1
|
Choi SY, Chung IY, Bae HW, Cho YH. Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism. J Microbiol Biotechnol 2024; 34:795-803. [PMID: 38303126 DOI: 10.4014/jmb.2312.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.
Collapse
Affiliation(s)
- Shin-Yae Choi
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - In-Young Chung
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Hee-Won Bae
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
2
|
Srimahaeak T, Thongdee N, Chittrakanwong J, Atichartpongkul S, Jaroensuk J, Phatinuwat K, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Mongkolsuk S, Fuangthong M. Pseudomonas aeruginosa GidA modulates the expression of catalases at the posttranscriptional level and plays a role in virulence. Front Microbiol 2023; 13:1079710. [PMID: 36726575 PMCID: PMC9884967 DOI: 10.3389/fmicb.2022.1079710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa gidA, which encodes a putative tRNA-modifying enzyme, is associated with a variety of virulence phenotypes. Here, we demonstrated that P. aeruginosa gidA is responsible for the modifications of uridine in tRNAs in vivo. Loss of gidA was found to have no impact on the mRNA levels of katA and katB, but it decreased KatA and KatB protein levels, resulting in decreased total catalase activity and a hydrogen peroxide-sensitive phenotype. Furthermore, gidA was found to affect flagella-mediated motility and biofilm formation; and it was required for the full virulence of P. aeruginosa in both Caenorhabditis elegans and macrophage models. Together, these observations reveal the posttranscriptional impact of gidA on the oxidative stress response, highlight the complexity of catalase gene expression regulation, and further support the involvement of gidA in the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Thanyaporn Srimahaeak
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, Thailand
| | - Narumon Thongdee
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | | | - Juthamas Jaroensuk
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Skorn Mongkolsuk
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand,*Correspondence: Mayuree Fuangthong, ✉
| |
Collapse
|
3
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
5
|
Fine-Scale Patterns of Genetic Structure in the Host Plant Chamaecrista fasciculata (Fabaceae) and Its Nodulating Rhizobia Symbionts. PLANTS 2020; 9:plants9121719. [PMID: 33297297 PMCID: PMC7762326 DOI: 10.3390/plants9121719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023]
Abstract
In natural plant populations, a fine-scale spatial genetic structure (SGS) can result from limited gene flow, selection pressures or spatial autocorrelation. However, limited gene flow is considered the predominant determinant in the establishment of SGS. With limited dispersal ability of bacterial cells in soil and host influence on their variety and abundance, spatial autocorrelation of bacterial communities associated with plants is expected. For this study, we collected genetic data from legume host plants, Chamaecrista fasciculata, their Bradyrhizobium symbionts and rhizosphere free-living bacteria at a small spatial scale to evaluate the extent to which symbiotic partners will have similar SGS and to understand how plant hosts choose among nodulating symbionts. We found SGS across all sampled plants for both the host plants and nodulating rhizobia, suggesting that both organisms are influenced by similar mechanisms structuring genetic diversity or shared habitat preferences by both plants and microbes. We also found that plant genetic identity and geographic distance might serve as predictors of nodulating rhizobia genetic identity. Bradyrhizobium elkanii was the only type of rhizobia found in nodules, which suggests some level of selection by the host plant.
Collapse
|
6
|
Dorman HE, Wallace LE. Diversity of Nitrogen-Fixing Symbionts of Chamaecrista fasciculata (Partridge Pea) Across Variable Soils. SOUTHEAST NAT 2019. [DOI: 10.1656/058.018.0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hanna E. Dorman
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Morrill Science Center, RM 427, Amherst, MA 01007
| | - Lisa E. Wallace
- Department of Biological Sciences, Old Dominion University, Mills Godwin Building 110, Norfolk, VA 23529
| |
Collapse
|
7
|
Jin Y, Zhang M, Zhu F, Peng Q, Weng Y, Zhao Q, Liu C, Bai F, Cheng Z, Jin S, Wu W. NrtR Regulates the Type III Secretion System Through cAMP/Vfr Pathway in Pseudomonas aeruginosa. Front Microbiol 2019; 10:85. [PMID: 30761117 PMCID: PMC6363681 DOI: 10.3389/fmicb.2019.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
The type III secretion system (T3SS) plays an important role in the pathogenesis of Pseudomonas aeruginosa. Expression of the T3SS is controlled under a complicate regulatory network. In this study, we demonstrate that NrtR (PA4916) is involved in the T3SS expression and pathogenesis of P. aeruginosa in a mouse acute pneumonia model. Overexpression of the T3SS central activator ExsA or exogenous supplementation of cAMP restored the expression of T3SS in the ΔnrtR mutant, suggesting that NrtR might regulate T3SS through the cAMP-Vfr signaling pathway. Further experiments demonstrated that the decrease of cAMP content is not due to the expression change of adenylate cyclases or phosphodiesterase in the ΔnrtR mutant. As it has been shown that nadD2 is upregulated in the ΔnrtR mutant, we overexpressed nadD2 in wild type PAK, which reduced the intracellular cAMP level and the expression of the T3SS genes. Meanwhile, deletion of nadD2 in the ΔnrtR mutant restored the expression and secretion of the T3SS. Co-immunoprecipitation assay revealed an interaction between NadD2 and the catalytic domain of the adenylate cyclase CyaB. Further in vitro assay indicated that NadD2 repressed the enzymatic activity of CyaB. Therefore, we have identified a novel regulatory mechanism of T3SS in P. aeruginosa.
