1
|
Montelongo-Martínez LF, Díaz-Guerrero M, Flores-Vega VR, Soto-Aceves MP, Rosales-Reyes R, Quiroz-Morales SE, González-Pedrajo B, Soberón-Chávez G, Cocotl-Yañez M. The quorum sensing regulator RhlR positively controls the expression of the type III secretion system in Pseudomonas aeruginosa PAO1. PLoS One 2024; 19:e0307174. [PMID: 39146292 PMCID: PMC11326643 DOI: 10.1371/journal.pone.0307174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunist bacterium that causes acute and chronic infections. During acute infections, the type III secretion system (T3SS) plays a pivotal role in allowing the bacteria to translocate effectors such as ExoS, ExoT, and ExoY into host cells for colonization. Previous research on the involvement of quorum sensing systems Las and Rhl in controlling the T3SS gene expression produced ambiguous results. In this study, we determined the role of the Las and Rhl systems and the PqsE protein on T3SS expression. Our results show that in the wild-type PAO1 strain, the deletion of lasR or pqsE do not affect the secretion of ExoS. However, rhlI inactivation increases the expression of T3SS genes. In contrast to the rhlI deletion, rhlR inactivation decreases both T3SS genes expression and ExoS secreted protein levels, and this phenotype is restored when this mutant is complemented with the exsA gene, which codes for the master regulator of the T3SS. Additionally, cytotoxicity is affected in the rhlR mutant strain compared with its PAO1 parental strain. Overall, our results indicate that neither the Las system nor PqsE are involved in regulating the T3SS. Moreover, the Rhl system components have opposite effects, RhlI participates in negatively controlling the T3SS expression, while RhlR does it in a positive way, and this regulation is independent of C4 or PqsE. Finally, we show that rhlR, rhlI, or pqsE inactivation abolished pyocyanin production in T3SS-induction conditions. The ability of RhlR to act as a positive T3SS regulator in the absence of its cognate autoinducer and PqsE shows that it is a versatile regulator that controls different virulence traits allowing P. aeruginosa to compete for a niche.
Collapse
Affiliation(s)
- Luis Fernando Montelongo-Martínez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel Díaz-Guerrero
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Verónica Roxana Flores-Vega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Martín Paolo Soto-Aceves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Rosales-Reyes
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sara Elizabeth Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel Cocotl-Yañez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
2
|
Leroy AG, Caillon J, Broquet A, Lemabecque V, Delanou S, Caroff N, Asehnoune K, Roquilly A, Crémet L. Azithromycin regulates bacterial virulence and immune response in a murine model of ceftazidime-treated Pseudomonas aeruginosa acute pneumonia. Microbiol Immunol 2024; 68:27-35. [PMID: 38073281 DOI: 10.1111/1348-0421.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 02/07/2024]
Abstract
Pseudomonas aeruginosa (PA) remains one of the leading causes of nosocomial acute pneumonia. The array of virulence factors expressed by PA and the intense immune response associated with PA pneumonia play a major role in the severity of these infections. New therapeutic approaches are needed to overcome the high resistance of PA to antibiotics and to reduce the direct damage to host tissues. Through its immunomodulatory and anti-virulence effects, azithromycin (AZM) has demonstrated clinical benefits in patients with chronic PA respiratory infections. However, there is relatively little evidence in PA acute pneumonia. We investigated the effects of AZM, as an adjunctive therapy combined with ceftazidime (CAZ), in a murine model of PA acute pneumonia. We observed that the combined therapy (i) reduces the weight loss of mice 24 h post-infection (hpi), (ii) decreases neutrophil influx into the lungs at 6 and 24 hpi, while this effect is absent in a LPS-induced pneumonia or when PA is pretreated with antibiotics and mice do not receive any antibiotics, and that (iii) AZM, alone or with CAZ, modulates the expression of PA quorum sensing regulators and virulence factors (LasI, LasA, PqsE, PhzM, ExoS). Our findings support beneficial effects of AZM with CAZ on PA acute pneumonia by both bacterial virulence and immune response modulations. Further investigations are needed to clarify the exact underlying mechanisms responsible for the reduction of the neutrophils influx and to better discriminate between direct immunomodulatory properties of AZM, and indirect effects on neutrophilia resulting from bacterial virulence modulation.
Collapse
Affiliation(s)
- A-G Leroy
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- CHU de Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes Université, Nantes, France
| | - J Caillon
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- CHU de Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes Université, Nantes, France
| | - A Broquet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - V Lemabecque
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - S Delanou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - N Caroff
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
| | - K Asehnoune
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- Service Anesthésie Réanimation Chirurgicale, CHU de Nantes, Nantes Université, Nantes, France
| | - A Roquilly
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- Service Anesthésie Réanimation Chirurgicale, CHU de Nantes, Nantes Université, Nantes, France
| | - L Crémet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, Nantes, France
- CHU de Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes Université, Nantes, France
| |
Collapse
|
3
|
De R, Whiteley M, Azad RK. A gene network-driven approach to infer novel pathogenicity-associated genes: application to Pseudomonas aeruginosa PAO1. mSystems 2023; 8:e0047323. [PMID: 37921470 PMCID: PMC10734507 DOI: 10.1128/msystems.00473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE We present here a new systems-level approach to decipher genetic factors and biological pathways associated with virulence and/or antibiotic treatment of bacterial pathogens. The power of this approach was demonstrated by application to a well-studied pathogen Pseudomonas aeruginosa PAO1. Our gene co-expression network-based approach unraveled known and unknown genes and their networks associated with pathogenicity in P. aeruginosa PAO1. The systems-level investigation of P. aeruginosa PAO1 helped identify putative pathogenicity and resistance-associated genetic factors that could not otherwise be detected by conventional approaches of differential gene expression analysis. The network-based analysis uncovered modules that harbor genes not previously reported by several original studies on P. aeruginosa virulence and resistance. These could potentially act as molecular determinants of P. aeruginosa PAO1 pathogenicity and responses to antibiotics.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
- BioDiscovery Institute, University of North Texas, Denton, Texas, USA
- Department of Mathematics, University of North Texas, Denton, Texas, USA
| |
Collapse
|
4
|
