus is highly susceptible to antimetabolite nucleoside analogs when exposed to pexiganan, even at sub-inhibitory concentrations. These findings could be used to enhance pexiganan potency while decreasing the risk of resistance emergence, and our findings can likely be extended to other antimicrobial peptides.
Collapse
Affiliation(s)
| | - Arpita Nath
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Baydaa El Shazely
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Greta Santi
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Joshua Jay Kim
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jens Rolff
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Gunasekaran P, Kim EY, Lee J, Ryu EK, Shin SY, Bang JK. Synthesis of Fmoc-Triazine Amino Acids and Its Application in the Synthesis of Short Antibacterial Peptidomimetics. Int J Mol Sci 2020; 21:ijms21103602. [PMID: 32443730 PMCID: PMC7279249 DOI: 10.3390/ijms21103602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
To combat the escalating rise of antibacterial resistance, the development of antimicrobial peptides (AMPs) with a unique mode of action is considered an attractive strategy. However, proteolytic degradation of AMPs remains the greatest challenge in their transformation into therapeutics. Herein, we synthesized Fmoc-triazine amino acids that differ from each other by anchoring either cationic or hydrophobic residues. These unnatural amino acids were adopted for solid-phase peptide synthesis (SPPS) to synthesize a series of amphipathic antimicrobial peptidomimetics. From the antimicrobial screening, we found that the trimer, BJK-4 is the most potent short antimicrobial peptidomimetic without showing hemolytic activity and it displayed enhanced proteolytic stability. Moreover, the mechanism of action to kill bacteria was found to be an intracellular targeting.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Young Kim
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
| | - Jian Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-43-240-5023
| |
Collapse
|
18
|
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution. Science 2020; 368:368/6490/eaau5480. [PMID: 32355003 DOI: 10.1126/science.aau5480] [Citation(s) in RCA: 608] [Impact Index Per Article: 121.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/25/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are essential components of immune defenses of multicellular organisms and are currently in development as anti-infective drugs. AMPs have been classically assumed to have broad-spectrum activity and simple kinetics, but recent evidence suggests an unexpected degree of specificity and a high capacity for synergies. Deeper evaluation of the molecular evolution and population genetics of AMP genes reveals more evidence for adaptive maintenance of polymorphism in AMP genes than has previously been appreciated, as well as adaptive loss of AMP activity. AMPs exhibit pharmacodynamic properties that reduce the evolution of resistance in target microbes, and AMPs may synergize with one another and with conventional antibiotics. Both of these properties make AMPs attractive for translational applications. However, if AMPs are to be used clinically, it is crucial to understand their natural biology in order to lessen the risk of collateral harm and avoid the crisis of resistance now facing conventional antibiotics.
Collapse
Affiliation(s)
- Brian P Lazzaro
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Institut für Biologie, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|
19
|
Martins DB, Pacca CC, da Silva AMB, de Souza BM, de Almeida MTG, Palma MS, Arcisio-Miranda M, Dos Santos Cabrera MP. Comparing activity, toxicity and model membrane interactions of Jelleine-I and Trp/Arg analogs: analysis of peptide aggregation. Amino Acids 2020; 52:725-741. [PMID: 32367434 DOI: 10.1007/s00726-020-02847-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Increasing resistance in antibiotic and chemotherapeutic treatments has been pushing studies of design and evaluation of bioactive peptides. Designing relies on different approaches from minimalist sequences and endogenous peptides modifications to computational libraries. Evaluation relies on microbiological tests. Aiming a deeper understanding, we chose the octapeptide Jelleine-I (JI) for its selective and low toxicity profile, designed small modifications combining the substitutions of Phe by Trp and Lys/His by Arg and tested the antimicrobial and anticancer activity on melanoma cells. Biophysical methods identified environment-dependent modulation of aggregation, but critical aggregation concentrations of JI and analogs in buffer show that peptides start membrane interactions as monomers. The presence of model membranes increases or reduces the partial aggregation of peptides. Compared to JI, analog JIF2WR shows the lowest tendency to aggregation on bacterial model membranes. JI and analogs are lytic to model membranes. Their composition-dependent performance indicates preference for the higher charged anionic bilayers in line with their superior performance toward Staphylococcus aureus and Streptococcus pneumoniae. JIF2WR presented the higher partitioning, higher lytic activity and lower aggregated contents. Despite these increased membranolytic activities, JIF2WR exhibited comparable antimicrobial activity in relation to JI at the expenses of some loss in selectivity. We found that the substitution Phe/Trp (JIF2W) tends to decrease antimicrobial but to increase anticancer activity and aggregation on model membranes and the toxicity toward human cells. However, the concomitant substitution Lys/His by Arg (JIF2WR) modulates some of these tendencies, increasing both the antimicrobial and the anticancer activity while decreasing the aggregation tendency.
Collapse
Affiliation(s)
- Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Annielle Mendes Brito da Silva
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu, 862, Edifício ECB, 7º andar, São Paulo, SP, 04023-062, Brazil
| | - Bibiana Monson de Souza
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista (Unesp), Câmpus Rio Claro, Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Margarete Teresa Gottardo de Almeida
- Departamento de Doenças Dermatológicas Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, 15090-000, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista (Unesp), Câmpus Rio Claro, Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Manoel Arcisio-Miranda
- Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu, 862, Edifício ECB, 7º andar, São Paulo, SP, 04023-062, Brazil
| | - Marcia Perez Dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.
- Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
20
|
Chou S, Wang J, Shang L, Akhtar MU, Wang Z, Shi B, Feng X, Shan A. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomater Sci 2019; 7:2394-2409. [PMID: 30919848 DOI: 10.1039/c9bm00044e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Broad-spectrum antibiotics have, until now, been the mainstay of antibiotic therapy. However, the increasing threat of drug-resistant bacteria and the ecological imbalance of normal microbial communities have forced a reconsideration of the best strategies to treat such pathogens. Therefore, antibacterial agents with specific abilities of eliminating pathogens may provide long-term protection. Antimicrobial peptides (AMPs), which can be optimized by modifying their primary sequences, are regarded as potentially valuable in development of pathogen-specific agents. To obtain efficient narrow-spectrum AMPs, database-filtering technology, which filters the most probable amino acid composition, positive charge, sequence length and hydrophobic content of peptides against Gram-negative bacteria, was taken as the first step. Then, the filtered parameters were distributed and modified into an α-helical symmetrical structure by considering the structure-function relationship of synthesized antimicrobial peptides. Finally, short, safe and stable peptides against Escherichia coli, Salmonella pullorum and Pseudomonas aeruginosa were successfully identified. The potential peptides F1 and F4 showed low cell toxicity, low resistance potential and low salt sensitivity. CD spectroscopy of the peptides illustrated that F1 and F4 exhibited a tendency towards an α-helical structure in a membrane-mimetic environment. Indeed, fluorescence spectroscopy and electron microscopy analyses indicated that the shorter potential sequence F4 killed the bacteria by causing physical destruction of the bacterial membrane and cytosol leakage. In the mouse model test, F4 reduced the bacterial load in major organs and the cytokine (TNF-α, IL-6, and IL-1β) levels in serum significantly (P < 0.05). Collectively, this symmetric-helical distribution, dependent on database-filtering parameters, is a promising strategy for designing effective smart AMPs with high cell selectivity, and it also provides new insights into the design and optimization of pathogen-specific biomaterials.
Collapse
Affiliation(s)
- Shuli Chou
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kintses B, Jangir PK, Fekete G, Számel M, Méhi O, Spohn R, Daruka L, Martins A, Hosseinnia A, Gagarinova A, Kim S, Phanse S, Csörgő B, Györkei Á, Ari E, Lázár V, Nagy I, Babu M, Pál C, Papp B. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat Commun 2019; 10:5731. [PMID: 31844052 PMCID: PMC6915728 DOI: 10.1038/s41467-019-13618-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to human host-defense peptides remains limited. Here, we systematically assess the resistance determinants of Escherichia coli against 15 different AMPs using chemical-genetics and compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains. Although generalizations about AMP resistance are common in the literature, we find that AMPs with different physicochemical properties and cellular targets vary considerably in their resistance determinants. As a consequence, cross-resistance is prevalent only between AMPs with similar modes of action. Finally, our screen reveals several genes that shape susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We anticipate that chemical-genetic approaches could inform future efforts to minimize cross-resistance between therapeutic and human host AMPs.
Collapse
Affiliation(s)
- Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Microbiology and Immunology, University of California, San Francisco, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - István Nagy
- Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.
| |
Collapse
|
22
|
Al-Farsi HM, Al-Adwani S, Ahmed S, Vogt C, Ambikan AT, Leber A, Al-Jardani A, Al-Azri S, Al-Muharmi Z, Toprak MS, Giske CG, Bergman P. Effects of the Antimicrobial Peptide LL-37 and Innate Effector Mechanisms in Colistin-Resistant Klebsiella pneumoniae With mgrB Insertions. Front Microbiol 2019; 10:2632. [PMID: 31803163 PMCID: PMC6870453 DOI: 10.3389/fmicb.2019.02632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/29/2019] [Indexed: 11/14/2022] Open
Abstract
Background Colistin is a polypeptide antibiotic drug that targets lipopolysaccharides in the outer membrane of Gram-negative bacteria. Inactivation of the mgrB-gene is a common mechanism behind colistin-resistance in Klebsiella pneumoniae (Kpn). Since colistin is a cyclic polypeptide, it may exhibit cross-resistance with the antimicrobial peptide LL-37, and with other innate effector mechanisms, but previous results are inconclusive. Objective To study potential cross-resistance between colistin and LL-37, as well as with other innate effector mechanisms, and to compare virulence of colistin-resistant and susceptible Kpn strains. Materials/Methods Carbapenemase-producing Kpn from Oman (n = 17) were subjected to antimicrobial susceptibility testing and whole genome sequencing. Susceptibility to colistin and LL-37 was studied. The surface charge was determined by zeta-potential measurements and the morphology of treated bacteria was analyzed with electron microscopy. Bacterial survival was assessed in human whole blood and serum, as well as in a zebrafish infection-model. Results Genome-analysis revealed insertion-sequences in the mgrB gene, as a cause of colistin resistance in 8/17 isolates. Colistin-resistant (Col-R) isolates were found to be more resistant to LL-37 compared to colistin-susceptible (Col-S) isolates, but only at concentrations ≥50 μg/ml. There was no significant difference in surface charge between the isolates. The morphological changes were similar in both Col-R and Col-S isolates after exposure to LL-37. Finally, no survival difference between the Col-R and Col-S isolates was observed in whole blood or serum, or in zebrafish embryos. Conclusion Cross-resistance between colistin and LL-37 was observed at elevated concentrations of LL-37. However, Col-R and Col-S isolates exhibited similar survival in serum and whole blood, and in a zebrafish infection-model, suggesting that cross-resistance most likely play a limited role during physiological conditions. However, it cannot be ruled out that the observed cross-resistance could be relevant in conditions where LL-37 levels reach high concentrations, such as during infection or inflammation.
