1
|
Ding X, Robbe-Masselot C, Fu X, Léonard R, Marsac B, Dauriat CJG, Lepissier A, Rytter H, Ramond E, Dupuis M, Euphrasie D, Dubail I, Schimmich C, Qin X, Parraga J, Leite-de-Moraes M, Ferroni A, Chassaing B, Sermet-Gaudelus I, Charbit A, Coureuil M, Jamet A. Airway environment drives the selection of quorum sensing mutants and promote Staphylococcus aureus chronic lifestyle. Nat Commun 2023; 14:8135. [PMID: 38065959 PMCID: PMC10709412 DOI: 10.1038/s41467-023-43863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.
Collapse
Affiliation(s)
- Xiongqi Ding
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Catherine Robbe-Masselot
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Xiali Fu
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Renaud Léonard
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Benjamin Marsac
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Charlene J G Dauriat
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Agathe Lepissier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Héloïse Rytter
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Elodie Ramond
- Genoscope, UMR8030, Laboratory of Systems & Synthetic Biology (LISSB), Xenome team, F91057, Evry, France
| | - Marion Dupuis
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Daniel Euphrasie
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Iharilalao Dubail
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Cécile Schimmich
- Anses, Laboratory of Animal Health in Normandy, Physiopathology and epidemiology of equine diseases (PhEED), RD 675, F14430, Goustranville, France
| | - Xiaoquan Qin
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F75005, Paris, France
| | - Jessica Parraga
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Agnes Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Benoit Chassaing
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Alain Charbit
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Mathieu Coureuil
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
| | - Anne Jamet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
2
|
Sabra W, Wang W, Goepfert C, Zeng AP. Food-web and metabolic interactions of the lung inhabitants Streptococcus pneumoniae and Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4885-4898. [PMID: 35706134 DOI: 10.1111/1462-2920.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Bacteria that successfully adapt to different substrates and environmental niches within the lung and overcome the immune defence can cause serious lung infections. Such infections are generally complex, and recognised as polymicrobial in nature. Both Pseudomonas aeruginosa and Streptococcus pneumoniae can cause chronic lung infections and were both detected in cystic fibrosis (CF) lung at different stages. In this study, single and dual species cultures of Pseudomonas aeruginosa and Streptococcus pneumoniae were studied under well controlled planktonic growth conditions. Under pH-controlled conditions, both species apparently benefited from the presence of the other. In co-culture with P. aeruginosa, S. pneumoniae grew efficiently under aerobic conditions, whereas in pure S. pneumoniae culture, growth inhibition occurred in bioreactors with dissolved oxygen concentrations above the microaerobic range. Lactic acid and acetoin that are produced by S. pneumoniae was efficiently utilised by P. aeruginosa. In pH-uncontrolled co-cultures, the low pH triggered by S. pneumoniae assimilation of glucose and lactic acid production negatively affected the growth of both strains. Nevertheless, ammonia production improved significantly, and P. aeruginosa growth dominated at later growth stages. This study revealed unreported metabolic interactions of two important pathogenic microorganisms and shed new lights into pathophysiology of bacterial lung infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wael Sabra
- Faculty of life science, Rheine-Waal University of applied sciences, Marie-Curie-Straße 1, Kleve.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Christiane Goepfert
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
3
|
Sass G, Nazik H, Chatterjee P, Shrestha P, Groleau MC, Déziel E, Stevens DA. Altered Pseudomonas Strategies to Inhibit Surface Aspergillus Colonies. Front Cell Infect Microbiol 2021; 11:734296. [PMID: 34746024 PMCID: PMC8570168 DOI: 10.3389/fcimb.2021.734296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus infections frequently co-localize in lungs of immunocompromised patients and individuals with cystic fibrosis (CF). The antifungal activity of P. aeruginosa has been described for its filtrates. Pyoverdine and pyocyanin are the principal antifungal P. aeruginosa molecules active against A. fumigatus biofilm metabolism present in iron-limited or iron-replete planktonic P. aeruginosa culture filtrates, respectively. Using various P. aeruginosa laboratory wild-type strains (PA14, PAO1, PAK), we found antifungal activity against Aspergillus colonies on agar. Comparing 36 PA14 and 7 PAO1 mutants, we found that mutants lacking both major siderophores, pyoverdine and pyochelin, display higher antifungal activity on agar than their wild types, while quorum sensing mutants lost antifungal activity. Addition of ferric iron, but not calcium or magnesium, reduced the antifungal effects of P. aeruginosa on agar, whereas iron-poor agar enhanced antifungal effects. Antifungal activity on agar was mediated by PQS and HHQ, via MvfR. Among the MvfR downstream factors, rhamnolipids and elastase were produced in larger quantities by pyoverdine–pyochelin double mutants and showed antifungal activity on agar. In summary, antifungal factors produced by P. aeruginosa on agar differ from those produced by bacteria grown in liquid cultures, are dependent on quorum sensing, and are downregulated by the availability of ferric iron. Rhamnolipids and elastase seem to be major mediators of Pseudomonas’ antifungal activity on a solid surface.
Collapse
Affiliation(s)
- Gabriele Sass
- Infectious Disease Research Laboratory, San Jose, CA, United States
| | - Hasan Nazik
- Infectious Disease Research Laboratory, San Jose, CA, United States
| | | | - Pallabi Shrestha
- Infectious Disease Research Laboratory, San Jose, CA, United States
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institute National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institute National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - David A Stevens
- Infectious Disease Research Laboratory, San Jose, CA, United States.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Static Growth Promotes PrrF and 2-Alkyl-4(1 H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00416-20. [PMID: 33020221 DOI: 10.1128/jb.00416-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallonutrient, is altered in static P. aeruginosa cultures. Specifically, we observed a loss of iron-induced expression of proteins for oxidative phosphorylation, tricarboxylic acid (TCA) cycle metabolism under static conditions. Moreover, we identified type VI secretion as a target of iron regulation in P. aeruginosa cells under static but not shaking conditions, and we present evidence that this regulation occurs via PrrF small regulatory RNA (sRNA)-dependent production of 2-alkyl-4(1H)-quinolone metabolites. These results yield new iron regulation paradigms in an important opportunistic pathogen and highlight the need to redefine iron homeostasis in static microbial communities.IMPORTANCE Host-mediated iron starvation is a broadly conserved signal for microbial pathogens to upregulate expression of virulence traits required for successful infection. Historically, global iron regulatory studies in microorganisms have been conducted in shaking cultures to ensure culture homogeneity, yet these conditions are likely not reflective of growth during infection. Pseudomonas aeruginosa is a well-studied opportunistic pathogen and model organism for iron regulatory studies. Iron homeostasis is maintained through the Fur protein and PrrF small regulatory sRNAs, the functions of which are highly conserved in many other bacterial species. In the current study, we examined how static growth affects the known iron and PrrF regulons of P. aeruginosa, leading to the discovery of novel PrrF-regulated virulence processes. This study demonstrates how the utilization of distinct growth models can enhance our understanding of basic physiological processes that may also affect pathogenesis.
Collapse
|
5
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Azman A, Vasodavan K, Joseph N, Kumar S, Hamat RA, Nordin SA, Aizat WM, van Belkum A, Neela VK. Physiological and proteomic analysis of Stenotrophomonas maltophilia grown under the iron-limited condition. Future Microbiol 2019; 14:1417-1428. [DOI: 10.2217/fmb-2019-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.