Evaluating Bacterial Pathogenesis Using a Model of Human Airway Organoids Infected with Pseudomonas aeruginosa Biofilms. Microbiol Spectr 2022; 10:e0240822. [PMID: 36301094 PMCID: PMC9769610 DOI: 10.1128/spectrum.02408-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa is one of the leading invasive agents of human pulmonary infection, especially in patients with compromised immunity. Prior studies have used various in vitro models to establish P. aeruginosa infection and to analyze transcriptomic profiles of either the host or pathogen, and yet how much those works are relevant to the genuine human airway still raises doubts. In this study, we cultured and differentiated human airway organoids (HAOs) that recapitulate, to a large extent, the histological and physiological features of the native human mucociliary epithelium. HAOs were then employed as a host model to monitor P. aeruginosa biofilm development. Through dual-species transcriptome sequencing (RNA-seq) analyses, we found that quorum sensing (QS) and several associated protein secretion systems were significantly upregulated in HAO-associated bacteria. Cocultures of HAOs and QS-defective mutants further validated the role of QS in the maintenance of a robust biofilm and disruption of host tissue. Simultaneously, the expression magnitude of multiple inflammation-associated signaling pathways was higher in the QS mutant-infected HAOs, suggesting that QS promotes immune evasion at the transcriptional level. Altogether, modeling infection of HAOs by P. aeruginosa captured several crucial facets in host responses and bacterial pathogenesis, with QS being the most dominant virulence pathway showing profound effects on both bacterial biofilm and host immune responses. Our results revealed that HAOs are an optimal model for studying the interaction between the airway epithelium and bacterial pathogens. IMPORTANCE Human airway organoids (HAOs) are an organotypic model of human airway mucociliary epithelium. The HAOs can closely resemble their origin organ in terms of epithelium architecture and physiological function. Accumulating studies have revealed the great values of the HAO cultures in host-pathogen interaction research. In this study, HAOs were used as a host model to grow Pseudomonas aeruginosa biofilm, which is one of the most common pathogens found in pulmonary infection cases. Dual transcriptome sequencing (RNA-seq) analyses showed that the cocultures have changed the gene expression pattern of both sides significantly and simultaneously. Bacterial quorum sensing (QS), the most upregulated pathway, contributed greatly to biofilm formation, disruption of barrier function, and subversion of host immune responses. Our study therefore provides a global insight into the transcriptomic responses of both P. aeruginosa and human airway epithelium.
Collapse
|
5
|
Zhang Y, Wang L, Chen L, Zhu P, Huang N, Chen T, Chen L, Wang Z, Liao W, Cao J, Zhou T. Novel Insight of Transcription Factor PtrA on Pathogenicity and Carbapenems Resistance in Pseudomonas aeruginosa. Infect Drug Resist 2022; 15:4213-4227. [PMID: 35959145 PMCID: PMC9359796 DOI: 10.2147/idr.s371597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Liqiong Chen
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Peiwu Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Jianming Cao, Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China, Tel +86-577-88069595, Email
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, People’s Republic of China
- Correspondence: Tieli Zhou, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, 325035, People’s Republic of China, Tel +86-577-8668-9885, Email
| |
Collapse
|
6
|
Sivakumar R, Gunasekaran P, Rajendhran J. Inactivation of CbrAB two-component system hampers root colonization in rhizospheric strain of Pseudomonas aeruginosa PGPR2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194763. [PMID: 34530138 DOI: 10.1016/j.bbagrm.2021.194763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Two-component systems (TCS) are one of the signal transduction mechanisms, which sense physiological/biological restraints and respond to changing environmental conditions by regulating the gene expression. Previously, by employing a forward genetic screen (INSeq), we identified that cbrA gene is essential for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. Here, we report the functional characterization of cbrAB TCS in PGPR2 during root colonization. We constructed insertion mutants in cbrA and its cognate response regulator cbrB. Genetic characterization revealed drastic down-regultion of sRNA crcZ gene in both mutant strains which play a critical role in carbon catabolite repression (CCR). The mutant strains displayed 10-fold decreased root colonization efficiency when compared to the wild-type strain. On the other hand, mutant strains formed higher biofilm on the abiotic surface, and the expression of pelB and pslA genes involved in biofilm matrix formation was up-regulated. In contrast, the expression of algD, responsible for alginate production, and its associated sigma factor algU was significantly down-regulated in mutant strains. We further analyzed the transcript levels of rsmA, controlled by the algU sigma factor, and found that the expression of rsmA was hampered in both mutants. The ability of mutant strains to swim and swarm was significantly hindered. Also, the expression of genes associated with type III secretion system (T3SS) was dysregulated in mutant strains. Taken together, regulation of gene expression by CbrAB TCS is intricate, and we confirm its role beyond carbon and nitrogen assimilation.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
7
|
Tunç U, Yıldırım Y, Çelebi ARC, Kepez Yıldız B. Potential role of ocular surface microbiota in keratoconus etiopathogenesis. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1942844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Uğur Tunç
- University of Health Sciences, Beyoğlu Eye Training and Research Hospital, Ophthalmology, Istanbul, Turkey
| | - Yusuf Yıldırım
- University of Health Sciences, Beyoğlu Eye Training and Research Hospital, Ophthalmology, Istanbul, Turkey
| | | | - Burçin Kepez Yıldız
- University of Health Sciences, Beyoğlu Eye Training and Research Hospital, Ophthalmology, Istanbul, Turkey
| |
Collapse
|
8
|
Leroy AG, Caillon J, Caroff N, Broquet A, Corvec S, Asehnoune K, Roquilly A, Crémet L. Could Azithromycin Be Part of Pseudomonas aeruginosa Acute Pneumonia Treatment? Front Microbiol 2021; 12:642541. [PMID: 33796090 PMCID: PMC8008145 DOI: 10.3389/fmicb.2021.642541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/29/2022] Open
Abstract
Azithromycin (AZM) is a 15-membered-ring macrolide that presents a broad-spectrum antimicrobial activity against Gram-positive bacteria and atypical microorganisms but suffers from a poor diffusion across the outer-membrane of Gram-negative bacilli, including Pseudomonas aeruginosa (PA). However, AZM has demonstrated clinical benefits in patients suffering from chronic PA respiratory infections, especially cystic fibrosis patients. Since the rise of multidrug-resistant PA has led to a growing need for new therapeutic options, this macrolide has been proposed as an adjunctive therapy. Clinical trials assessing AZM in PA acute pneumonia are scarce. However, a careful examination of the available literature provides good rationales for its use in that context. In fact, 14- and 15-membered-ring macrolides have demonstrated immunomodulatory and immunosuppressive effects that could be of major interest in the management of acute illness. Furthermore, growing evidence supports a downregulation of PA virulence dependent on direct interaction with the ribosomes, and based on the modulation of several key regulators from the Quorum Sensing network. First highlighted in vitro, these interesting properties of AZM have subsequently been confirmed in the animal models. In this review, we systematically analyzed the literature regarding AZM immunomodulatory and anti-PA effects. In vitro and in vivo studies, as well as clinical trials were reviewed, looking for rationales for AZM use in PA acute pneumonia.