Collapse
Affiliation(s)
- Hissa M Al-Farsi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.,Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Salma Al-Adwani
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.,Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sultan Ahmed
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Vogt
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology/AlbaNova, Stockholm, Sweden
| | - Anoop T Ambikan
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Leber
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Amina Al-Jardani
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Saleh Al-Azri
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Zakariya Al-Muharmi
- Department of Microbiology & Immunology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammet S Toprak
- Department of Applied Physics, Biomedical and X-Ray Physics, KTH Royal Institute of Technology/AlbaNova, Stockholm, Sweden
| | - Christian G Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.,Infectious Disease Clinic, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Popoola O, Kehinde A, Ogunleye V, Adewusi OJ, Toy T, Mogeni OD, Aroyewun EO, Agbi S, Adekanmbi O, Adepoju A, Muyibi S, Adebiyi I, Elaturoti OO, Nwimo C, Adeoti H, Omotosho T, Akinlabi OC, Adegoke PA, Adeyanju OA, Panzner U, Baker S, Park SE, Marks F, Okeke IN. Bacteremia Among Febrile Patients Attending Selected Healthcare Facilities in Ibadan, Nigeria. Clin Infect Dis 2019; 69:S466-S473. [PMID: 31665773 PMCID: PMC6821210 DOI: 10.1093/cid/ciz516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The relative contribution of bacterial infections to febrile disease is poorly understood in many African countries due to diagnostic limitations. This study screened pediatric and adult patients attending 4 healthcare facilities in Ibadan, Nigeria, for bacteremia and malaria parasitemia. METHODS Febrile patients underwent clinical diagnosis, malaria parasite testing, and blood culture. Bacteria from positive blood cultures were isolated and speciated using biochemical and serological methods, and Salmonella subtyping was performed by polymerase chain reaction. Antimicrobial susceptibility was tested by disk diffusion. RESULTS A total of 682 patients were recruited between 16 June and 16 October 2017; 467 (68.5%) were <18 years of age. Bacterial pathogens were cultured from the blood of 117 (17.2%) patients, with Staphylococcus aureus (69 [59.0%]) and Salmonella enterica (34 [29.1%]) being the most common species recovered. Twenty-seven (79.4%) of the Salmonella isolates were serovar Typhi and the other 7 belonged to nontyphoidal Salmonella serovarieties. Thirty-four individuals were found to be coinfected with Plasmodium falciparum and bacteria. Five (14.7%) of these coinfections were with Salmonella, all in children aged <5 years. Antimicrobial susceptibility testing revealed that most of the Salmonella and Staphylococcus isolates were multidrug resistant. CONCLUSIONS The study demonstrates that bacteria were commonly recovered from febrile patients with or without malaria in this location. Focused and extended epidemiological studies are needed for the introduction of typhoid conjugate vaccines that have the potential to prevent a major cause of severe community-acquired febrile diseases in our locality.
Collapse
Affiliation(s)
- Oluwafemi Popoola
- Department of Community Medicine, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
- University College Hospital Ibadan, Nigeria
| | - Aderemi Kehinde
- University College Hospital Ibadan, Nigeria
- Department of Medical Microbiology and Parasitology, and, Nigeria
| | | | | | - Trevor Toy
- International Vaccine Institute, Seoul National University Research Park, Republic of Korea
| | - Ondari D Mogeni
- International Vaccine Institute, Seoul National University Research Park, Republic of Korea
| | | | - Sarah Agbi
- College of Medicine, University of Ibadan, Nigeria
| | - Olukemi Adekanmbi
- University College Hospital Ibadan, Nigeria
- Department of Medicine, University of Ibadan
| | - Akinlolu Adepoju
- University College Hospital Ibadan, Nigeria
- Department of Paediatrics, College of Medicine, University of Ibadan
| | | | | | | | | | | | | | - Olabisi C Akinlabi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan
| | | | | | - Ursula Panzner
- International Vaccine Institute, Seoul National University Research Park, Republic of Korea
| | - Stephen Baker
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Se Eun Park
- International Vaccine Institute, Seoul National University Research Park, Republic of Korea
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Florian Marks
- International Vaccine Institute, Seoul National University Research Park, Republic of Korea
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan
| |
Collapse
|
24
|
Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, Csörgő B, Györkei Á, Bódi Z, Faragó A, Bodai L, Földesi I, Kata D, Maróti G, Pap B, Wirth R, Papp B, Pál C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538. [PMID: 31586049 PMCID: PMC6778101 DOI: 10.1038/s41467-019-12364-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.