Collapse
Affiliation(s)
- Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qianqian Peng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Denmon AP, Wang J, Nikonowicz EP. Conformation effects of base modification on the anticodon stem-loop of Bacillus subtilis tRNA(Tyr). J Mol Biol 2011; 412:285-303. [PMID: 21782828 DOI: 10.1016/j.jmb.2011.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (ψ(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).
Collapse
Affiliation(s)
- Andria P Denmon
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
9
|
Michel GPF, Aguzzi A, Ball G, Soscia C, Bleves S, Voulhoux R. Role of fimV in type II secretion system-dependent protein secretion of Pseudomonas aeruginosa on solid medium. MICROBIOLOGY-SGM 2011; 157:1945-1954. [PMID: 21527471 DOI: 10.1099/mic.0.045849-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although classical type II secretion systems (T2SSs) are widely present in Gram-negative bacteria, atypical T2SSs can be found in some species. In Pseudomonas aeruginosa, in addition to the classical T2SS Xcp, it was reported that two genes, xphA and xqhA, located outside the xcp locus were organized in an operon (PaQa) which encodes the orphan PaQa subunit. This subunit is able to associate with other components of the classical Xcp machinery to form a functional hybrid T2SS. In the present study, using a transcriptional lacZ fusion, we found that the PaQa operon was more efficiently expressed (i) on solid LB agar than in liquid LB medium, (ii) at 25 °C than at 37 °C and (iii) at an early stage of growth. These results suggested an adaptation of the hybrid system to particular environmental conditions. Transposon mutagenesis led to the finding that vfr and fimV genes are required for optimal expression of the orphan PaQa operon in the defined growth conditions used. Using an original culturing device designed to monitor secretion on solid medium, the ring-plate system, we found that T2SS-dependent secretion of exoproteins, namely the elastase LasB, was affected in a fimV deletion mutant. Our findings led to the discovery of an interplay between FimV and the global regulator Vfr triggering the modulation of the level of Vfr and consequently the modulation of T2SS-dependent secretion on solid medium.
Collapse
Affiliation(s)
- Gérard P F Michel
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UPR9027), CNRS and Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Anthony Aguzzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UPR9027), CNRS and Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Geneviève Ball
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UPR9027), CNRS and Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Chantal Soscia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UPR9027), CNRS and Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UPR9027), CNRS and Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UPR9027), CNRS and Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
10
|
The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J Bacteriol 2010; 193:540-50. [PMID: 21097635 DOI: 10.1128/jb.01048-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa inner membrane protein FimV is among several proteins of unknown function required for type IV pilus-mediated twitching motility, arising from extension and retraction of pili from their site of assembly in the inner membrane. The pili transit the periplasm and peptidoglycan (PG) layer, ultimately exiting the cell through the PilQ secretin. Although fimV mutants are nonmotile, they are susceptible to killing by pilus-specific bacteriophage, a hallmark of retractable surface pili. Here we show that levels of recoverable surface pili were markedly decreased in fimV pilT retraction-deficient mutants compared with levels in the pilT control, demonstrating that FimV acts at the level of pilus assembly. Levels of inner membrane assembly subcomplex proteins PilM/N/O/P were decreased in fimV mutants, but supplementation of these components in trans did not restore pilus assembly or motility. Loss of FimV dramatically reduced the levels of the PilQ secretin multimer through which pili exit the cell, in part due to decreased levels of PilQ monomers, while PilF pilotin levels were unchanged. Expression of pilQ in trans in the wild type or fimV mutants increased total PilQ monomer levels but did not alter secretin multimer levels or motility. PG pulldown assays showed that the N terminus of FimV bound PG in a LysM motif-dependent manner, and a mutant with an in-frame chromosomal deletion of the LysM motif had reduced motility, secretin levels, and surface piliation. Together, our data show that FimV's role in pilus assembly is to promote secretin formation and that this function depends upon its PG-binding domain.