Collapse
Affiliation(s)
- Anne-Gaëlle Leroy
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Jocelyne Caillon
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| | - Nathalie Caroff
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Alexis Broquet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France
| | - Stéphane Corvec
- CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France.,CRCINA, U1232, CHU Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Antoine Roquilly
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service Anesthésie Réanimation Chirurgicale, Nantes Université, Nantes, France
| | - Lise Crémet
- Laboratoire EA 3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2-Nantes Biotech, Université de Nantes, Nantes, France.,CHU de Nantes, Service de Bactériologie-Hygiène hospitalière, Nantes Université, Nantes, France
| |
Collapse
|
9
|
Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, Rivera-Chávez JA, Soto-Hernández RM, Castillo-Juárez I. Tetradecanoic Acids With Anti-Virulence Properties Increase the Pathogenicity of Pseudomonas aeruginosa in a Murine Cutaneous Infection Model. Front Cell Infect Microbiol 2021; 10:597517. [PMID: 33585272 PMCID: PMC7876447 DOI: 10.3389/fcimb.2020.597517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Blocking virulence is a promising alternative to counteract Pseudomonas aeruginosa infections. In this regard, the phenomenon of cell-cell communication by quorum sensing (QS) is an important anti-virulence target. In this field, fatty acids (FA) have gained notoriety for their role as autoinducers, as well as anti-virulence molecules in vitro, like some saturated FA (SAFA). In this study, we analyzed the anti-virulence activity of SAFA with 12 to18 carbon atoms and compared their effect with the putative autoinducer cis-2-decenoic acid (CDA). The effect of SAFA on six QS-regulated virulence factors and on the secretion of the exoenzyme ExoU was evaluated. In addition, a murine cutaneous infection model was used to determine their influence on the establishment and damage caused by P. aeruginosa PA14. Dodecanoic (lauric, C12:0) and tetradecanoic (myristic, C14:0) acids (SAFA C12-14) reduced the production of pyocyanin by 35-58% at 40 and 1,000 µM, while CDA inhibited it 62% at a 3.1 µM concentration. Moreover, the SAFA C12-14 reduced swarming by 90% without affecting biofilm formation. In contrast, CDA reduced the biofilm by 57% at 3 µM but did not affect swarming. Furthermore, lauric and myristic acids abolished ExoU secretion at 100 and 50 µM respectively, while CDA reduced it by ≈ 92% at 100 µM. Remarkably, the coadministration of myristic acid (200 and 1,000 µM) with P. aeruginosa PA14 induced greater damage and reduced survival of the animals up to 50%, whereas CDA to 500 µM reduced the damage without affecting the viability of the PA14 strain. Hence, our results show that SAFA C12-14 and CDA have a role in regulation of P. aeruginosa virulence, although their inhibition/activation molecular mechanisms are different in complex environments such as in vivo systems.
Collapse
Affiliation(s)
| | - Humberto Cortes-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
10
|
Martínez-Alemán S, Bustamante A, Jimenez-Valdes R, González G, Sánchez-González A. Pseudomonas aeruginosa isolates from cystic fibrosis patients induce neutrophil extracellular traps with different morphologies that could correlate with their disease severity. Int J Med Microbiol 2020; 310:151451. [DOI: 10.1016/j.ijmm.2020.151451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
|
11
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 PMCID: PMC7418596 DOI: 10.3389/fmicb.2020.01668] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO’s critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
12
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 DOI: 10.3389/fmicb.2020.0166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 05/20/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO's critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
13
|
Ahator SD, Zhang L. Small Is Mighty—Chemical Communication Systems in Pseudomonas aeruginosa. Annu Rev Microbiol 2019; 73:559-578. [DOI: 10.1146/annurev-micro-020518-120044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of acute and chronic infections. Usually a commensal on the host body, P. aeruginosa is capable of transforming into a virulent pathogen upon sensing favorable changes in the host immune system or stress cues. P. aeruginosa infections are hard to eradicate, because this pathogen has developed strong resistance to most conventional antibiotics; in addition, in chronic infections it commonly forms a biofilm matrix, which provides bacterial cells a protected environment to withstand various stresses including antibiotics. Given its importance as a human pathogen and its notorious antimicrobial tolerance, P. aeruginosa has been the subject of intensive investigations internationally. Research progress over the last two decades has unveiled a range of chemical communication systems in this pathogen. These diversified chemical communication systems endow P. aeruginosa a superb ability and remarkable flexibility to coordinate and modulate accordingly the transcriptional expression of various sets of genes associated with virulence and other physiologic activities in response to environmental changes. A fair understanding of the chemical signaling mechanisms with which P. aeruginosa governs virulence gene expression may hold the key to developing alternative therapeutic interventions that control and prevent bacterial infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - LianHui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
15
|
Pena RT, Blasco L, Ambroa A, González-Pedrajo B, Fernández-García L, López M, Bleriot I, Bou G, García-Contreras R, Wood TK, Tomás M. Relationship Between Quorum Sensing and Secretion Systems. Front Microbiol 2019; 10:1100. [PMID: 31231316 PMCID: PMC6567927 DOI: 10.3389/fmicb.2019.01100] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Quorum sensing (QS) is a communication mechanism between bacteria that allows specific processes to be controlled, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms such as bacterial competition systems including secretion systems (SS). These SS have an important role in bacterial communication. SS are ubiquitous; they are present in both Gram-negative and Gram-positive bacteria and in Mycobacterium sp. To date, 8 types of SS have been described (T1SS, T2SS, T3SS, T4SS, T5SS, T6SS, T7SS, and T9SS). They have global functions such as the transport of proteases, lipases, adhesins, heme-binding proteins, and amidases, and specific functions such as the synthesis of proteins in host cells, adaptation to the environment, the secretion of effectors to establish an infectious niche, transfer, absorption and release of DNA, translocation of effector proteins or DNA and autotransporter secretion. All of these functions can contribute to virulence and pathogenesis. In this review, we describe the known types of SS and discuss the ones that have been shown to be regulated by QS. Due to the large amount of information about this topic in some pathogens, we focus mainly on Pseudomonas aeruginosa and Vibrio spp.