Collapse
Affiliation(s)
- Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Fanni Vidovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of California, San Francisco, Department of Microbiology and Immunology, San Francisco, CA, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Zoltán Bódi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Anikó Faragó
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
25
|
El Shazely B, Urbański A, Johnston PR, Rolff J. In vivo exposure of insect AMP resistant Staphylococcus aureus to an insect immune system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:60-68. [PMID: 31051236 DOI: 10.1016/j.ibmb.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides (AMPs) are important immune effectors in insects. Bacteria have a limited number of ways to resist AMPs, and AMP-resistance is often costly. Recently, it has become clear that AMP activities in vitro and in vivo differ. Although some studies have followed the in vivo survival of AMP resistant pathogens, studying a pathogen resistant to the AMPs of that particular host has never been reported. Here, we infected the mealworm beetle Tenebrio molitor with Staphylococcus aureus strains that were evolved in vitro in the presence of one or two antimicrobial peptides from T. molitor. We found that the Tenebrio immune system could clear mutant Tenecin resistant strains at least as efficiently as sensitive controls. The bacterial load of Tenecin resistant S. aureus segregated by mutation. Strains with mutations in both the pmt and rpo operons showed the highest in vivo survival and therefore showed the lowest fitness cost amongst the evolved resistance mutations. In contrast, Tenecin resistant strains with mutations in the nsa and rpo operons showed much lower survival within the hosts. Our study shows that Tenecin resistant strains are phagocytosed at a lower rate. The nsa/rpo mutants were phagocytosed at a higher rate than other Tenecin resistant S. aureus strains. The differences in resistance against AMPs and phagocytosis did not translate into changes in virulence. AMP resistance, while a prerequisite for an infection in vertebrates, does not provide a survival advantage to S. aureus in a host environment that is dominated by AMPs.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany; Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Paul R Johnston
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
26
|
Brockhurst MA, Harrison F, Veening JW, Harrison E, Blackwell G, Iqbal Z, Maclean C. Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat Ecol Evol 2019; 3:515-517. [DOI: 10.1038/s41559-019-0854-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc Biol Sci 2019. [PMID: 29540517 DOI: 10.1098/rspb.2017.2687] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance constitutes one of the most pressing public health concerns. Antimicrobial peptides (AMPs) of multicellular organisms are considered part of a solution to this problem, and AMPs produced by bacteria such as colistin are last-resort drugs. Importantly, AMPs differ from many antibiotics in their pharmacodynamic characteristics. Here we implement these differences within a theoretical framework to predict the evolution of resistance against AMPs and compare it to antibiotic resistance. Our analysis of resistance evolution finds that pharmacodynamic differences all combine to produce a much lower probability that resistance will evolve against AMPs. The finding can be generalized to all drugs with pharmacodynamics similar to AMPs. Pharmacodynamic concepts are familiar to most practitioners of medical microbiology, and data can be easily obtained for any drug or drug combination. Our theoretical and conceptual framework is, therefore, widely applicable and can help avoid resistance evolution if implemented in antibiotic stewardship schemes or the rational choice of new drug candidates.
Collapse
Affiliation(s)
- Guozhi Yu
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Koenigin-Luise Strasse 1-3, 14195 Berlin, Germany
| | - Desiree Y Baeder
- Institute of Integrative Biology, Universitätsstrasse 16 ETH Zurich, 8092 Zurich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, Universitätsstrasse 16 ETH Zurich, 8092 Zurich, Switzerland
| | - Jens Rolff
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Koenigin-Luise Strasse 1-3, 14195 Berlin, Germany .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| |
Collapse
|
28
|
Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Sci Rep 2018; 8:15359. [PMID: 30337550 PMCID: PMC6193990 DOI: 10.1038/s41598-018-33593-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Antimicrobial peptides (AMP) are highly conserved immune effectors across the tree of life and are employed as combinations. In the beetle Tenebrio molitor, a defensin and a coleoptericin are highly expressed in vivo after inoculation with S. aureus. The defensin displays strong in vitro activity but no survival benefit in vivo. The coleoptericin provides a survival benefit in vivo, but no activity in vitro. This suggests a potentiating effect in vivo, and here we wanted to investigate the effects of this combination on resistance evolution using a bottom-approach in vitro starting with a combination of two abundant AMPs only. We experimentally evolved S. aureus in the presence of the defensin and a combination of the defensin and coleoptericin. Genome re-sequencing showed that resistance was associated with mutations in either the pmt or nsa operons. Strains with these mutations show longer lag phases, slower Vmax, and nsa mutants reach lower final population sizes. Mutations in the rpo operon showed a further increase in the lag phase in nsa mutants but not in pmt mutants. In contrast, final MICs (minimum inhibitory concentrations) do not differ according to mutation. All resistant lines display AMP but not antibiotic cross-resistance. Costly resistance against AMPs readily evolves for an individual AMP as well as a naturally occurring combination in vitro and provides broad protection against AMPs. Such non-specific resistance could result in strong selection on host immune systems that rely on cocktails of AMPs.