Collapse
|
11
|
MexT regulates the type III secretion system through MexS and PtrC in Pseudomonas aeruginosa. J Bacteriol 2010; 193:399-410. [PMID: 21075931 DOI: 10.1128/jb.01079-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is the most important virulence factor in Pseudomonas aeruginosa, and its expression level varies in different isolates. We studied the molecular basis for such differences in two laboratory strains, PAK and PAO1. A chromosomal clone library from the high-T3SS-producer strain PAK was introduced into the low-producer strain PAO1, and we found that a mexS gene from PAK confers high T3SS expression in the PAO1 background. Further tests demonstrated that both mexS and its neighboring mexT gene are required for the repression of the T3SS in PAO1, while the PAK genome encodes a defective MexS, accounting for the derepression of the T3SS in PAK and the dominant negative effect when it is introduced into PAO1. MexS is a probable oxidoreductase whose expression is dependent on MexT, a LysR-type transcriptional regulator. Various genetic data support the idea that MexS modulates the transcriptional regulator function of MexT. In searching for the MexT-dependent repressor of the T3SS, a small gene product of PA2486 (ptrC) was found effective in suppressing the T3SS upon overexpression. However, deletion of ptrC in the PAO1 background did not result in derepression of the T3SS, indicating the presence of another repressor for the T3SS. Interestingly, overexpression of functional mexS alone was sufficient to repress T3SS even in the absence of MexT, suggesting that MexS is another mediator of MexT-dependent T3SS repression. Overexpression of mexS alone had no effect on the well-known MexT-dependent genes, including those encoding MexEF efflux pump, elastase, and pyocyanin, indicating alternative regulatory mechanisms. A model has been proposed for the MexS/MexT-mediated regulation of the T3SS, the MexEF efflux pump, and the production of elastase and pyocyanin.
Collapse
|
12
|
The role of fimV and the importance of its tandem repeat copy number in twitching motility, pigment production, and morphology in Legionella pneumophila. Arch Microbiol 2010; 192:625-31. [PMID: 20532483 DOI: 10.1007/s00203-010-0590-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Twitching motility, a flagella-independent type of translocation of bacteria over moist surfaces, requires an array of proteins, including FimV. To investigate the role of this protein in twitching motility in Legionella pneumophila, we have generated a knockout mutant of fimV and characterized its phenotypic effects. In addition to a major reduction in twitching motility, deletion of the fimV gene caused a number of other phenotypic effects including decreased protective pigment formation, and it also affected cell morphology. Since fimV contains a variable number of tandem repeats, which can vary according to the origin of a given strain, we have examined the importance of this variability found within the coding region of this gene. By complementing the knockout strain with constructs containing a different number of this tandem repeat, we have been able to also show that repeat copy number is important in the functioning of this gene.
Collapse
|
13
|
Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol Microbiol 2010; 76:889-904. [PMID: 20345659 PMCID: PMC2906755 DOI: 10.1111/j.1365-2958.2010.07135.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signalling molecule adenosine 3', 5'-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems.
Collapse
Affiliation(s)
- Nanette B. Fulcher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
| | - Phillip M. Holliday
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Erich Klem
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
| | - Martin J. Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Matthew C. Wolfgang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
14
|
Oldfield NJ, Bland SJ, Taraktsoglou M, Dos Ramos FJ, Robinson K, Wooldridge KG, Ala'Aldeen DAA. T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cell Microbiol 2007; 9:463-78. [PMID: 16965515 DOI: 10.1111/j.1462-5822.2006.00803.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T-cell stimulating protein A (TspA) is an immunogenic, T-cell and B-cell stimulating protein of Neisseria meningitidis. Sequence similarity between TspA and FimV, a Pseudomonas aeruginosa protein involved in twitching motility, suggested a link between TspA and type IV pili (Tfp). To determine the role of TspA an isogenic deletion mutant was created. Loss of TspA did not affect twitching motility or piliation indicating that there are functional differences between TspA and FimV. Mutation of tspA led to a significant reduction in adhesion of meningococci to meningothelial and HEp-2 cells, which was not due to a lack of transcription of adjacent genes or pilC1. Other Tfp-mediated phenotypes (i.e. auto-aggregation and transformation competence) were not altered. Our results indicate that the role of TspA in adhesion is unlikely to be directly linked to the function of Tfp. TspA was expressed by all N. meningitidis and Neisseria polysaccharea strains examined but not by Neisseria gonorrhoeae or Neisseria lactamica, although sequences with homology to tspA were present in their genomes. In summary, TspA is a highly conserved antigen that is required for optimal adhesion of meningococci to human cells.