Collapse
Affiliation(s)
- Rocio Trastoy Pena
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Lucia Blasco
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Antón Ambroa
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Fernández-García
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria López
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Ines Bleriot
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - German Bou
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thomas Keith Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Maria Tomás
- Deapartamento de Microbiología y Parasitología, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| |
Collapse
|
16
|
Jin Y, Zhang M, Zhu F, Peng Q, Weng Y, Zhao Q, Liu C, Bai F, Cheng Z, Jin S, Wu W. NrtR Regulates the Type III Secretion System Through cAMP/Vfr Pathway in Pseudomonas aeruginosa. Front Microbiol 2019; 10:85. [PMID: 30761117 PMCID: PMC6363681 DOI: 10.3389/fmicb.2019.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
The type III secretion system (T3SS) plays an important role in the pathogenesis of Pseudomonas aeruginosa. Expression of the T3SS is controlled under a complicate regulatory network. In this study, we demonstrate that NrtR (PA4916) is involved in the T3SS expression and pathogenesis of P. aeruginosa in a mouse acute pneumonia model. Overexpression of the T3SS central activator ExsA or exogenous supplementation of cAMP restored the expression of T3SS in the ΔnrtR mutant, suggesting that NrtR might regulate T3SS through the cAMP-Vfr signaling pathway. Further experiments demonstrated that the decrease of cAMP content is not due to the expression change of adenylate cyclases or phosphodiesterase in the ΔnrtR mutant. As it has been shown that nadD2 is upregulated in the ΔnrtR mutant, we overexpressed nadD2 in wild type PAK, which reduced the intracellular cAMP level and the expression of the T3SS genes. Meanwhile, deletion of nadD2 in the ΔnrtR mutant restored the expression and secretion of the T3SS. Co-immunoprecipitation assay revealed an interaction between NadD2 and the catalytic domain of the adenylate cyclase CyaB. Further in vitro assay indicated that NadD2 repressed the enzymatic activity of CyaB. Therefore, we have identified a novel regulatory mechanism of T3SS in P. aeruginosa.
Collapse
Affiliation(s)
- Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qianqian Peng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Turkina MV, Vikström E. Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. J Innate Immun 2018; 11:263-279. [PMID: 30428481 DOI: 10.1159/000494069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell signaling via small molecules is an essential process to coordinate behavior in single species within a community, and also across kingdoms. In this review, we discuss the quorum sensing (QS) systems used by the opportunistic pathogen Pseudomonas aeruginosa to sense bacterial population density and fitness, and regulate virulence, biofilm development, metabolite acquisition, and mammalian host defense. We also focus on the role of N-acylhomoserine lactone-dependent QS signaling in the modulation of innate immune responses connected together via calcium signaling, homeostasis, mitochondrial and cytoskeletal dynamics, and governing transcriptional and proteomic responses of host cells. A future perspective emphasizes the need for multidisciplinary efforts to bring current knowledge of QS into a more detailed understanding of the communication between bacteria and host, as well as into strategies to prevent and treat P. aeruginosa infections and reduce the rate of antibiotic resistance.
Collapse
Affiliation(s)
- Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
18
|
Thi Bach Nguyen H, Romero A D, Amman F, Sorger-Domenigg T, Tata M, Sonnleitner E, Bläsi U. Negative Control of RpoS Synthesis by the sRNA ReaL in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2488. [PMID: 30420839 PMCID: PMC6215814 DOI: 10.3389/fmicb.2018.02488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic human pathogen, able to resist host defense mechanisms and antibiotic treatment. In Pae, the master regulator of stress responses RpoS (σS) is involved in the regulation of quorum sensing and several virulence genes. Here, we report that the sRNA ReaL translationally silences rpoS mRNA, which results in a decrease of the RpoS levels. Our studies indicated that ReaL base-pairs with the Shine-Dalgarno region of rpoS mRNA. These studies are underlined by a highly similar transcription profile of a rpoS deletion mutant and a reaL over-expressing strain.
Collapse
Affiliation(s)
- Hue Thi Bach Nguyen
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - David Romero A
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Fabian Amman
- Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Theresa Sorger-Domenigg
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| |
Collapse
|
19
|
The salicylidene acylhydrazide INP0341 attenuates Pseudomonas aeruginosa virulence in vitro and in vivo. J Antibiot (Tokyo) 2017; 70:937-943. [PMID: 28588224 DOI: 10.1038/ja.2017.64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can be very hard to treat because of high resistance to different antibiotics and alternative treatment regimens are greatly needed. An alternative or a complement to traditional antibiotic is to inhibit virulence of the bacteria. The salicylidene acylhydrazide, INP0341, belongs to a class of compounds that has previously been shown to inhibit virulence in a number of Gram-negative bacteria. In this study, the virulence blocking effect of INP0341 on P. aeruginosa was studied in vitro and in vivo. Two important and closely related virulence system were examined, the type III secretion system (T3SS) that translocates virulence effectors into the cytosol of the host cell to evade immune defense and facilitate colonization and the flagella system, needed for motility and biofilm formation. INP0341 was shown to inhibit expression and secretion of the T3SS toxin exoenzyme S (ExoS) and to prevent bacterial motility on agar plates and biofilm formation. In addition, INP0341 showed an increased survival of P. aeruginosa-infected mice. In conclusion, INP0341 attenuates P. aeruginosa virulence.