Collapse
|
29
|
Lewies A, Du Plessis LH, Wentzel JF. Antimicrobial Peptides: the Achilles’ Heel of Antibiotic Resistance? Probiotics Antimicrob Proteins 2018; 11:370-381. [DOI: 10.1007/s12602-018-9465-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Wang J, Chou S, Yang Z, Yang Y, Wang Z, Song J, Dou X, Shan A. Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides. J Med Chem 2018; 61:3889-3907. [PMID: 29648811 DOI: 10.1021/acs.jmedchem.7b01729] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antimicrobial peptides are an important weapon against invading pathogens and are potential candidates as novel antibacterial agents, but their antifungal activities are not fully developed. In this study, a set of imperfectly amphipathic peptides was developed based on the imperfectly amphipathic palindromic structure R n(XRXXXRX)R n ( n = 1, 2; X represents L, I, F, or W), and the engineered peptides exhibited high antimicrobial activities against all fungi and bacteria tested (including fluconazole-resistant Candida albicans), with geometric mean (GM) MICs ranging from 2.2 to 6.62 μM. Of such peptides, 13 (I6) (RRIRIIIRIRR-NH2) that was Ile rich in its hydrophobic face had the highest antifungal activity (GMfungi = 1.64 μM) while showing low toxicity and high salt and serum tolerance. It also had dramatic LPS-neutralizing propensity and a potent membrane-disruptive mechanism against microbial cells. In summary, these findings were useful for short AMPs design to combat the growing threat of drug-resistant fungal and bacterial infections.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Shuli Chou
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yang Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Zhihua Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Xiujing Dou
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
31
|
Hirt H, Hall JW, Larson E, Gorr SU. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS One 2018; 13:e0194900. [PMID: 29566082 PMCID: PMC5864073 DOI: 10.1371/journal.pone.0194900] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides represent an alternative to traditional antibiotics that may be less susceptible to bacterial resistance mechanisms by directly attacking the bacterial cell membrane. However, bacteria have a variety of defense mechanisms that can prevent cationic antimicrobial peptides from reaching the cell membrane. The L- and D-enantiomers of the antimicrobial peptide GL13K were tested against the Gram-positive bacteria Enterococcus faecalis and Streptococcus gordonii to understand the role of bacterial proteases and cell wall modifications in bacterial resistance. GL13K was derived from the human salivary protein BPIFA2. Minimal inhibitory concentrations were determined by broth dilution and a serial assay used to determine bacterial resistance. Peptide degradation was determined in a bioassay utilizing a luminescent strain of Pseudomonas aeruginosa to detect peptide activity. Autolysis and D-alanylation-deficient strains of E. faecalis and S. gordonii were tested in autolysis assays and peptide activity assays. E. faecalis protease inactivated L-GL13K but not D-GL13K, whereas autolysis did not affect peptide activity. Indeed, the D-enantiomer appeared to kill the bacteria prior to initiation of autolysis. D-alanylation mutants were killed by L-GL13K whereas this modification did not affect killing by D-GL13K. The mutants regained resistance to L-GL13K whereas bacteria did not gain resistance to D-GL13K after repeated treatment with the peptides. D-alanylation affected the hydrophobicity of bacterial cells but hydrophobicity alone did not affect GL13K activity. D-GL13K evades two resistance mechanisms in Gram-positive bacteria without giving rise to substantial new resistance. D-GL13K exhibits attractive properties for further antibiotic development.
Collapse
Affiliation(s)
- Helmut Hirt
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Jeffrey W. Hall
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Elliot Larson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
33
|
Abstract
The continual emergence of new pathogens and the increased spread of antibiotic resistance in bacterial populations remind us that microbes are living entities that evolve at rates that impact public health interventions. Following the historical thread of the works of Pasteur and Darwin shows how reconciling clinical microbiology, ecology, and evolution can be instrumental to understanding pathology, developing new therapies, and prolonging the efficiency of existing ones.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), Montpellier, France
- * E-mail:
| | | |
Collapse
|
34
|
Rolff J, Schmid-Hempel P. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0297. [PMID: 27160599 DOI: 10.1098/rstb.2015.0297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our limited understanding of AMP evolution in the natural context, and also the very limited understanding of the evolution of resistance against AMPs in bacteria in particular, caution is recommended. What is clear though is that study of the ecology and evolution of AMPs in natural systems could inform many of these outstanding questions, including those related to medical applications and pathogen control.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
35
|
The interaction of antimicrobial peptides with membranes. Adv Colloid Interface Sci 2017; 247:521-532. [PMID: 28606715 DOI: 10.1016/j.cis.2017.06.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 11/22/2022]
Abstract
The interaction of antimicrobial peptides (AMPs) with biological membranes is in the focus of research since several years, and the most important features and modes of action of AMPs are described in this review. Different model systems can be used to understand such interactions on a molecular level. As a special example, we use 2D and 3D model membranes to investigate the interaction of the natural cyclic (Ar-1) and the synthetic linear molecule arenicin with selected amphiphiles and phospholipids. A panoply of sophisticated methods has been used to analyze these interactions on a molecular level. As a general trend, one observes that cationic antimicrobial peptides do not interact with cationic amphiphiles due to electrostatic repulsion, whereas with non-ionic amphiphiles, the peptide interacts only with aggregated systems and not with monomers. The interaction is weak (hydrophobic interaction) and requires an aggregated state with a large surface (cylindrical micelles). Anionic amphiphiles (as monomers or micelles) exhibit strong electrostatic interactions with the AMPs leading to changes in the peptide conformation. Both types of peptides interact strongly with anionic phospholipid monolayers with a preference for fluid layers. The interaction with a zwitterionic layer is almost absent for the linear derivative but measurable for the cyclic arenicin Ar-1. This is in accordance with biological experiments showing that Ar-1 forms well defined stable pores in phospholipid and lipopolysaccharide (LPS) membranes (cytotoxicity). The synthetic linear arenicin, which is less cytotoxic, does not affect the mammalian lipids to such an extent. The interaction of arenicin with bacterial membrane lipids is dominated by hydrogen bonding together with electrostatic and hydrophobic interactions.