Collapse
Affiliation(s)
- Adleen Azman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kalidasan Vasodavan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rukman A Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Syafinaz A Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan M Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | | | - Vasantha K Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa. Arch Microbiol 2019; 202:77-83. [DOI: 10.1007/s00203-019-01719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/20/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
8
|
El-Helow ER, Atalla RG, Sabra WA, Lotfy WA. Kinetic studies on the expression of alginate and extracellular proteins by Pseudomonas aeruginosa FRD1 and PAO1. J GEN APPL MICROBIOL 2019; 66:15-23. [PMID: 31366850 DOI: 10.2323/jgam.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pseudomonas aeruginosa is characterized by its capability to produce extracellular virulence proteins and to establish biofilm-based infections that do not respond easily to conventional treatments. However, the physiological conditions that decrease the fitness of such a persistent pathogen would assist the host to defend itself and reduce the infection prevalence. Therefore, developing treatments against P. aeruginosa requires a quantitative understanding of the relationship between bacterial growth kinetics and secretion of alginate and proteins, in addition to the ecological factors that control their synthesis. For this purpose, we examined various environmental factors that affect the specific product yield coefficients (expressed as g product/OD600) of alginate and extracellular proteins using a mucoid (FRD1) and a non-mucoid (PAO1) clinical isolate of P. aeruginosa, respectively. The results suggested magnesium sulfate, trace elements and hydrogen peroxide as significant variables that positively affect alginate synthesis by the FRD1 cells. However, the production of extracellular proteins by PAO1 was negatively affected by the concentration of ferrous sulfate. For understanding the kinetics of expressing alginate and extracellular proteins by the cells, a well-controlled 5 L tank bioreactor was used. The results suggested that under the bioreactor controlled conditions, both alginate and extracellular proteins are expressed parallel to biomass increase in the cells of P. aeruginosa.
Collapse
Affiliation(s)
- Ehab R El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Ramy G Atalla
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Wael A Sabra
- Department of Botany and Microbiology, Faculty of Science, Alexandria University
| | - Walid A Lotfy
- Microbiology Department, Faculty of Dentistry, Pharos University in Alexandria
| |
Collapse
|
9
|
Latorre M, Quenti D, Travisany D, Singh KV, Murray BE, Maass A, Cambiazo V. The Role of Fur in the Transcriptional and Iron Homeostatic Response of Enterococcus faecalis. Front Microbiol 2018; 9:1580. [PMID: 30065712 PMCID: PMC6056675 DOI: 10.3389/fmicb.2018.01580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023] Open
Abstract
The ferric uptake regulator (Fur) plays a major role in controlling the expression of iron homeostasis genes in bacterial organisms. In this work, we fully characterized the capacity of Fur to reconfigure the global transcriptional network and influence iron homeostasis in Enterococcus faecalis. The characterization of the Fur regulon from E. faecalis indicated that this protein (Fur) regulated the expression of genes involved in iron uptake systems, conferring to the system a high level of efficiency and specificity to respond under different iron exposure conditions. An RNAseq assay coupled with a systems biology approach allowed us to identify the first global transcriptional network activated by different iron treatments (excess and limited), with and without the presence of Fur. The results showed that changes in iron availability activated a complex network of transcriptional factors in E. faecalis, among them global regulators such as LysR, ArgR, GalRS, and local regulators, LexA and CopY, which were also stimulated by copper and zinc treatments. The deletion of Fur impacted the expression of genes encoding for ABC transporters, energy production and [Fe-S] proteins, which optimized detoxification and iron uptake under iron excess and limitation, respectively. Finally, considering the close relationship between iron homeostasis and pathogenesis, our data showed that the absence of Fur increased the internal concentration of iron in the bacterium and also affected its ability to produce biofilm. These results open new alternatives in the field of infection mechanisms of E. faecalis.
Collapse
Affiliation(s)
- Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Daniela Quenti
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Ha S, Shin B, Park W. Lack of glyoxylate shunt dysregulates iron homeostasis in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:587-599. [PMID: 29465342 DOI: 10.1099/mic.0.000623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aceA and glcB genes, encoding isocitrate lyase (ICL) and malate synthase, respectively, are not in an operon in many bacteria, including Pseudomonas aeruginosa, unlike in Escherichia coli. Here, we show that expression of aceA in P. aeruginosa is specifically upregulated under H2O2-induced oxidative stress and under iron-limiting conditions. In contrast, the addition of exogenous redox active compounds or antibiotics increases the expression of glcB. The transcriptional start sites of aceA under iron-limiting conditions and in the presence of iron were found to be identical by 5' RACE. Interestingly, the enzymatic activities of ICL and isocitrate dehydrogenase had opposite responses under different iron conditions, suggesting that the glyoxylate shunt (GS) might be important under iron-limiting conditions. Remarkably, the intracellular iron concentration was lower while the iron demand was higher in the GS-activated cells growing on acetate compared to cells growing on glucose. Absence of GS dysregulated iron homeostasis led to changes in the cellular iron pool, with higher intracellular chelatable iron levels. In addition, GS mutants were found to have higher cytochrome c oxidase activity on iron-supplemented agar plates of minimal media, which promoted the growth of the GS mutants. However, deletion of the GS genes resulted in higher sensitivity to a high concentration of H2O2, presumably due to iron-mediated killing. In conclusion, the GS system appears to be tightly linked to iron homeostasis in the promotion of P. aeruginosa survival under oxidative stress.
Collapse
Affiliation(s)
- Sunhee Ha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
11
|
Buchanan CJ, Webb AL, Mutschall SK, Kruczkiewicz P, Barker DOR, Hetman BM, Gannon VPJ, Abbott DW, Thomas JE, Inglis GD, Taboada EN. A Genome-Wide Association Study to Identify Diagnostic Markers for Human Pathogenic Campylobacter jejuni Strains. Front Microbiol 2017; 8:1224. [PMID: 28713351 PMCID: PMC5492696 DOI: 10.3389/fmicb.2017.01224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/16/2017] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading human enteric pathogen worldwide and despite an improved understanding of its biology, ecology, and epidemiology, limited tools exist for identifying strains that are likely to cause disease. In the current study, we used subtyping data in a database representing over 24,000 isolates collected through various surveillance projects in Canada to identify 166 representative genomes from prevalent C. jejuni subtypes for whole genome sequencing. The sequence data was used in a genome-wide association study (GWAS) aimed at identifying accessory gene markers associated with clinically related C. jejuni subtypes. Prospective markers (n = 28) were then validated against a large number (n = 3,902) of clinically associated and non-clinically associated genomes from a variety of sources. A total of 25 genes, including six sets of genetically linked genes, were identified as robust putative diagnostic markers for clinically related C. jejuni subtypes. Although some of the genes identified in this study have been previously shown to play a role in important processes such as iron acquisition and vitamin B5 biosynthesis, others have unknown function or are unique to the current study and warrant further investigation. As few as four of these markers could be used in combination to detect up to 90% of clinically associated isolates in the validation dataset, and such markers could form the basis for a screening assay to rapidly identify strains that pose an increased risk to public health. The results of the current study are consistent with the notion that specific groups of C. jejuni strains of interest are defined by the presence of specific accessory genes.
Collapse
Affiliation(s)
- Cody J Buchanan
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada.,Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| | - Andrew L Webb
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada
| | - Steven K Mutschall
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada
| | - Peter Kruczkiewicz
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada
| | - Dillon O R Barker
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada.,Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| | - Benjamin M Hetman
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| | - James E Thomas
- Department of Biological Sciences, University of Lethbridge, LethbridgeAB, Canada
| | - G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, LethbridgeAB, Canada
| | - Eduardo N Taboada
- National Microbiology Laboratory at Lethbridge, Public Health Agency of Canada, LethbridgeAB, Canada
| |
Collapse
|
12
|
Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol 2017; 7:39. [PMID: 28261568 PMCID: PMC5310132 DOI: 10.3389/fcimb.2017.00039] [Citation(s) in RCA: 889] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen affecting immunocompromised patients. It is known as the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and as one of the leading causes of nosocomial infections. Due to a range of mechanisms for adaptation, survival and resistance to multiple classes of antibiotics, infections by P. aeruginosa strains can be life-threatening and it is emerging worldwide as public health threat. This review highlights the diversity of mechanisms by which P. aeruginosa promotes its survival and persistence in various environments and particularly at different stages of pathogenesis. We will review the importance and complexity of regulatory networks and genotypic-phenotypic variations known as adaptive radiation by which P. aeruginosa adjusts physiological processes for adaptation and survival in response to environmental cues and stresses. Accordingly, we will review the central regulatory role of quorum sensing and signaling systems by nucleotide-based second messengers resulting in different lifestyles of P. aeruginosa. Furthermore, various regulatory proteins will be discussed which form a plethora of controlling systems acting at transcriptional level for timely expression of genes enabling rapid responses to external stimuli and unfavorable conditions. Antibiotic resistance is a natural trait for P. aeruginosa and multiple mechanisms underlying different forms of antibiotic resistance will be discussed here. The importance of each mechanism in conferring resistance to various antipseudomonal antibiotics and their prevalence in clinical strains will be described. The underlying principles for acquiring resistance leading pan-drug resistant strains will be summarized. A future outlook emphasizes the need for collaborative international multidisciplinary efforts to translate current knowledge into strategies to prevent and treat P. aeruginosa infections while reducing the rate of antibiotic resistance and avoiding the spreading of resistant strains.