Collapse
|
20
|
Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016; 60:7159-7169. [PMID: 27645245 DOI: 10.1128/aac.01357-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/10/2016] [Indexed: 01/20/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C4-HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies.
Collapse
|
21
|
Unravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa. PLoS Pathog 2016; 12:e1006029. [PMID: 27851827 PMCID: PMC5112799 DOI: 10.1371/journal.ppat.1006029] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/28/2016] [Indexed: 12/18/2022] Open
Abstract
The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by each individual component of this complex QS circuit in the control of virulence remains to be elucidated. Key components of the pqs QS system are 2-heptyl-4-hydroxyquinoline (HHQ), 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), the transcriptional regulator PqsR and the PQS-effector element PqsE. To define the individual contribution of each of these components to QS-mediated regulation, transcriptomic analyses were performed and validated on engineered P. aeruginosa strains in which the biosynthesis of 2-alkyl-4-quinolones (AQs) and expression of pqsE and pqsR have been uncoupled, facilitating the identification of the genes controlled by individual pqs system components. The results obtained demonstrate that i) the PQS biosynthetic precursor HHQ triggers a PqsR-dependent positive feedback loop that leads to the increased expression of only the pqsABCDE operon, ii) PqsE is involved in the regulation of diverse genes coding for key virulence determinants and biofilm development, iii) PQS promotes AQ biosynthesis, the expression of genes involved in the iron-starvation response and virulence factor production via PqsR-dependent and PqsR-independent pathways, and iv) HQNO does not influence transcription and hence does not function as a QS signal molecule. Overall this work has facilitated identification of the specific regulons controlled by individual pqs system components and uncovered the ability of PQS to contribute to gene regulation independent of both its ability to activate PqsR and to induce the iron-starvation response. Many bacterial pathogens control virulence gene expression and the development of antibiotic-resistant biofilms via intercellular communication through ‘quorum sensing’ (QS). QS systems depend on the synthesis, secretion and perception of diffusible signalling molecules that enable bacteria to synchronize their behaviour at the population level and are considered ideal targets for the development of anti-virulence drugs. Pseudomonas aeruginosa employs several overlapping QS circuits including the pqs system to control the expression of virulence determinants. The pqs QS system relies on multiple 2-alkyl-4-quinolones (AQs), including the Pseudomonas Quinolone Signal (PQS), as signal molecules. However, the individual contributions of key AQs and the effector proteins PqsR and PqsE within the auto-regulated pqs system have not been elucidated because of their inter-dependence. By constructing P. aeruginosa strains with multiple mutations in the pqs system and determining their transcriptomes in the presence or absence of PqsR, PqsE or exogenously supplied AQs, we define the distinct regulons involved and characterize a novel PQS signalling pathway independent of PqsR and the iron-starvation response.
Collapse
|
22
|
Yu H, Xiong J, Zhang R, Hu X, Qiu J, Zhang D, Xu X, Xin R, He X, Xie W, Sheng H, Chen Q, Zhang L, Rao X, Zhang K. Ndk, a novel host-responsive regulator, negatively regulates bacterial virulence through quorum sensing in Pseudomonas aeruginosa. Sci Rep 2016; 6:28684. [PMID: 27345215 PMCID: PMC4921839 DOI: 10.1038/srep28684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/08/2016] [Indexed: 11/09/2022] Open
Abstract
Pathogenic bacteria could adjust gene expression to enable their survival in the distinct host environment. However, the mechanism by which bacteria adapt to the host environment is not well described. In this study, we demonstrated that nucleoside diphosphate kinase (Ndk) of Pseudomonas aeruginosa is critical for adjusting the bacterial virulence determinants during infection. Ndk expression was down-regulated in the pulmonary alveoli of a mouse model of acute pneumonia. Knockout of ndk up-regulated transcription factor ExsA-mediated T3S regulon expression and decreased exoproduct-related gene expression through the inhibition of the quorum sensing hierarchy. Moreover, in vitro and in vivo studies demonstrated that the ndk mutant exhibits enhanced cytotoxicity and host pathogenicity by increasing T3SS proteins. Taken together, our data reveal that ndk is a critical novel host-responsive gene required for coordinating P. aeruginosa virulence upon acute infection.
Collapse
Affiliation(s)
- Hua Yu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Di Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohui Xu
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xie
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Chen
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Le Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
23
|
Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Front Physiol 2016; 7:64. [PMID: 26955357 PMCID: PMC4767902 DOI: 10.3389/fphys.2016.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is commonly found in mixed infections with Pseudomonas aeruginosa, especially in the lungs of cystic fibrosis (CF) patients. Both of these opportunistic pathogens are able to form resistant biofilms and frequently infect immunocompromised individuals. The interaction between these two pathogens, which includes physical interaction as well as secreted factors, is mainly antagonistic. In addition, research suggests considerable interaction with their host, especially with immunomodulatory lipid mediators, termed eicosanoids. Candida albicans and Pseudomonas aeruginosa are both able to utilize arachidonic acid (AA), liberated from the host cells during infection, to form eicosanoids. The production of these eicosanoids, such as Prostaglandin E2, by the host and the pathogens may affect the dynamics of polymicrobial infection and the outcome of infections. It is of considerable importance to elucidate the role of host-produced, as well as pathogen-produced eicosanoids in polymicrobial infection. This review will focus on in vitro as well as in vivo interaction between C. albicans and P. aeruginosa, paying special attention to the role of eicosanoids in the cross-talk between host and the pathogens.