Collapse
|
36
|
Wang Y, Fan Y, Zhou Z, Tu H, Ren Q, Wang X, Ding L, Zhou X, Zhang L. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch Oral Biol 2017; 80:41-50. [DOI: 10.1016/j.archoralbio.2017.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 03/23/2017] [Indexed: 01/10/2023]
|
37
|
Resistance to the Cyclotide Cycloviolacin O2 in Salmonella enterica Caused by Different Mutations That Often Confer Cross-Resistance or Collateral Sensitivity to Other Antimicrobial Peptides. Antimicrob Agents Chemother 2017; 61:AAC.00684-17. [PMID: 28607015 PMCID: PMC5527591 DOI: 10.1128/aac.00684-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of innate immunity in all living organisms, and these potent broad-spectrum antimicrobials have inspired several antibacterial development programs in the past 2 decades. In this study, the development of resistance to the Gram-negative bacterium-specific peptide cycloviolacin O2 (cyO2), a member of the cyclotide family of plant miniproteins, was characterized in Salmonella enterica serovar Typhimurium LT2. Mutants isolated from serial passaging experiments in increasing concentrations of cyO2 were characterized by whole-genome sequencing. The identified mutations were genetically reconstituted in a wild-type background. The additive effect of mutations was studied in double mutants. Fitness costs, levels of resistance, and cross-resistance to another cyclotide, other peptide and nonpeptide antibiotics, and AMPs were determined. A variety of resistance mutations were identified. Some of these reduced fitness and others had no effect on fitness in vitro, in the absence of cyO2. In mouse competition experiments, four of the cyO2-resistant mutants showed a significant fitness advantage, whereas the effects of the mutations in the others appeared to be neutral. The level of resistance was increased by combining several individual resistance mutations. Several cases of cross-resistance and collateral sensitivity between cyclotides, other AMPs, and antibiotics were identified. These results show that resistance to cyclotides can evolve via several different types of mutations with only minor fitness costs and that these mutations often affect resistance to other AMPs.
Collapse
|
38
|
Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomater 2017; 57:103-114. [PMID: 28457962 DOI: 10.1016/j.actbio.2017.04.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022]
Abstract
The escalating threat of antimicrobial resistance has increased pressure to develop novel therapeutic strategies to tackle drug-resistant infections. Antimicrobial peptides have emerged as a promising class of therapeutics for various systemic and topical clinical applications. In this study, the de novo design of α-helical peptides with idealized facial amphiphilicities, based on an understanding of the pertinent features of protein secondary structures, is presented. Synthetic amphiphiles composed of the backbone sequence (X1Y1Y2X2)n, where X1 and X2 are hydrophobic residues (Leu or Ile or Trp), Y1 and Y2 are cationic residues (Lys), and n is the number repeat units (2 or 2.5 or 3), demonstrated potent broad-spectrum antimicrobial activities against clinical isolates of drug-susceptible and multi-drug resistant bacteria. Live-cell imaging revealed that the most selective peptide, (LKKL)3, promoted rapid permeabilization of bacterial membranes. Importantly, (LKKL)3 not only suppressed biofilm growth, but effectively disrupted mature biofilms after only 2h of treatment. The peptides (LKKL)3 and (WKKW)3 suppressed the production of LPS-induced pro-inflammatory mediators to levels of unstimulated controls at low micromolar concentrations. Thus, the rational design strategies proposed herein can be implemented to develop potent, selective and multifunctional α-helical peptides to eradicate drug-resistant biofilm-associated infections. STATEMENT OF SIGNIFICANCE Antimicrobial peptides (AMPs) are increasingly explored as therapeutics for drug-resistant and biofilm-related infections to help expand the size and quality of the current antibiotic pipeline in the face of mounting antimicrobial resistance. Here, synthetic peptides rationally designed based upon principles governing the folding of natural α-helical AMPs, comprising the backbone sequence (X1Y1Y2X2)n, and which assemble into α-helical structures with idealized facial amphiphilicity, is presented. These multifunctional peptide amphiphiles demonstrate high bacterial selectivity, promote the disruption of pre-formed drug-resistant biofilms, and effectively neutralize endotoxins at low micromolar concentrations. Overall, the design strategies presented here could provide a useful tool for developing therapeutic peptides with broad-ranging clinical applications from the treatment and prevention of drug-resistant biofilms to the neutralization of bacterial endotoxins.
Collapse
|
39
|
Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PLoS One 2017; 12:e0173559. [PMID: 28278280 PMCID: PMC5344439 DOI: 10.1371/journal.pone.0173559] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/23/2017] [Indexed: 01/20/2023] Open
Abstract
Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms’ resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.