Collapse
Affiliation(s)
| | | | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
| |
Collapse
|
13
|
Grant MR, Tymon LS, Helms GL, Thomashow LS, Kent Keller C, Harsh JB. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering. GEOBIOLOGY 2016; 14:588-598. [PMID: 27384343 DOI: 10.1111/gbi.12187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/22/2016] [Indexed: 06/06/2023]
Abstract
Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but a clear understanding of how environmental factors, such as trace-nutrient limitation, influence this role is lacking. Here, we examine biofilm development by Pseudomonas putida in media either deficient or sufficient in Fe during growth on biotite, an Fe rich mineral, or on glass. We hypothesized that the bacteria would respond to Fe deficiency by enhancing biotite dissolution and by the formation of binding sites to inhibit Fe leaching from the system. Glass coupons acted as a no-Fe control to investigate whether biofilm response depended on the presence of Fe in the supporting solid. Biofilms grown on biotite, as compared to glass, had significantly greater biofilm biomass, specific numbers of viable cells (SNVC), and biofilm cation concentrations of K, Mg, and Fe, and these differences were greater when Fe was deficient in the medium. Scanning electron microscopy (SEM) confirmed that biofilm growth altered the biotite surface, smoothing the rough, jagged edges of channels scratched by hand on the biotite, and dissolving away small, easy-to-access particles scattered across the planar surface. High-resolution magic angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy showed that, in the Fe-deficient medium, the relative amount of polysaccharide nearly doubled relative to that in biofilms grown in the medium amended with Fe. The results imply that the bacteria responded to the Fe deficiency by obtaining Fe from biotite and used the biofilm matrix to enhance weathering and as a sink for released cation nutrients. These results demonstrate one mechanism by which biofilms may help soil microbes overcome nutrient deficiencies in oligotrophic systems.
Collapse
Affiliation(s)
- M R Grant
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, USA.
| | - L S Tymon
- Department of Plant Soil and Entomological Sciences, University of Idaho, Moscow, ID, USA
| | - G L Helms
- Nuclear Magnetic Resonance Spectroscopy Center, Washington State University, Pullman, WA, USA
| | - L S Thomashow
- Root Disease and Biological Control Research Unit, USDA-ARS, Washington State University, Pullman, WA, USA
| | - C Kent Keller
- School of the Environment, Washington State University, Pullman, WA, USA
| | - J B Harsh
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Jagmann N, Bleicher V, Busche T, Kalinowski J, Philipp B. The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. Environ Microbiol 2016; 18:3550-3564. [PMID: 27322205 DOI: 10.1111/1462-2920.13419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa controls the production of virulence factors by quorum sensing (QS). Besides cell density, QS in P. aeruginosa is co-regulated by metabolic influences, especially nutrient limitation. Previously, a co-culture model system was established consisting of P. aeruginosa and the chitinolytic bacterium Aeromonas hydrophila, in which parasitic growth of P. aeruginosa is strictly dependent on the QS-controlled production of pyocyanin in response to nutrient limitation (Jagmann et al., ). In this study, the co-culture was employed to identify novel genes involved in the regulation of pyocyanin production. Via transposon mutagenesis, the gene gbuA encoding a guanidinobutyrase was identified, deletion of which led to a loss of pyocyanin production in co-cultures and to a reduced pyocyanin production in single cultures. Addition of the natural substrate of GbuA to the mutant strain enhanced the negative effect on pyocyanin production in single cultures. The gbuA mutant showed a reduced transcription of the pqsABCDE operon and could be complemented by PqsE overexpression and addition of alkylquinolone signal molecules. The strong effect of gbuA deletion on the QS-controlled pyocyanin production in co-cultures showed the value of this approach for the discovery of novel gene functions linking metabolism and QS in P. aeruginosa.
Collapse
Affiliation(s)
- Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstr. 3, Münster, 48149, Germany
| | - Vera Bleicher
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstr. 3, Münster, 48149, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Universitätsstr. 25, Bielefeld, 33615, Germany
| | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität (WWU) Münster, Corrensstr. 3, Münster, 48149, Germany.
| |
Collapse
|
15
|
Ahn S, Jung J, Jang IA, Madsen EL, Park W. Role of Glyoxylate Shunt in Oxidative Stress Response. J Biol Chem 2016; 291:11928-38. [PMID: 27036942 DOI: 10.1074/jbc.m115.708149] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 12/16/2022] Open
Abstract
The glyoxylate shunt (GS) is a two-step metabolic pathway (isocitrate lyase, aceA; and malate synthase, glcB) that serves as an alternative to the tricarboxylic acid cycle. The GS bypasses the carbon dioxide-producing steps of the tricarboxylic acid cycle and is essential for acetate and fatty acid metabolism in bacteria. GS can be up-regulated under conditions of oxidative stress, antibiotic stress, and host infection, which implies that it plays important but poorly explored roles in stress defense and pathogenesis. In many bacterial species, including Pseudomonas aeruginosa, aceA and glcB are not in an operon, unlike in Escherichia coli In P. aeruginosa, we explored relationships between GS genes and growth, transcription profiles, and biofilm formation. Contrary to our expectations, deletion of aceA in P. aeruginosa improved cell growth under conditions of oxidative and antibiotic stress. Transcriptome data suggested that aceA mutants underwent a metabolic shift toward aerobic denitrification; this was supported by additional evidence, including up-regulation of denitrification-related genes, decreased oxygen consumption without lowering ATP yield, increased production of denitrification intermediates (NO and N2O), and increased cyanide resistance. The aceA mutants also produced a thicker exopolysaccharide layer; that is, a phenotype consistent with aerobic denitrification. A bioinformatic survey across known bacterial genomes showed that only microorganisms capable of aerobic metabolism possess the glyoxylate shunt. This trend is consistent with the hypothesis that the GS plays a previously unrecognized role in allowing bacteria to tolerate oxidative stress.
Collapse
Affiliation(s)
- Sungeun Ahn
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| | - Jaejoon Jung
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| | - In-Ae Jang
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| | - Eugene L Madsen
- the Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Woojun Park
- From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and
| |
Collapse
|
16
|
Sabharwal N, Chhibber S, Harjai K. Divalent flagellin immunotherapy provides homologous and heterologous protection in experimental urinary tract infections in mice. Int J Med Microbiol 2016; 306:29-37. [DOI: 10.1016/j.ijmm.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022] Open
|
17
|
Shteinberg M, Rivlin J, Gur M, Konopnicki M, Stein N, Tunney MM, Elborn JS, Downey DG, Johnston E, Shalom H, Levy A. Lack of Association Between Haptoglobin Phenotype and Cystic Fibrosis Outcomes. Lung 2015; 193:1017-21. [PMID: 26370551 DOI: 10.1007/s00408-015-9801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022]
Abstract
Haptoglobin (Hp), a heme-Iron chelator, has different isoforms which are associated with variable tendency toward infections: Hp 1-1, Hp 2-1, and Hp 2-2. Cystic fibrosis (CF) outcomes are variable and influenced by genetic and environmental factors. The aim of this study was to determine whether Hp phenotype influenced disease severity in CF. One hundred forty-two CF patients from two centers were analyzed for Haptoglobin phenotype using gel electrophoresis of hemoglobin enriched serum. Clinical and microbiological data including bacterial colonization status, lung function, presence of CF-related diabetes and liver disease, rate of exacerbation, and mortality were compared between Hp phenotype groups. We found a trend toward less mucoid PA among Hp 2-2 (20.4 %) compared with Hp 1-1 and Hp 2-1 individuals (33.3 %), p = 0.317. Hp 2-2 individuals also had less antibiotic courses, and lower inflammatory markers without statistical significance. Haptoglobin phenotype is unlikely to be an important modifier of CF phenotype.