Collapse
Affiliation(s)
- Ruan Fourie
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Ruan Ells
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa; National Control Laboratory, University of the Free StateBloemfontein, South Africa
| | - Chantel W Swart
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Olihile M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State Bloemfontein, South Africa
| |
Collapse
|
24
|
Mangwani N, Kumari S, Das S. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6. Appl Microbiol Biotechnol 2015; 99:10283-97. [DOI: 10.1007/s00253-015-6868-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 12/16/2022]
|
25
|
Marker genes for the metabolic adaptation of Pseudomonas aeruginosa to the hypoxic cystic fibrosis lung environment. Int J Med Microbiol 2014; 304:1050-61. [PMID: 25130702 DOI: 10.1016/j.ijmm.2014.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/13/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistence in the inflamed and ever fluctuating CF lungs results in the selection of a variety of changes in P. aeruginosa physiology. Accumulating evidence suggests that especially metabolic changes support the survival and growth of P. aeruginosa within the hypoxic and nutritious CF mucus. To investigate if metabolic adaptations we described for hypermutable P. aeruginosa from late CF lung disease (Hoboth et al., 2009. J. Infect. Dis., pp. 118-130) may represent specific changes in response to the selective conditions within the oxygen-restricted CF mucus, we determined the expression of a set of genes during aerobic and hypoxic growth in LB and the artificial sputum medium ASM. We further focused on the regulation of the two isocitrate dehydrogenases Icd and Idh. Interestingly, both isoenzymes may replace each other under aerobic and hypoxic conditions. The NADPH- and RpoS-dependent Icd seems to be the leading isoenzyme under prolonged oxygen limitation and stationary growth phase. LacZ reporter analysis revealed that oxygen-restriction increased the expression levels of azu, cbb3-1, cbb3-2, ccpR, icd, idh and oprF gene, whereas himD and nuoA are increasingly expressed only during hypoxic growth in ASM. Overexpression of the anaerobic regulator Anr improved the expression of azu, ccpR, cbb3-2 and icd. In summary, expression of azu, cbb3-1, cbb3-2, ccpR, icd, idh, oprF, himD, and nuoA appeared to be beneficial for the growth of P. aeruginosa under hypoxic conditions indicating these genes may represent marker genes for the metabolic adaptation to the CF lung environment.
Collapse
|
26
|
Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra M, Dordick JS, Plawsky JL, Collins CH. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One 2013; 8:e62437. [PMID: 23658630 PMCID: PMC3639165 DOI: 10.1371/journal.pone.0062437] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/20/2013] [Indexed: 01/18/2023] Open
Abstract
Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.
Collapse
Affiliation(s)
- Wooseong Kim
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tahrioui A, Quesada E, Llamas I. Genetic and phenotypic analysis of the GacS/GacA system in the moderate halophile Halomonas anticariensis. Microbiology (Reading) 2013; 159:462-474. [DOI: 10.1099/mic.0.061721-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Ali Tahrioui
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Emilia Quesada
- Biotechnology Research Institute, Polígono Universitario de Fuentenueva, University of Granada, 18071 Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Inmaculada Llamas
- Biotechnology Research Institute, Polígono Universitario de Fuentenueva, University of Granada, 18071 Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| |
Collapse
|
28
|
Dong YH, Zhang XF, Zhang LH. The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa. Microbiologyopen 2013; 2:161-72. [PMID: 23292701 PMCID: PMC3584221 DOI: 10.1002/mbo3.54] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes type III secretion system (T3SS) to translocate effector proteins into eukaryotic host cells that subvert normal host cell functions to the benefit of the pathogen, and results in serious infections. T3SS in P. aeruginosa is controlled by a complex system of regulatory mechanisms and signaling pathways. In this study, we described that Crc, an RNA-binding protein, exerts a positive impact on T3SS in P. aeruginosa, as evidenced by promoter activity assays of several key T3SS genes, transcriptomics, RT-PCR, and immunoblotting in crc mutant. We further demonstrated that the regulatory function of Crc on the T3SS was mediated through the T3SS master regulator ExsA and linked to the Cbr/Crc signaling system. Expression profiling of the crc mutant revealed a downregulation of flagship T3SS genes as well as 16 other genes known to regulate T3SS gene expression in P. aeruginosa. On the basis of these data, we proposed that Crc may exert multifaceted control on the T3SS through various pathways, which may serve to fine-tune this virulence mechanism in response to environmental changes and nutrient sources.
Collapse
Affiliation(s)
- Yi-Hu Dong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673.
| | | | | |
Collapse
|
29
|
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1-20. [PMID: 23143271 PMCID: PMC3592444 DOI: 10.1093/nar/gks1039] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
30
|
Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2:2/11/a012427. [PMID: 23125205 DOI: 10.1101/cshperspect.a012427] [Citation(s) in RCA: 1200] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Quorum sensing is a process of cell-cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.
Collapse
Affiliation(s)
- Steven T Rutherford
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
31
|
Effects of 14-alpha-lipoyl andrographolide on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56:6088-94. [PMID: 22802260 DOI: 10.1128/aac.01119-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa, the quorum-sensing (QS) system is closely related to biofilm formation. We previously demonstrated that 14-alpha-lipoyl andrographolide (AL-1) has synergistic effects on antibiofilm and antivirulence factors (pyocyanin and exopolysaccharide) of P. aeruginosa when combined with conventional antibiotics, while it has little inhibitory effect on its growth. However, its molecular mechanism remains elusive. Here we investigated the effect of AL-1 on QS systems, especially the Las and Rhl systems. This investigation showed that AL-1 can inhibit LasR-3-oxo-C(12)-homoserine lactone (HSL) interactions and repress the transcriptional level of QS-regulated genes. Reverse transcription (RT)-PCR data showed that AL-1 significantly reduced the expression levels of lasR, lasI, rhlR, and rhlI in a dose-dependent manner. AL-1 not only decreased the expression level of Psl, which is positively regulated by the Las system, but also increased the level of secretion of ExoS, which is negatively regulated by the Rhl system, indicating that AL-1 has multiple effects on both the Las and Rhl systems. It is no wonder that AL-1 showed synergistic effects with other antimicrobial agents in the treatment of P. aeruginosa infections.