Collapse
Affiliation(s)
- Neil J Oldfield
- Molecular Bacteriology and Immunology Group, Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, Queen's Medical Centre, University of Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Yang H, Shan Z, Kim J, Wu W, Lian W, Zeng L, Xing L, Jin S. Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa. J Bacteriol 2007; 189:2599-609. [PMID: 17237176 PMCID: PMC1855783 DOI: 10.1128/jb.01680-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) of Pseudomonas aeruginosa plays a significant role in pathogenesis. We have previously identified type III secretion factor (TSF), which is required for effective secretion of the type III effector molecules, in addition to the low calcium signal. TSF includes many low-affinity high-capacity calcium binding proteins, such as serum albumin and casein. A search for the TSF binding targets on the bacterial outer membrane resulted in identification of PopN, a component of the T3SS that is readily detectable on the bacterial cell surface. PopN specifically interacts with Pcr1, and both popN and pcr1 mutants have a constitutive type III secretion phenotype, suggesting that the two proteins form a complex that functions as a T3SS repressor. Further analysis of the popN operon genes resulted in identification of protein-protein interactions between Pcr1 and Pcr4 and between Pcr4 and Pcr3, as well as between PopN and Pcr2 in the presence of PscB. Unlike popN and pcr1 mutants, pcr3 and pcr4 mutants are totally defective in type III secretion, while a pcr2 mutant exhibits reduced type III secretion. Interestingly, PopN, Pcr1, Pcr2, and Pcr4 are all secreted in a type III secretion machinery-dependent manner, while Pcr3 is not. These findings imply that these components have important regulatory roles in controlling type III secretion.
Collapse
Affiliation(s)
- Hongjing Yang
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 2006; 6:102. [PMID: 17176467 PMCID: PMC1766931 DOI: 10.1186/1471-2180-6-102] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 12/18/2006] [Indexed: 11/30/2022] Open
Abstract
Background Random gene inactivation used to identify cellular functions associated with virulence and survival of Brucella spp has relied heavily upon the use of the transposon Tn5 that integrates at G/C base pairs. Transposons of the mariner family do not require species-specific host factors for efficient transposition, integrate nonspecifically at T/A base pairs, and, at a minimum, provide an alternative approach for gene discovery. In this study, plasmid vector pSC189, containing both the hyperactive transposase C9 and transposon terminal inverted repeats flanking a kanamycin resistance gene, were used to deliver Himar1 transposable element into the B. melitensis genome. Conjugation was performed efficiently and rapidly in less than one generation in order to minimize the formation of siblings while assuring the highest level of genome coverage. Results Although previously identified groups or classes of genes required for virulence and survival were represented in the screen, additional novel identifications were revealed and may be attributable to the difference in insertion sequence biases of the two transposons. Mutants identified using a fluorescence-based macrophage screen were further evaluated using gentamicin-based protection assay in macrophages, survival in the mouse splenic clearance model and growth in vitro to identify mutants with reduced growth rates. Conclusion The identification of novel genes within previously described groups was expected, and nearly two-thirds of the 95 genes had not been previously reported as contributing to survival and virulence using random Tn5-based mutagenesis. The results of this work provide added insight with regard to the regulatory elements, nutritional demands and mechanisms required for efficient intracellular growth and survival of the organism.