Collapse
|
40
|
Wu H, Liu S, Wiradharma N, Ong ZY, Li Y, Yang YY, Ying JY. Short Synthetic α-Helical-Forming Peptide Amphiphiles for Fungal Keratitis Treatment In Vivo. Adv Healthc Mater 2017; 6. [PMID: 28081296 DOI: 10.1002/adhm.201600777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Indexed: 12/28/2022]
Abstract
The emergence of fungal keratitis is on the rise globally. However, current antifungal therapeutics are ineffective in severe keratomycosis. Previously reported α-helical peptides comprising 8-14 amino acids demonstrate broad-spectrum antimicrobial activity both in vitro and in vivo. Here, α-helical peptides of the optimized sequences are investigated for antifungal biofilm in vitro and in vivo using a fungal biofilm-caused mouse keratitis model. The peptides with the optimal composition demonstrate higher α-helical propensity and improve antifungal activity in dispersing Candida albicans biofilm in vitro. Moreover, the optimized α-helical peptides are not only effective in treating C. albicans biofilm-induced keratitis in mice, they are also nontoxic to the mice eyes. These peptides have the potential to be developed as antifungal agents for the treatment of C. albicans biofilm-caused keratitis.
Collapse
Affiliation(s)
- Hong Wu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Nikken Wiradharma
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Zhan Yuin Ong
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Yan Li
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| |
Collapse
|
41
|
Ciumac D, Campbell RA, Xu H, Clifton LA, Hughes AV, Webster JR, Lu JR. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids Surf B Biointerfaces 2017; 150:308-316. [DOI: 10.1016/j.colsurfb.2016.10.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
42
|
Hu F, Wu Q, Song S, She R, Zhao Y, Yang Y, Zhang M, Du F, Soomro MH, Shi R. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiol 2016; 16:287. [PMID: 27919228 PMCID: PMC5139128 DOI: 10.1186/s12866-016-0904-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. RESULTS In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CONCLUSION CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.
Collapse
Affiliation(s)
- Fengjiao Hu
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiaoxing Wu
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shuang Song
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ruiping She
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yue Zhao
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yifei Yang
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meikun Zhang
- Beijing Huadu Broiler Corporations, Beijing, 102211, China
| | - Fang Du
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Majid Hussain Soomro
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ruihan Shi
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
43
|
Nwokoro E, Leach R, Årdal C, Baraldi E, Ryan K, Plahte J. An assessment of the future impact of alternative technologies on antibiotics markets. J Pharm Policy Pract 2016; 9:34. [PMID: 27800166 PMCID: PMC5080699 DOI: 10.1186/s40545-016-0085-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The increasing threat of antimicrobial resistance combined with the paucity of new classes of antibiotics represents a serious public health challenge. New treatment technologies could, in theory, have a significant impact on the future use of traditional antibiotics, be it by facilitating rational and responsible use or by product substitution in the existing antibiotics markets, including by reducing the incidence of bacterial infections through preventative approaches. The aim of this paper is to assess the potential of alternative technologies in reducing clinical use of and demand for antibiotics, and to briefly indicate which segments of the antibiotics market that might be impacted by these technologies. METHODS An initial mapping exercise to identify the alternative technologies was followed by a review of relevant published and grey literature (n = 52). We also carried out stakeholder engagement activities by a round-table discussion with infectious disease specialists and a multi-criteria decision analysis exercise with pharmaceutical industry experts. RESULTS Ten alternative technologies were identified and analyzed for their potential impact on the antibiotics market. Of these, rapid point-of-care diagnostics, vaccines, fecal microbiota transplantation, and probiotics were considered to have a "high" or "medium" potential impact over a 10-20 year horizon. Therapeutic antibodies, antibiotic biomaterials, bacteriophages, antimicrobial nanoparticles, antimicrobial peptides, and anti-virulence materials were rated as having "low" potential impact. CONCLUSION Despite the apparent potential of the most promising alternative technologies to reduce demand, that reduction will likely only happen in limited segments of the antibiotics market or, in the case of preventing community acquired streptococcal infections by vaccination, in a low-price generics market segment. Thus, alternative technologies are not expected to represent any disincentive to antibiotics developers. Finally, it is unlikely that alternative technologies will displace the need for new classes, and sub-classes, of antibiotics in the short and medium terms.
Collapse
Affiliation(s)
| | - Ross Leach
- Infection Control Program and Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | - Jens Plahte
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
44
|
Wollman FA. An antimicrobial origin of transit peptides accounts for early endosymbiotic events. Traffic 2016; 17:1322-1328. [DOI: 10.1111/tra.12446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
|
45
|
Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee SJ, Bang G, Cho K, Hyun JK, Lee HJ, Jeon YH, Kim NH, Ryu EK, Shin SY, Bang JK. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem 2016; 125:551-564. [PMID: 27718471 DOI: 10.1016/j.ejmech.2016.09.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022]
Abstract
In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents.