Collapse
|
32
|
Wongtrakoongate P, Tumapa S, Tungpradabkul S. Regulation of a quorum sensing system by stationary phase sigma factor RpoS and their co-regulation of target genes
in Burkholderia pseudomallei. Microbiol Immunol 2012; 56:281-94. [DOI: 10.1111/j.1348-0421.2012.00447.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob Agents Chemother 2011; 56:36-43. [PMID: 21968370 DOI: 10.1128/aac.00732-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
Collapse
|
34
|
Goldová J, Ulrych A, Hercík K, Branny P. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics 2011; 12:437. [PMID: 21880152 PMCID: PMC3224232 DOI: 10.1186/1471-2164-12-437] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/31/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. RESULTS Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. CONCLUSIONS Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.
Collapse
Affiliation(s)
- Jana Goldová
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Aleš Ulrych
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kamil Hercík
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pavel Branny
- Cell and Molecular Microbiology Division, Institute of Microbiology of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
35
|
Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0273-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Diaz MR, King JM, Yahr TL. Intrinsic and Extrinsic Regulation of Type III Secretion Gene Expression in Pseudomonas Aeruginosa. Front Microbiol 2011; 2:89. [PMID: 21833328 PMCID: PMC3153048 DOI: 10.3389/fmicb.2011.00089] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is particularly problematic in the healthcare setting where it is a frequent cause of pneumonia, bloodstream, and urinary tract infections. An important determinant of P. aeruginosa virulence is a type III secretion system (T3SS). T3SS-dependent intoxication is a complex process that minimally requires binding of P. aeruginosa to host cells, injection of the cytotoxic effector proteins through the host cell plasma membrane, and induction of T3SS gene expression. The latter process, referred to as contact-dependent expression, involves a well-characterized regulatory cascade that activates T3SS gene expression in response to host cell contact. Although host cell contact is a primary activating signal for T3SS gene expression, the involvement of multiple membrane-bound regulatory systems indicates that additional environmental signals also play a role in controlling expression of the T3SS. These regulatory systems coordinate T3SS gene expression with many other cellular activities including motility, mucoidy, polysaccharide production, and biofilm formation. The signals to which the organism responds are poorly understood but many seem to be coupled to the metabolic state of the cell and integrated within a master circuit that assimilates informational signals from endogenous and exogenous sources. Herein we review progress toward unraveling this complex circuitry, provide analysis of the current knowledge gaps, and highlight potential areas for future studies. Complete understanding of the regulatory networks that control T3SS gene expression will maximize opportunities for the development of strategies to treat P. aeruginosa infections.
Collapse
Affiliation(s)
- Manisha R Diaz
- Department of Microbiology, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
37
|
Döring G, Parameswaran IG, Murphy TF. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol Rev 2011; 35:124-46. [PMID: 20584083 DOI: 10.1111/j.1574-6976.2010.00237.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive disorder in Caucasians, and chronic obstructive pulmonary disease (COPD), a disease of adults, are characterized by chronic lung inflammation, airflow obstruction and extensive tissue remodelling, which have a major impact on patients' morbidity and mortality. Airway inflammation is stimulated in CF by chronic bacterial infections and in COPD by environmental stimuli, particularly from smoking. Pseudomonas aeruginosa is the major bacterial pathogen in CF, while in COPD, Haemophilus influenzae is most frequently observed. Molecular studies indicate that during chronic pulmonary infection, P. aeruginosa clones genotypically and phenotypically adapt to the CF niche, resulting in a highly diverse bacterial community that is difficult to eradicate therapeutically. Pseudomonas aeruginosa clones from COPD patients remain within the airways only for limited time periods, do not adapt and are easily eradicated. However, in a subgroup of severely ill COPD patients, P. aeruginosa clones similar to those in CF persist. In this review, we will discuss the pathophysiology of lung disease in CF and COPD, the complex genotypic and phenotypic adaptation processes of the opportunistic bacterial pathogens and novel treatment options.
Collapse
Affiliation(s)
- Gerd Döring
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
38
|
Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, Véron W, Taupin L, Toussaint B, Cornelis P, Wei Q, Shioya K, Déziel E, Feuilloley MGJ, Orange N, Dufour A, Chevalier S. Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 2011; 79:1176-86. [PMID: 21189321 PMCID: PMC3067511 DOI: 10.1128/iai.00850-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/26/2023] Open
Abstract
OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression.
Collapse
Affiliation(s)
- Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Annelise Chapalain
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Hichem Chaker
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Gwendoline Gicquel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Amar Madi
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nathalie Connil
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Wilfried Véron
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Laure Taupin
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Bertrand Toussaint
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Qing Wei
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Koki Shioya
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Eric Déziel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| |
Collapse
|
39
|
Hogardt M, Heesemann J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 2011; 358:91-118. [PMID: 22311171 DOI: 10.1007/82_2011_199] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors that are positively selected in response to the specific environment of CF lung include the outer membrane protein OprF, the microaerophilic oxidase Cbb3-2, the blue copper protein azurin, the cytochrome c peroxidase c551 and the enzymes of the arginine deiminase pathway ArcA-ArcD. These metabolic adaptations probably support the growth of P. aeruginosa within oxygen-depleted CF mucus. The deeper understanding of the physiological mechanisms of niche specialization of P. aeruginosa during CF lung infection will help to identify new targets for future anti-pseudomonal treatment strategies to prevent the selection of mutator isolates and the establishment of chronic CF lung infection.