Collapse
Affiliation(s)
- Michal Shteinberg
- CF Center, Carmel Medical Center, Haifa, Israel. .,Queens University Belfast, Belfast, UK. .,The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel. .,Pulnonary Institute, Carmel Medical Center, 7 Michal St., 3463209, Haifa, Israel.
| | | | - Michal Gur
- CF Center, Carmel Medical Center, Haifa, Israel
| | | | - Nili Stein
- CF Center, Carmel Medical Center, Haifa, Israel
| | | | | | | | | | - Hadar Shalom
- The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Andrew Levy
- The B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Belák Á, Maráz A. Antagonistic Effect of Pseudomonas sp. CMI-1 on
Foodborne Pathogenic Listeria monocytogenes. Food Technol Biotechnol 2015; 53:223-230. [PMID: 27904352 DOI: 10.17113/ftb.53.02.15.3731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial isolates derived from food or raw food materials of animal origin were screened for potential antagonistic activity against foodborne pathogenic Listeria monocytogenes. Using the agar spot method, ten out of the 94 tested bacteria showed antilisterial activity. All of the antagonistic isolates identified by sequence analysis as strains of the genus Pseudomonas were able to inhibit the growth of all the examined Listeria species including the ruminal pathogenic L. ivanovii and the opportunistic human pathogenic L. innocua. Pseudomonas sp. CMI-1 had the highest inhibitory effect on the growth of different Listeria strains. Co-culturing studies revealed that the inhibition of L. monocytogenes could not be achieved efficiently. Although the population of the Pseudomonas sp. CMI-1 strain increased by up to 10 orders of magnitude during 2 days of culturing period at 20 °C in the presence of L. monocytogenes, the cell count of the pathogen also increased by approx. 6 orders of magnitude. At the same time, appropriate inhibition of cell-free supernatants generated from 6-day-old cultures of Pseudomonas sp. CMI-1 was observed. The inhibitory compound of this antagonistic strain is presumably a chromopeptide siderophore, whose activity and production can be affected by iron supplementation, and which had an absorption maximum typical of siderophores of fluorescent Pseudomonas species. Production of the antilisterial substance was influenced by the oxygen concentration, as in static cultures the concentration of the siderophore was higher than in shake flask cultures.
Collapse
Affiliation(s)
- Ágnes Belák
- Department of Microbiology and Biotechnology, Faculty of Food Science,
Corvinus University of Budapest, Somlói út 14-16, HU-1118 Budapest, Hungary
| | - Anna Maráz
- Department of Microbiology and Biotechnology, Faculty of Food Science,
Corvinus University of Budapest, Somlói út 14-16, HU-1118 Budapest, Hungary
| |
Collapse
|
19
|
The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2014; 6:26-41. [PMID: 25249263 PMCID: PMC4286720 DOI: 10.1007/s13238-014-0100-x] [Citation(s) in RCA: 825] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradicate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacterial population changes but also could react to environmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.
Collapse
|
20
|
He FQ, Wang W, Zheng P, Sudhakar P, Sun J, Zeng AP. Essential O2-responsive genes of Pseudomonas aeruginosa and their network revealed by integrating dynamic data from inverted conditions. Integr Biol (Camb) 2014; 6:215-23. [PMID: 24413814 DOI: 10.1039/c3ib40180d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Identification of the gene network through which Pseudomonas aeruginosa PAO1 (PA) adapts to altered oxygen-availability environments is essential for a better understanding of stress responses and pathogenicity of PA. We performed high-time-resolution (HTR) transcriptome analyses of PA in a continuous cultivation system during the transition from high oxygen tension to low oxygen tension (HLOT) and the reversed transition from low to high oxygen tension (LHOT). From those genes responsive to both transient conditions, we identified 85 essential oxygen-availability responsive genes (EORGs), including the expected ones (arcDABC) encoding enzymes for arginine fermentation. We then constructed the regulatory network for the EORGs of PA by integrating information from binding motif searching, literature and HTR data. Notably, our results show that only the sub-networks controlled by the well-known oxygen-responsive transcription factors show a very high consistency between the inferred network and literature knowledge, e.g. 87.5% and 83.3% of the obtained sub-network controlled by the anaerobic regulator (ANR) and a quorum sensing regulator RhIR, respectively. These results not only reveal stringent EORGs of PA and their transcription regulatory network, but also highlight that achieving a high accuracy of the inferred regulatory network might be feasible only for the apparently affected regulators under the given conditions but not for all the expressed regulators on a genome scale.
Collapse
Affiliation(s)
- Feng Q He
- Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Sarkisova SA, Lotlikar SR, Guragain M, Kubat R, Cloud J, Franklin MJ, Patrauchan MA. A Pseudomonas aeruginosa EF-hand protein, EfhP (PA4107), modulates stress responses and virulence at high calcium concentration. PLoS One 2014; 9:e98985. [PMID: 24918783 PMCID: PMC4053335 DOI: 10.1371/journal.pone.0098985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/09/2014] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, and a major cause of nosocomial infections and severe chronic infections in endocarditis and in cystic fibrosis (CF) patients. Calcium (Ca2+) accumulates in pulmonary fluids of CF patients, and plays a role in the hyperinflammatory response to bacterial infection. Earlier we showed that P. aeruginosa responds to increased Ca2+ levels, primarily through the increased production of secreted virulence factors. Here we describe the role of putative Ca2+-binding protein, with an EF-hand domain, PA4107 (EfhP), in this response. Deletion mutations of efhP were generated in P. aeruginosa strain PAO1 and CF pulmonary isolate, strain FRD1. The lack of EfhP abolished the ability of P. aeruginosa PAO1 to maintain intracellular Ca2+ homeostasis. Quantitative high-resolution 2D-PAGE showed that the efhP deletion also affected the proteomes of both strains during growth with added Ca2+. The greatest proteome effects occurred when the pulmonary isolate was cultured in biofilms. Among the proteins that were significantly less abundant or absent in the mutant strains were proteins involved in iron acquisition, biosynthesis of pyocyanin, proteases, and stress response proteins. In support, the phenotypic responses of FRD1 ΔefhP showed that the mutant strain lost its ability to produce pyocyanin, developed less biofilm, and had decreased resistance to oxidative stress (H2O2) when cultured at high [Ca2+]. Furthermore, the mutant strain was unable to produce alginate when grown at high [Ca2+] and no iron. The effect of the ΔefhP mutations on virulence was determined in a lettuce model of infection. Growth of wild-type P. aeruginosa strains at high [Ca2+] causes an increased area of disease. In contrast, the lack of efhP prevented this Ca2+-induced increase in the diseased zone. The results indicate that EfhP is important for Ca2+ homeostasis and virulence of P. aeruginosa when it encounters host environments with high [Ca2+].