Collapse
|
17
|
Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN. Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 2006; 188:3763-73. [PMID: 16707669 PMCID: PMC1482905 DOI: 10.1128/jb.00072-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alcanivorax borkumensis is a ubiquitous marine petroleum oil-degrading bacterium with an unusual physiology specialized for alkane metabolism. This "hydrocarbonoclastic" bacterium degrades an exceptionally broad range of alkane hydrocarbons but few other substrates. The proteomic analysis presented here reveals metabolic features of the hydrocarbonoclastic lifestyle. Specifically, hexadecane-grown and pyruvate-grown cells differed in the expression of 97 cytoplasmic and membrane-associated proteins whose genes appeared to be components of 46 putative operon structures. Membrane proteins up-regulated in alkane-grown cells included three enzyme systems able to convert alkanes via terminal oxidation to fatty acids, namely, enzymes encoded by the well-known alkB1 gene cluster and two new alkane hydroxylating systems, a P450 cytochrome monooxygenase and a putative flavin-binding monooxygenase, and enzymes mediating beta-oxidation of fatty acids. Cytoplasmic proteins up-regulated in hexadecane-grown cells reflect a central metabolism based on a fatty acid diet, namely, enzymes of the glyoxylate bypass and of the gluconeogenesis pathway, able to provide key metabolic intermediates, like phosphoenolpyruvate, from fatty acids. They also include enzymes for synthesis of riboflavin and of unsaturated fatty acids and cardiolipin, which presumably reflect membrane restructuring required for membranes to adapt to perturbations induced by the massive influx of alkane oxidation enzymes. Ancillary functions up-regulated included the lipoprotein releasing system (Lol), presumably associated with biosurfactant release, and polyhydroxyalkanoate synthesis enzymes associated with carbon storage under conditions of carbon surfeit. The existence of three different alkane-oxidizing systems is consistent with the broad range of oil hydrocarbons degraded by A. borkumensis and its ecological success in oil-contaminated marine habitats.
Collapse
Affiliation(s)
- Julia S Sabirova
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
18
|
Kim J, Ahn K, Min S, Jia J, Ha U, Wu D, Jin S. Factors triggering type III secretion in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2005; 151:3575-3587. [PMID: 16272380 DOI: 10.1099/mic.0.28277-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The type III secretion system of Pseudomonas aeruginosa is tightly regulated by various environmental signals, such as low calcium and contact with the host cell. However, the exact signals triggering type III secretion are unknown. The present study describes the finding that secretion of P. aeruginosa type III effector molecules requires protein factors from serum and L broth, designated type III secretion factors (TSFs), in addition to the low-calcium environment. In the absence of TSF or calcium chelator EGTA, basal levels of type III effector molecules are accumulated intracellularly. Addition of TSF and EGTA together effectively triggers the secretion of pre-existing effector molecules in a short time, even before the active expression of type III genes; thus, active type III gene expression does not seem to be a prerequisite for type III secretion. A search for TSF molecules in serum and L broth resulted in the identification of albumin and casein as the functional TSF molecules. Although there is no clear sequence similarity between albumin and casein, both proteins are known to have a low-affinity, high-capacity calcium-binding property. Tests of well-studied calcium-binding proteins seemed to indicate that low-affinity calcium-binding proteins have TSF activity, although the requirement of low-affinity calcium-binding ability for the TSF activity is not clear. P. aeruginosa seems to have evolved a sensing mechanism to detect target cells for type III injection through host-derived proteins in combination with a low-calcium signal. Disruption of the bacterial ability to sense low calcium or TSF might be a valid avenue to the effective control of this bacterial pathogen.
Collapse
Affiliation(s)
- Jaewha Kim
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| | - Kyungseop Ahn
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| | - Sungran Min
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| | - Jinghua Jia
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| | - Unhwan Ha
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Sedlak-Weinstein E, Cripps AW, Kyd JM, Foxwell AR. Pseudomonas aeruginosa: the potential to immunise against infection. Expert Opin Biol Ther 2005; 5:967-82. [PMID: 16018741 DOI: 10.1517/14712598.5.7.967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pseudomonas aeruginosa remains a serious pathogen for specific cohorts of patients where chronic infection is a poor prognostic indicator, such as those with cystic fibrosis, burn wounds or those who are immunocompromised. Significant disease burden is associated with a diverse spectrum of both nosocomial and community-acquired infections. To date, vaccines against P. aeruginosa have shown limited and often conflicting efficacy data, especially against heterologous strains, which are increasingly identified as co-colonisers of biofilms. While few studies have gone beyond Phase II clinical trials, a particular concern is the ability of P. aeruginosa to evade the immune system while provoking an immune response that contributes to the destructive nature of infection. Therefore, vaccine development needs to focus on preventing attachment and colonisation, as well as preventing conversion to a mucoid phenotype that is characteristic of the chronic condition that promotes pathology.