Collapse
Affiliation(s)
- Mija Ahn
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Pethaiah Gunasekaran
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Ganesan Rajasekaran
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Eun Young Kim
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Chungbuk, 361-763, Republic of Korea
| | - Geul Bang
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Kun Cho
- Biomedical Omics Group, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Jae-Kyung Hyun
- Division of Electron Microscopic Research, Korea Basic Science Institute, 113 Gwahakro, Daejeon, 305-333, Republic of Korea
| | - Hyun-Ju Lee
- Division of Electron Microscopic Research, Korea Basic Science Institute, 113 Gwahakro, Daejeon, 305-333, Republic of Korea; Department of Chemistry, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-Ro, Sejong, 30019, Republic of Korea
| | - Nam-Hyung Kim
- Molecular Embryology Laboratory, Department of Animal Sciences, Chungbuk National University, Chung-Buk, 361-763, Republic of Korea
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea; Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School and Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea; Department of Bio-analytical Science, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
46
|
Kubicek-Sutherland JZ, Lofton H, Vestergaard M, Hjort K, Ingmer H, Andersson DI. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J Antimicrob Chemother 2016; 72:115-127. [PMID: 27650186 PMCID: PMC5161045 DOI: 10.1093/jac/dkw381] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background The clinical development of antimicrobial peptides (AMPs) is currently under evaluation to combat the rapid increase in MDR bacterial pathogens. However, many AMPs closely resemble components of the human innate immune system and the ramifications of prolonged bacterial exposure to AMPs are not fully understood. Objectives We show that in vitro serial passage of a clinical USA300 MRSA strain in a host-mimicking environment containing host-derived AMPs results in the selection of stable AMP resistance. Methods Serial passage experiments were conducted using steadily increasing concentrations of LL-37, PR-39 or wheat germ histones. WGS and proteomic analysis by MS were used to identify the molecular mechanism associated with increased tolerance of AMPs. AMP-resistant mutants were characterized by measuring in vitro fitness, AMP and antibiotic susceptibility, and virulence in a mouse model of sepsis. Results AMP-resistant Staphylococcus aureus mutants often displayed little to no fitness cost and caused invasive disease in mice. Further, this phenotype coincided with diminished susceptibility to both clinically prescribed antibiotics and human defence peptides. Conclusions These findings suggest that therapeutic use of AMPs could select for virulent mutants with cross-resistance to human innate immunity as well as antibiotic therapy. Thus, therapeutic use of AMPs and the implications of cross-resistance need to be carefully monitored and evaluated.
Collapse
Affiliation(s)
| | - Hava Lofton
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Martin Vestergaard
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Copenhagen, Denmark
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123, Uppsala, Sweden
| |
Collapse
|
47
|
Ulm H, Schneider T. Targeting bactoprenol-coupled cell envelope precursors. Appl Microbiol Biotechnol 2016; 100:7815-25. [PMID: 27495122 DOI: 10.1007/s00253-016-7732-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Targeting the bactoprenol-coupled cell wall precursor lipid II is a validated antibacterial strategy. In this review, selected prototype lipid II-binding antibiotics of different chemical classes are discussed. Although these compounds attack the same molecular target, they trigger nuanced and diverse cellular effects. Consequently, the mechanisms of antibacterial resistance and the likelihood of resistance development may vary substantially.
Collapse
Affiliation(s)
- Hannah Ulm
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany
| | - Tanja Schneider
- Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53105, Bonn, Germany. .,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
48
|
Genomic Signatures of Experimental Adaptation to Antimicrobial Peptides in Staphylococcus aureus. G3-GENES GENOMES GENETICS 2016; 6:1535-9. [PMID: 27172179 PMCID: PMC4889650 DOI: 10.1534/g3.115.023622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The evolution of resistance against antimicrobial peptides has long been considered unlikely due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we analyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan, melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, including unselected controls, showed that each AMP selected for mutations at distinct loci. We identify mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a controlled genetic background.
Collapse
|
49
|
Silva JP, Appelberg R, Gama FM. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol Adv 2016; 34:924-940. [PMID: 27235189 DOI: 10.1016/j.biotechadv.2016.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed.
Collapse
Affiliation(s)
- João P Silva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Rui Appelberg
- Department of Immunophysiology, University of Porto, 4050-313 Porto, Portugal
| | - Francisco Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
50
|
Fleitas O, Franco OL. Induced Bacterial Cross-Resistance toward Host Antimicrobial Peptides: A Worrying Phenomenon. Front Microbiol 2016; 7:381. [PMID: 27047486 PMCID: PMC4806371 DOI: 10.3389/fmicb.2016.00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/10/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial resistance to conventional antibiotics has reached alarming levels, threatening to return to the pre-antibiotic era. Therefore, the search for new antimicrobial compounds that overcome the resistance phenomenon has become a priority. Antimicrobial peptides (AMPs) appear as one of the most promising antibiotic medicines. However, in recent years several AMP-resistance mechanisms have been described. Moreover, the AMP-resistance phenomenon has become more complex due to its association with cross-resistance toward AMP effectors of the host innate immune system. In this context, the use of AMPs as a therapeutic option could be potentially hazardous, since bacteria could develop resistance toward our innate immune system. Here, we review the findings of major studies that deal with the AMP cross-resistance phenomenon.
Collapse
Affiliation(s)
- Osmel Fleitas
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de BrasíliaBrasília, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de BrasíliaBrasília, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de BrasíliaBrasília, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de BrasíliaBrasília, Brazil; Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech,Universidade Católica Dom BoscoCampo Grande, Brazil
| |
Collapse
|