Collapse
Affiliation(s)
- Svetlana A. Sarkisova
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shalaka R. Lotlikar
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Manita Guragain
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ryan Kubat
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - John Cloud
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Michael J. Franklin
- Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
22
|
García-Contreras R, Pérez-Eretza B, Lira-Silva E, Jasso-Chávez R, Coria-Jiménez R, Rangel-Vega A, Maeda T, Wood TK. Gallium induces the production of virulence factors inPseudomonas aeruginosa. Pathog Dis 2013; 70:95-8. [DOI: 10.1111/2049-632x.12105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | | | | | - Rafael Coria-Jiménez
- Laboratory of Experimental Bacteriology; National Institute of Pediatrics; Mexico City Mexico
| | - Adrián Rangel-Vega
- Internal Medicine Department, Speciality Hospital; National Medical Center “Siglo XXI”; IMSS; Mexico City Mexico
| | - Toshinari Maeda
- Department of Biological Functions and Engineering; Kyushu Institute of Technology; Kitakyushu Japan
| | - Thomas K. Wood
- Departments of Chemical Engineering and Biochemistry and Molecular Biology; Pennsylvania State University; University Park PA USA
| |
Collapse
|
23
|
Comparative physiological study of the wild type and the small colony variant of Pseudomonas aeruginosa 20265 under controlled growth conditions. World J Microbiol Biotechnol 2013; 30:1027-36. [DOI: 10.1007/s11274-013-1521-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
24
|
Nelson RK, Poroyko V, Morowitz MJ, Liu D, Alverdy JC. Effect of dietary monosaccharides on Pseudomonas aeruginosa virulence. Surg Infect (Larchmt) 2013; 14:35-42. [PMID: 23451729 DOI: 10.1089/sur.2011.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic, gram-negative pathogen associated with many hospital-acquired infections and disease states. In particular, P. aeruginosa has been identified as a crucial factor in the pathogenesis of neonatal necrotizing enterocolitis (NEC). This condition presents more frequently in infants fed a formula-based diet, which may be a result of the specific monosaccharide content of this diet. We hypothesized that P. aeruginosa would express virulence genes differentially when exposed to monosaccharides present in formula versus those in human milk. METHODS Using the results of a metabolomics study on infant diets and their resulting fecal samples, we identified several monosaccharides that distinguished milk from formula diets. Of these compounds, four were found to be metabolized by P. aeruginosa. We subsequently grew P. aeruginosa in tryptic soy broth (TSB) supplemented with these four monosaccharides and used quantitative reverse transcriptase-polymerase chain reaction to measure the expression of 59 major P. aeruginosa virulence genes. The results were standardized to an external control of P. aeruginosa grown in TSB alone. RESULTS P. aeruginosa did not respond differentially to the monosaccharides after 6 h of growth. However, after 24 h, the organism grown in arabinose (present in formula), xylose (present in human milk), and galactose (present in both formula and feces from milk-fed infants) displayed a significant increase in the expression of virulence genes in all categories. In contrast, P. aeruginosa grown in mannose (present in the feces of milk-fed infants) displayed a significant decrease in virulence gene expression. CONCLUSION These results demonstrate the importance of nutrient content on the relative expression of virulence genes in pathogens that colonize commonly the gut of infants. Understanding the effect of current dietary formulas on virulence gene expression in various gut-colonizing pathogens may present a new approach to elucidating the differences between human milk and formula in the development of NEC.
Collapse
Affiliation(s)
- Ryan K Nelson
- Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
25
|
Haley CL, Colmer-Hamood JA, Hamood AN. Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium. BMC Microbiol 2012; 12:181. [PMID: 22900764 PMCID: PMC3494610 DOI: 10.1186/1471-2180-12-181] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/06/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The accumulation of thick stagnant mucus provides a suitable environment for the growth of Pseudomonas aeruginosa and Staphylococcus aureus within the lung alveoli of cystic fibrosis (CF) patients. These infections cause significant lung damage, leading to respiratory failure and death. In an artificial mucin containing medium ASM+, P. aeruginosa forms structures that resemble typical biofilms but are not attached to any surface. We refer to these structures as biofilm like structures (BLS). Using ASM+ in a static microtiter plate culture system, we examined the roles of mucin, extracellular DNA, environmental oxygen (EO2), and quorum sensing (QS) in the development of biofilm-like structures (BLS) by P. aeruginosa; and the effect of EO2 and P. aeruginosa on S. aureus BLS. RESULTS Under 20% EO2, P. aeruginosa strain PAO1 produced BLS that resemble typical biofilms but are confined to the ASM+ and not attached to the surface. Levels of mucin and extracellular DNA within the ASM+ were optimized to produce robust well developed BLS. At 10% EO2, PAO1 produced thicker, more developed BLS, while under 0% EO2, BLS production was diminished. In contrast, the S. aureus strain AH133 produced well-developed BLS only under 20% EO2. In PAO1, loss of the QS system genes rhlI and rhlR affected the formation of BLS in ASM+ in terms of both structure and architecture. Whether co-inoculated into ASM+ with AH133, or added to established AH133 BLS, PAO1 eliminated AH133 within 48-56 h. CONCLUSIONS The thick, viscous ASM+, which contains mucin and extracellular DNA levels similar to those found in the CF lung, supports the formation of biofilm-like structures similar to the aggregates described within CF airways. Alterations in environmental conditions or in the QS genes of P. aeruginosa, as occurs naturally during the progression of CF lung infection, affect the architecture and quantitative structural features of these BLS. Thus, ASM+ provides an in vitro medium in which the effect of changing levels of substances produced by the host and the bacteria can be analyzed to determine the effect on such structures and on the susceptibility of the bacteria within the BLS to various treatments.
Collapse
Affiliation(s)
- Cecily L Haley
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock TX, USA
| | | | | |
Collapse
|
26
|
Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A, Carvunis AR, Ausubel FM. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog 2012; 8:e1002813. [PMID: 22911607 PMCID: PMC3406104 DOI: 10.1371/journal.ppat.1002813] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.
Collapse
Affiliation(s)
- Rhonda L Feinbaum
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 2012; 95:1519-29. [DOI: 10.1007/s00253-012-4258-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
28
|
Hogardt M, Heesemann J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 2011; 358:91-118. [PMID: 22311171 DOI: 10.1007/82_2011_199] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors that are positively selected in response to the specific environment of CF lung include the outer membrane protein OprF, the microaerophilic oxidase Cbb3-2, the blue copper protein azurin, the cytochrome c peroxidase c551 and the enzymes of the arginine deiminase pathway ArcA-ArcD. These metabolic adaptations probably support the growth of P. aeruginosa within oxygen-depleted CF mucus. The deeper understanding of the physiological mechanisms of niche specialization of P. aeruginosa during CF lung infection will help to identify new targets for future anti-pseudomonal treatment strategies to prevent the selection of mutator isolates and the establishment of chronic CF lung infection.
Collapse
Affiliation(s)
- Michael Hogardt
- Department of Infectiology, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| | | |
Collapse
|
29
|
Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Schobert M, Tielen P. Contribution of oxygen-limiting conditions to persistent infection of Pseudomonas aeruginosa. Future Microbiol 2010; 5:603-21. [PMID: 20353301 DOI: 10.2217/fmb.10.16] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic human pathogen that is able to colonize a broad spectrum of different aquatic and soil habitats. In the environment and during pathogenesis, P. aeruginosa encounters oxygen-limited and anaerobic environments. Particularly during chronic infection of the cystic fibrosis lung, oxygen-limiting conditions seem to contribute to persistent infection. Oxygen limitation increases antibiotic tolerance, robust biofilms and alginate biosynthesis, which contribute to the persistence of this opportunistic pathogen. Despite the importance of anaerobic metabolism during persistent infection of P. aeruginosa, we are just beginning to understand the underlying regulatory network and the molecular basis of how anaerobic metabolism contributes to a persistent infection. A deeper understanding of the anaerobic physiology of P. aeruginosa will allow the identification of new antibiotic targets and new therapeutic strategies.