Collapse
Affiliation(s)
- E Sedlak-Weinstein
- Griffith University Gold Coast Campus, School of Medicine, PMB 50, Gold Coast Mail Centre, Queensland 9726, Australia
| | | | | | | |
Collapse
|
20
|
Wu W, Jin S. PtrB of Pseudomonas aeruginosa suppresses the type III secretion system under the stress of DNA damage. J Bacteriol 2005; 187:6058-68. [PMID: 16109947 PMCID: PMC1196158 DOI: 10.1128/jb.187.17.6058-6068.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a search for regulatory genes of the type III secretion system (TTSS) in Pseudomonas aeruginosa, transposon (Tn5) insertional mutants of the prtR gene were found defective in the TTSS. PrtR is an inhibitor of prtN, which encodes a transcriptional activator for pyocin synthesis genes. In P. aeruginosa, pyocin synthesis is activated when PrtR is degraded during the SOS response. Treatment of a wild-type P. aeruginosa strain with mitomycin C, a DNA-damaging agent, resulted in the inhibition of TTSS activation. A prtR/prtN double mutant had the same TTSS defect as the prtR mutant, and complementation by a prtR gene but not by a prtN gene restored the TTSS function. Also, overexpression of the prtN gene in wild-type PAK had no effect on the TTSS; thus, PrtN is not involved in the repression of the TTSS. To identify the PrtR-regulated TTSS repressor, another round of Tn mutagenesis was carried out in the background of a prtR/prtN double mutant. Insertion in a small gene, designated ptrB, restored the normal TTSS activity. Expression of ptrB is specifically repressed by PrtR, and mitomycin C-mediated suppression of the TTSS is also abolished in a ptrB mutant strain. Therefore, PtrB is a new TTSS repressor that coordinates TTSS repression and pyocin synthesis under the stress of DNA damage.
Collapse
Affiliation(s)
- Weihui Wu
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, P.O. Box 100266, 1600 SW Archer Rd., Gainesville, FL 32610-0266, USA
| | | |
Collapse
|
21
|
Winstanley C, Kaye SB, Neal TJ, Chilton HJ, Miksch S, Hart CA. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J Med Microbiol 2005; 54:519-526. [PMID: 15888458 DOI: 10.1099/jmm.0.46005-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A collection of 63 isolates of Pseudomonas aeruginosa associated with ulcerative keratitis, collected from six centres in England, were typed using serotyping and random amplified polymorphic DNA-PCR, and screened for several variable virulence-related genotypes and phenotypes. Sixty-one percent of the isolates were of either serotype O1 or serotype O11, but there was no evidence for a common clone. The majority of isolates (59%) were PCR-positive for exoU rather than for exoS (38%), and carried a-type fliC genes (76%) rather than b-type (24%). Isolates were PCR-positive for pyoverdine-receptor types at a prevalence of 38% for type I, 46 % for type II and 8 % for type III. All but one of the isolates exhibited twitching activity. There was a correlation between the presence of exoS and twitching activity (P = 0.04), suggesting that a combination of exoS genotype and good twitching activity may have a role to play in ExoU-independent corneal virulence.
Collapse
Affiliation(s)
- Craig Winstanley
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Stephen B Kaye
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Timothy J Neal
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Helen J Chilton
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - Silvia Miksch
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | - C Anthony Hart
- Division of Medical Microbiology and Genitourinary Medicine, School of Clinical Laboratory Sciences, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
22
|
Ha UH, Kim J, Badrane H, Jia J, Baker HV, Wu D, Jin S. An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol 2005; 54:307-20. [PMID: 15469505 DOI: 10.1111/j.1365-2958.2004.04282.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously reported on the isolation of in vivo inducible genes of Pseudomonas aeruginosa using IVET system. One of such genes isolated from burn mouse infection model encodes a short open reading frame with unknown function. In this study, we demonstrate that this gene product specifically suppresses the expression of type III secretion genes in P. aeruginosa, thus named PtrA (Pseudomonas type III repressor A). A direct interaction between the PtrA and type III transcriptional activator ExsA was demonstrated, suggesting that its repressor function is probably realized through inhibition of the ExsA protein function. Indeed, an elevated expression of the exsA compensates the repressor effect of the PtrA. Interestingly, expression of the ptrA is highly and specifically induced by copper cation. A copper- responsive two-component regulatory system, copR-copS, has also been identified and shown to be essential for the copper resistance in P. aeruginosa as well as the activation of ptrA in response to the copper signal. Elevated expression of the ptrA during the infection of mouse burn wound suggests that P. aeruginosa has evolved tight regulatory systems to shut down energy-expensive type III secretion apparatus in response to specific environmental signals, such as copper stress.
Collapse
Affiliation(s)
- Un-Hwan Ha
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|