Collapse
Affiliation(s)
- Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
31
|
Crabbé A, Pycke B, Van Houdt R, Monsieurs P, Nickerson C, Leys N, Cornelis P. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 2010; 12:1545-64. [PMID: 20236169 DOI: 10.1111/j.1462-2920.2010.02184.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immunocompromised astronauts during long-term missions. Therefore, insights into the behaviour of P. aeruginosa under spaceflight conditions were gained using two spaceflight-analogue culture systems: the rotating wall vessel (RWV) and the random position machine (RPM). Microarray analysis of P. aeruginosa PAO1 grown in the low shear modelled microgravity (LSMMG) environment of the RWV, compared with the normal gravity control (NG), revealed an apparent regulatory role for the alternative sigma factor AlgU (RpoE-like). Accordingly, P. aeruginosa cultured in LSMMG exhibited increased alginate production and upregulation of AlgU-controlled transcripts, including those encoding stress-related proteins. The LSMMG increased heat and oxidative stress resistance and caused a decrease in the oxygen transfer rate of the culture. This study also showed the involvement of the RNA-binding protein Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG and spaceflight response. The global transcriptional response of P. aeruginosa grown in the RPM was highly similar to that in NG. Fluid mixing was assessed in both systems and is believed to be a pivotal factor contributing to transcriptional differences between RWV- and RPM-grown P. aeruginosa. This study represents the first step towards the identification of virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections during spaceflight and in immunocompromised patients.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Venkataraman A, Rosenbaum M, Arends JB, Halitschke R, Angenent LT. Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.01.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2009; 2:101-11. [PMID: 20701869 DOI: 10.1016/j.jiph.2009.08.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem affecting millions of people each year. Infections of the urinary tract are the second most common type of infection in the body. Catheterization of the urinary tract is the most common factor, which predisposes the host to these infections. Catheter-associated UTI (CAUTI) is responsible for 40% of nosocomial infections, making it the most common cause of nosocomial infection. CAUTI accounts for more than 1 million cases in hospitals and nursing homes annually and often involve uropathogens other than Escherichia coli. While the epidemiology and pathogenic mechanisms of uropathogenic Escherichia coli have been extensively studied, little is known about the pathogenesis of UTIs caused by other organisms like Pseudomonas aeruginosa. Scanty available information regarding pathogenesis of UTIs caused by P. aeruginosa is an important bottleneck in developing effective preventive approaches. The aim of this review is to summarize some of the advances made in the field of P. aeruginosa induced UTIs and draws attention of the workers that more basic research at the level of pathogenesis is needed so that novel strategies can be designed.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | |
Collapse
|
34
|
Boyer M, Wisniewski-Dyé F. Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 2009; 70:1-19. [PMID: 19689448 DOI: 10.1111/j.1574-6941.2009.00745.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial signalling known as quorum sensing (QS) relies on the synthesis of autoinducing signals throughout growth; when a threshold concentration is reached, these signals interact with a transcriptional regulator, allowing the expression of specific genes at a high cell density. One of the most studied intraspecies signalling is based on the use of N-acyl-homoserine lactones (AHL). Many factors other than cell density were shown to affect AHL accumulation and interfere with the QS signalling process. At the cellular level, the genetic determinants of QS are integrated in a complex regulatory network, including QS cascades and various transcriptional and post-transcriptional regulators that affect the synthesis of the AHL signal. In complex environments where bacteria exist, AHL do not accumulate at a constant rate; the diffusion and perception of the AHL signal outside bacterial cells can be compromised by abiotic environmental factors, by members of the bacterial community such as AHL-degrading bacteria and also by compounds produced by eukaryotes acting as an AHL mimic or inhibitor. This review aims to present all factors interfering with the AHL-mediated signalling process, at the levels of signal production, diffusion and perception.
Collapse
|
35
|
Mittal R, Sharma S, Chhibber S, Harjai K. Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J Biomed Sci 2008; 15:731-41. [DOI: 10.1007/s11373-008-9274-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 07/25/2008] [Indexed: 11/21/2022] Open
|
36
|
Coskuner O, Bergeron DE, Rincon L, Hudgens JW, Gonzalez CA. Identification of Active Sites of Biomolecules. 1. Methyl-α-mannopyranoside and FeIII. J Phys Chem A 2008; 112:2940-7. [DOI: 10.1021/jp711759q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Orkid Coskuner
- Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, Computational Materials Science Center, George Mason University, Research I, Fairfax, Virginia 22030, and Departamento de Química, Universidad de los Andes, Mérida-5101, Venezuela
| | - Denis E. Bergeron
- Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, Computational Materials Science Center, George Mason University, Research I, Fairfax, Virginia 22030, and Departamento de Química, Universidad de los Andes, Mérida-5101, Venezuela
| | - Luis Rincon
- Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, Computational Materials Science Center, George Mason University, Research I, Fairfax, Virginia 22030, and Departamento de Química, Universidad de los Andes, Mérida-5101, Venezuela
| | - Jeffrey W. Hudgens
- Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, Computational Materials Science Center, George Mason University, Research I, Fairfax, Virginia 22030, and Departamento de Química, Universidad de los Andes, Mérida-5101, Venezuela
| | - Carlos A. Gonzalez
- Computational Chemistry Group, Physical and Chemical Properties Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8380, Gaithersburg, Maryland 20899, Computational Materials Science Center, George Mason University, Research I, Fairfax, Virginia 22030, and Departamento de Química, Universidad de los Andes, Mérida-5101, Venezuela
| |
Collapse
|
37
|
Zheng P, Sun J, Geffers R, Zeng AP. Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol 2007; 132:342-52. [PMID: 17889392 DOI: 10.1016/j.jbiotec.2007.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/10/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
The function unknown gene PA2384 of Pseudomonas aeruginosa PAO1 has been previously shown dramatically responsive to iron limitation. In the present study, a bioinformatics analysis showed that PA2384 has a weak similarity to the N-terminus DNA-binding domain of Fur, the well-known ferric uptake regulator. To investigate the potential function of PA2384 in iron regulation a P. aeruginosa PAO1 recombinant (pUCP20::PA2384) over-expressing PA2384 and a PA2384 disrupted mutant PAO1*PA2384 were constructed. Physiological characterization showed that the knockout mutant had a longer lag phase. Genome-scale transcriptional profiles at different growth stages were compared between the wild type and the DeltaPA2384 mutant grown under iron-limiting conditions. The expression of more than 350 genes was affected by the knockout of PA2384. Among them, 71 genes involved in iron uptake were significantly down-regulated in the absence of PA2384. One hundred two quorum sensing (QS) dependent genes displayed differential transcriptions, including genes involved in the biosynthesis of some important virulence factors such as pyocyanin, rhamnolipids and hydrogen cyanide. The transcription of genes responsible for the synthesis of Pseudomonas quinolone signal (PQS) was greatly enhanced by the knockout of PA2384. Furthermore, the knockout of PA2384 also resulted in an altered expression of genes involved in electron transfer, central metabolism, phosphorus starvation and translation. It implies that PA2384 might affect more physiological processes than iron acquisition in P. aeruginosa.
Collapse
Affiliation(s)
- Ping Zheng
- Systems Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
38
|
Alvarez-Ortega C, Harwood CS. Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 2007; 65:153-65. [PMID: 17581126 PMCID: PMC4157922 DOI: 10.1111/j.1365-2958.2007.05772.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa in the lungs of cystic fibrosis patients grows to high densities in mucopurulent material that is depleted in oxygen. Some have concluded that growth in these circumstances is dependent on anaerobic nitrate respiration. Here we present data in favour of the alternative hypothesis that microaerobic respiration is the predominant mode of P. aeruginosa growth in the cystic fibrosis lung. We found that P. aeruginosa strain PAO1 and a mucoid derivative of strain PAO1 each grew at dissolved oxygen concentrations of less than 3 microM. This is lower than the concentration of oxygen that has been measured in hypoxic cystic fibrosis mucous. A transcriptome analysis comparing cells grown under aerobic conditions (185 microM dissolved oxygen) with cells grown with 20 microM or 3 microM dissolved oxygen, or anaerobically with nitrate, revealed that overlapping sets of genes are expressed depending on oxygen availability. This suggests that P. aeruginosa responds to changes in oxygen concentration along a continuum rather than having a discrete low oxygen regulon. Any one of three high affinity terminal oxidases that P. aeruginosa encodes supported microaerobic growth. A triple mutant lacking all three of these oxidases failed to grow at low oxygen and formed abnormal biofilms.
Collapse
Affiliation(s)
- Carolina Alvarez-Ortega
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
- For correspondence. ; Tel. (+1) 206 221 2848; Fax (+1) 206 543 8297
| |
Collapse
|
39
|
Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 2007; 117:877-88. [PMID: 17364024 PMCID: PMC1810576 DOI: 10.1172/jci30783] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Accepted: 01/23/2007] [Indexed: 11/17/2022] Open
Abstract
A novel antiinfective approach is to exploit stresses already imposed on invading organisms by the in vivo environment. Fe metabolism is a key vulnerability of infecting bacteria because organisms require Fe for growth, and it is critical in the pathogenesis of infections. Furthermore, humans have evolved potent Fe-withholding mechanisms that can block acute infection, prevent biofilm formation leading to chronic infection, and starve bacteria that succeed in infecting the host. Here we investigate a "Trojan horse" strategy that uses the transition metal gallium to disrupt bacterial Fe metabolism and exploit the Fe stress of in vivo environments. Due to its chemical similarity to Fe, Ga can substitute for Fe in many biologic systems and inhibit Fe-dependent processes. We found that Ga inhibits Pseudomonas aeruginosa growth and biofilm formation and kills planktonic and biofilm bacteria in vitro. Ga works in part by decreasing bacterial Fe uptake and by interfering with Fe signaling by the transcriptional regulator pvdS. We also show that Ga is effective in 2 murine lung infection models. These data, along with the fact that Ga is FDA approved (for i.v. administration) and there is the dearth of new antibiotics in development, make Ga a potentially promising new therapeutic for P. aeruginosa infections.
Collapse
Affiliation(s)
- Yukihiro Kaneko
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA.
Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Matthew Thoendel
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA.
Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Oyebode Olakanmi
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA.
Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Bradley E. Britigan
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA.
Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Pradeep K. Singh
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, Washington, USA.
Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
40
|
|
41
|
Hilton T, Rosche T, Froelich B, Smith B, Oliver J. Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 2006; 72:6986-93. [PMID: 16936057 PMCID: PMC1636181 DOI: 10.1128/aem.00544-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Commonly found in raw oysters, Vibrio vulnificus poses a serious health threat to immunocompromised individuals and those with serum iron overload, with a fatality rate of approximately 50%. An essential virulence factor is its capsular polysaccharide (CPS), which is responsible for a significant increase in virulence compared to nonencapsulated strains. However, this bacterium is known to vary the amount of CPS expressed on the cell surface, converting from an opaque (Op) colony phenotype to a translucent (Tr) colony phenotype. In this study, the consistency of CPS conversion was determined for four strains of V. vulnificus. Environmental conditions including variations in aeration, temperature, incubation time, oxidative stress, and media (heart infusion or modified maintenance medium agar) were investigated to determine their influence on CPS conversion. All conditions, with the exception of variations in media and oxidative stress, significantly affected the conversion of the population, with high ranges of CPS expression found even within cells from a single colony. The global quorum-sensing regulators RpoS and AI-2 were also examined. While RpoS was found to significantly mediate phenotypic conversion, quorum sensing was not. Finally, 12 strains that comprise the recently found clinical (C) and environmental (E) genotypes of V. vulnificus were examined to determine their rates of population conversion. C-genotype strains, which are most often associated with infection, had a significantly lower rate of population conversion from Op to Tr phenotypes than did E-genotype strains (ca. 38% versus ca. 14%, respectively). Biofilm capabilities of these strains, however, were not correlated with increased population conversion.
Collapse
Affiliation(s)
- Tamara Hilton
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - Tom Rosche
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - Brett Froelich
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - Benjamin Smith
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
| | - James Oliver
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
- Corresponding author. Mailing address: University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223. Phone: (704) 687-8516. Fax: (704) 687-3457. E-mail:
| |
Collapse
|
42
|
Filiatrault MJ, Picardo KF, Ngai H, Passador L, Iglewski BH. Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 2006; 74:4237-45. [PMID: 16790798 PMCID: PMC1489737 DOI: 10.1128/iai.02014-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/31/2006] [Accepted: 04/17/2006] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a gram-negative, opportunistic pathogen and a significant cause of acute and chronic infections in patients with compromised host defenses. Evidence suggests that within infections P. aeruginosa encounters oxygen limitation and exists in microbial aggregates known as biofilms. However, there is little information that describes genes involved in anaerobic growth of P. aeruginosa and their association with virulence of this pathogen. To identify genes required for anaerobic growth, random transposon (Tn) mutagenesis was used to screen for mutants that demonstrated the inability to grow anaerobically using nitrate as a terminal electron acceptor. Of approximately 35,000 mutants screened, 57 mutants were found to exhibit no growth anaerobically using nitrate. Identification of the genes disrupted by the Tn revealed 24 distinct loci required for anaerobic growth on nitrate, including several genes not previously associated with anaerobic growth of P. aeruginosa. Several of these mutants were capable of growing anaerobically using nitrite and/or arginine, while five mutants were unable to grow anaerobically under any of the conditions tested. Three mutants were markedly attenuated in virulence in the lettuce model of P. aeruginosa infection. These studies have identified novel genes important for anaerobic growth and demonstrate that anaerobic metabolism influences virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Melanie J Filiatrault
- University of Rochester School of Medicine and Dentistry, Department of Microbiology and Immunology, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
43
|
Chen F, Xia Q, Ju LK. Competition between oxygen and nitrate respirations in continuous culture ofPseudomonas aeruginosa performing aerobic denitrification. Biotechnol Bioeng 2006; 93:1069-78. [PMID: 16435399 DOI: 10.1002/bit.20812] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Continuous culture of P. aeruginosa was conducted with nitrate-containing media under the dilution rates (D) of 0.026, 0.06, and 0.13/h and the dissolved oxygen concentrations (DO) of 0-2.2 mg/L. The bacterium performed simultaneous O(2) and nitrate respiration in all of the systems studied. For each D, the (apparent) cell yield from glucose (Y(X/S)) was lower at zero DO, but did not change substantially with non-zero DO. In non-zero DO systems, Y(X/S) increased with increasing D, and when fit with a model considering cell death, gave the following parameters: maximum cell yield Y(X/S) (m) = 0.49, maintenance coefficient M(S) = 0.029 (/h), and cell decay constant k(d) = 0.014/h. The same model failed to describe the behaviors of zero-DO systems, where neither glucose nor nitrate was limiting and the limiting factor(s) remained unknown. The cell yield from accepted electron (Y(X/e)) was however relatively constant in all systems, and the energy yield per electron accepted via denitrification was estimated at approximately 69% of that via O(2) respiration. A closer examination revealed that increasing DO enhanced O(2) respiration only at extremely low DO ( <0.05 mg/L), beyond which the increasing DO only slightly increased its weak inhibition on denitrification. While O(2) was the preferred electron acceptor, the fraction of electrons accepted via denitrification increased with increasing D.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemical Engineering, The University of Akron, Ohio 44325-3906, USA
| | | | | |
Collapse
|
44
|
Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2005; 12:789-96. [PMID: 16039526 DOI: 10.1016/j.chembiol.2005.05.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Revised: 04/29/2005] [Accepted: 05/06/2005] [Indexed: 11/30/2022]
Abstract
Bacterial biofilms are thought to aid in the survivability of a variety of intractable infections in humans. Specifically, biofilm production in Pseudomonas aeruginosa has been shown to play a significant role in chronic infection of cystic fibrosis (CF) patients. Unfortunately, no clinically effective inhibitors of biofilm formation are available. A rapid screen of 4509 compounds for nonantibiotic biofilm inhibitors in Pseudomonas aeruginosa PA14 was executed in 384-well plates. Among those compounds, ferric ammonium citrate inhibited biofilm formation in a dose-dependent manner; other iron salts functioned similarly. In addition to biofilm inhibition in static culture, pregrown biofilms could be disrupted and cleared by switching to iron-rich media in flow-chamber experiments. Furthermore, P. aeruginosa strains taken from the sputum of 20 CF patients showed a similar response to elevated iron levels. Previous expression-profiling analyses demonstrated that high levels of iron repress the expression of genes whose products are essential for scavenging iron and that expression of these genes is critical for virulence. Our results, combined with existing transcriptional-profiling data, now indicate that elevated iron concentrations repress the expression of certain genes essential for biofilm production in P. aeruginosa.
Collapse
Affiliation(s)
- Dinty J Musk
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
45
|
Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2005; 68:718-25. [PMID: 16160828 DOI: 10.1007/s00253-005-0150-3] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 07/15/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Pseudomonas aeruginosa produces glycolipidic surface-active molecules (rhamnolipids) which have potential biotechnological applications. Rhamnolipids are produced by P. aeruginosa in a concerted manner with different virulence-associated traits. Here, we review the rhamnolipids biosynthetic pathway, showing that it has metabolic links with numerous bacterial products such as alginate, lipopolysaccharide, polyhydroxyalkanoates, and 4-hydroxy-2-alkylquinolines (HAQs). We also discuss the factors controlling the production of rhamnolipids and the proposed roles this biosurfactant plays in P. aeruginosa lifestyle.
Collapse
Affiliation(s)
- Gloria Soberón-Chávez
- Departamento de Bioprocesos y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | |
Collapse
|
46
|
Ambrosi C, Tiburzi F, Imperi F, Putignani L, Visca P. Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1. J Bacteriol 2005; 187:5097-107. [PMID: 16030202 PMCID: PMC1196021 DOI: 10.1128/jb.187.15.5097-5107.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to iron limitation, Pseudomonas aeruginosa produces the fluorescent siderophore pyoverdine. Transcription of pyoverdine biosynthetic (pvd) genes is driven by the iron starvation sigma factor PvdS, which is negatively regulated by the Fur-Fe(II) holorepressor. We studied the effect of AlgQ, the Escherichia coli Rsd orthologue, on pyoverdine production by P. aeruginosa PAO1. AlgQ is a global regulatory protein which activates alginate, ppGpp, and inorganic polyphosphate synthesis through a cascade involving nucleoside diphosphate kinase (Ndk). AlgQ is also capable of interacting with region 4 of RpoD. In a reconstituted E. coli system, PvdS-dependent transcription from the pvdA promoter was doubled by the multicopy algQ gene. The P. aeruginosa DeltaalgQ mutant exhibited a moderate but reproducible reduction in pyoverdine production compared with wild-type PAO1, as a result of a decline in transcription of pvd genes. PvdS expression was not affected by the algQ mutation. Single-copy algQ fully restored pyoverdine production and expression of pvd genes in the DeltaalgQ mutant, while ndk did not. An increased intracellular concentration of RpoD mimicked the DeltaalgQ phenotype, whereas PvdS overexpression suppressed the algQ mutation. E. coli rsd could partially substitute for algQ in transcriptional modulation of pvd genes. We propose that AlgQ acts as an anti-sigma factor for RpoD, eliciting core RNA polymerase recruitment by PvdS and transcription initiation at pvd promoters. AlgQ provides a link between the pyoverdine and alginate regulatory networks. These systems have similarities in responsiveness and physiological function: both depend on alternative sigma factors, respond to nutrient starvation, and act as virulence determinants for P. aeruginosa.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Dipartimento di Biologia, Università di Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy.
| | | | | | | | | |
Collapse
|
47
|
Gaines JM, Carty NL, Colmer-Hamood JA, Hamood AN. Effect of static growth and different levels of environmental oxygen on toxA and ptxR expression in the Pseudomonas aeruginosa strain PAO1. MICROBIOLOGY (READING, ENGLAND) 2005; 151:2263-2275. [PMID: 16000716 DOI: 10.1099/mic.0.27754-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Within certain infection sites, such as the lung of cystic fibrosis patients, Pseudomonas aeruginosa grows statically under either decreased oxygen tension or anaerobic conditions, a situation that is likely to influence the production of virulence factors. The goal of this study was to determine the effect of static growth under microaerobic (decreased oxygen) and anaerobic conditions on the expression of the P. aeruginosa exotoxin A (ETA) gene toxA and its positive regulator ptxR. Using toxA-lacZ and ptxR-lacZ fusion plasmids, the level of toxA and ptxR expression was measured throughout the growth cycle of strain PAO1, which was grown in either iron-deficient or iron-sufficient medium under four different conditions: 20%-SH (aerobic, shaking), 20%-ST (aerobic, static), 10%-ST (microaerobic, static) and 0%-ST (anaerobic, static). In iron-deficient medium, toxA expression was higher under 20%-ST and 10%-ST than under 20%-SH. However, the highest level of toxA expression occurred under 0%-ST. Analysis of ETA protein using sandwich ELISA revealed that at time points between 8 and 24 h of the growth curve, PAO1 produced higher levels of ETA under 0%-ST than under 20%-SH. In iron-sufficient medium, toxA expression was significantly repressed under all conditions. Additional analyses using PAO1 strains that carry lacZ fusions with the toxA regulatory genes regA and pvdS revealed that the expression of regA and pvdS is reduced rather than increased at 0%-ST. ptxR expression under different conditions paralleled that of toxA expression, except that it was repressed by iron under 20 %-SH only. Between 6 and 24 h of growth, and under all conditions, the level of dissolved oxygen (DO) within the PAO1 cultures was sharply reduced. These results suggest that (1) the combined effect of static growth and anaerobic conditions produce a significant increase in toxA and ptxR expression in PAO1; (2) this effect appears to be unique to toxA and ptxR, since the level of regA and pvdS expression was reduced under the same conditions; (3) neither static growth nor anaerobic conditions interfere with the repression of toxA expression by iron, although static growth deregulates ptxR expression with respect to iron; and (4) the enhanced expression of toxA and ptxR is not related to the reduced levels of DO in PAO1 cultures.
Collapse
Affiliation(s)
- Jennifer M Gaines
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nancy L Carty
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jane A Colmer-Hamood
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Abdul N Hamood
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
48
|
Kim EJ, Wang W, Deckwer WD, Zeng AP. Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. MICROBIOLOGY-SGM 2005; 151:1127-1138. [PMID: 15817780 DOI: 10.1099/mic.0.27566-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of the transcriptional regulatory protein LasR, a main component of the quorum-sensing (QS) system in Pseudomonas aeruginosa, was recently found to be sensitive to several environmental factors in addition to its dependency on cell density. However, the inherent effects of the different factors have seldom been separately demonstrated due to concurrent changes of culture conditions in typical experimental settings. Furthermore, the interplays of the different factors are unknown. In this work, the effects and interplay of iron concentration and dissolved oxygen tension (pO(2)) on the expression of lasR in P. aeruginosa were studied in defined growth media with varied iron concentration and pO(2) values in computer-controlled batch and continuous cultures. beta-Galactosidase activity in a recombinant P. aeruginosa PAO1 (NCCB 2452) strain with a lasRp-lacZ fusion was used as a reporter for lasR expression. In batch culture with a constant pO(2) approximately 10 % air saturation, a strong correlation between the exhaustion of iron and the increase of lasR expression was observed. In continuous culture with nearly constant cell density but varied pO(2) values, lasR expression generally increased with increasing oxidative stress with the exception of growth under O(2)-limited conditions (pO(2) approximately equal to 0 %). Under O(2) limitation, the expression of lasR strongly depended on the concentration of iron. It showed a nearly twofold increase in cells grown under iron deprivation in comparison with cells grown in iron-replete conditions and reached the expression level seen at high oxidative stress. A preliminary proteomic analysis was carried out for extracellular proteins in samples from batch cultures grown under different iron concentrations. Several of the extracellular proteins (e.g. AprA, LasB, PrpL) which were up-regulated under iron-limited conditions were found to be QS regulated proteins. Thus, this study clearly shows the links between QS and genes involved in iron and oxygen regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Eun-Jin Kim
- Division of Molecular Biotechnology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Wei Wang
- Group of TU-BCE, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Wolf-Dieter Deckwer
- Group of TU-BCE, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - An-Ping Zeng
- Division of Molecular Biotechnology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| |
Collapse
|
49
|
Affiliation(s)
- D W Reid
- Disciplines of Medicine, University of Tasmania Clinical School, 43 Collins Street, Hobart, Tasmania, 7000, Australia
| | - S M Kirov
- Disciplines of Pathology, University of Tasmania Clinical School, 43 Collins Street, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
50
|
Zeng AP, Kim EJ. Iron availability, oxygen limitation, Pseudomonas aeruginosa and cystic fibrosis. Microbiology (Reading) 2004. [DOI: 10.1099/mic.0.26933-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- A.-P. Zeng
- GBF – Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - E.-J. Kim
- GBF – Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| |
Collapse
|