Collapse
Affiliation(s)
- Michael Hogardt
- Department of Infectiology, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| | | |
Collapse
|
40
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
41
|
MexT regulates the type III secretion system through MexS and PtrC in Pseudomonas aeruginosa. J Bacteriol 2010; 193:399-410. [PMID: 21075931 DOI: 10.1128/jb.01079-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) is the most important virulence factor in Pseudomonas aeruginosa, and its expression level varies in different isolates. We studied the molecular basis for such differences in two laboratory strains, PAK and PAO1. A chromosomal clone library from the high-T3SS-producer strain PAK was introduced into the low-producer strain PAO1, and we found that a mexS gene from PAK confers high T3SS expression in the PAO1 background. Further tests demonstrated that both mexS and its neighboring mexT gene are required for the repression of the T3SS in PAO1, while the PAK genome encodes a defective MexS, accounting for the derepression of the T3SS in PAK and the dominant negative effect when it is introduced into PAO1. MexS is a probable oxidoreductase whose expression is dependent on MexT, a LysR-type transcriptional regulator. Various genetic data support the idea that MexS modulates the transcriptional regulator function of MexT. In searching for the MexT-dependent repressor of the T3SS, a small gene product of PA2486 (ptrC) was found effective in suppressing the T3SS upon overexpression. However, deletion of ptrC in the PAO1 background did not result in derepression of the T3SS, indicating the presence of another repressor for the T3SS. Interestingly, overexpression of functional mexS alone was sufficient to repress T3SS even in the absence of MexT, suggesting that MexS is another mediator of MexT-dependent T3SS repression. Overexpression of mexS alone had no effect on the well-known MexT-dependent genes, including those encoding MexEF efflux pump, elastase, and pyocyanin, indicating alternative regulatory mechanisms. A model has been proposed for the MexS/MexT-mediated regulation of the T3SS, the MexEF efflux pump, and the production of elastase and pyocyanin.
Collapse
|
42
|
Abstract
Lung infections caused by the opportunistic pathogen Pseudomonas aeruginosa can present as a spectrum of clinical entities from a rapidly fatal pneumonia in a neutropenic patient to a multi-decade bronchitis in patients with cystic fibrosis. P. aeruginosa is ubiquitous in our environment, and one of the most versatile pathogens studied, capable of infecting a number of diverse life forms and surviving harsh environmental factors. It is also able to quickly adapt to new environments, including the lung, where it orchestrates virulence factors to acquire necessary nutrients, and if necessary, turn them off to prevent immune recognition. Despite these capabilities, P. aeruginosa rarely infects healthy human lungs. This is secondary to a highly evolved host defence mechanism that efficiently removes inhaled or aspirated pseudomonads. Many arms of the respiratory host defence have been elucidated using P. aeruginosa as a model pathogen. Human infections with P. aeruginosa have demonstrated the importance of the mechanical barrier functions including mucus clearance, and the innate immune system, including the critical role of the neutrophilic response. As more models of persistent or biofilm P. aeruginosa infections are developed, the role of the adaptive immune response will likely become more evident. Understanding the pathogenesis of P. aeruginosa, and the respiratory host defence response to it has, and will continue to, lead to novel therapeutic strategies to help patients.
Collapse
Affiliation(s)
- Bryan J Williams
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
43
|
Sperandio D, Rossignol G, Guerillon J, Connil N, Orange N, Feuilloley MGJ, Merieau A. Cell-associated hemolysis activity in the clinical strain of Pseudomonas fluorescens MFN1032. BMC Microbiol 2010; 10:124. [PMID: 20416103 PMCID: PMC2871272 DOI: 10.1186/1471-2180-10-124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/24/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MFN1032 is a clinical Pseudomonas fluorescens strain able to grow at 37 degrees C. MFN1032 cells induce necrosis and apoptosis in rat glial cells at this temperature. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides. Under laboratory conditions, this activity is not expressed at 37 degrees C. This activity is tightly regulated and is subject to phase variation. RESULTS We found that MFN1032 displays a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis was expressed at 37 degrees C and was only detected in vitro in mid log growth phase in the presence of erythrocytes. We studied the regulation of this activity in the wild-type strain and in a mutant defective in the Gac two-component pathway. GacS/GacA is a negative regulator of this activity. In contrast to the Pseudomonas fluorescens strains PfO-1 and Pf5, whose genomes have been sequenced, the MFN1032 strain has the type III secretion-like genes hrcRST belonging to the hrpU operon. We showed that disruption of this operon abolished cell-associated hemolytic activity. This activity was not detected in P.fluorescens strains carrying similar hrc genes, as for the P. fluorescens psychrotrophic strain MF37. CONCLUSIONS To our knowledge this the first demonstration of cell-associated hemolytic activity of a clinical strain of Pseudomonas fluorescens. Moreover, this activity seems to be related to a functional hrpU operon and is independent of biosurfactant production. Precise link between a functional hrpU operon and cell-associated hemolytic activity remains to be elucidated.
Collapse
Affiliation(s)
- Daniel Sperandio
- Laboratory of cold microbiology signals and the microenvironment, LMDF-SME, UPRES EA 4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France
| | | | | | | | | | | | | |
Collapse
|
44
|
ExsD inhibits expression of the Pseudomonas aeruginosa type III secretion system by disrupting ExsA self-association and DNA binding activity. J Bacteriol 2009; 192:1479-86. [PMID: 20008065 DOI: 10.1128/jb.01457-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to damage eukaryotic host cells and evade phagocytosis. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. ExsA-dependent transcription is coupled to type III secretory activity through a cascade of three interacting proteins (ExsC, ExsD, and ExsE). Genetic data suggest that ExsD functions as an antiactivator by preventing ExsA-dependent transcription, ExsC functions as an anti-antiactivator by binding to and inhibiting ExsD, and ExsE binds to and inhibits ExsC. T3SS gene expression is activated in response to low-calcium growth conditions or contact with host cells, both of which trigger secretion of ExsE. In the present study we reconstitute the T3SS regulatory cascade in vitro using purified components and find that the ExsD.ExsA complex lacks DNA binding activity. As predicted by the genetic data, ExsC addition dissociates the ExsD.ExsA complex through formation of an ExsD.ExsC complex, thereby releasing ExsA to bind T3SS promoters and activate transcription. Addition of ExsE to the purified system results in formation of the ExsE.ExsC complex and prevents ExsC from dissociating the ExsD.ExsA complex. Although purified ExsA is monomeric in solution, bacterial two-hybrid analyses demonstrate that ExsA can self-associate and that ExsD inhibits self-association of ExsA. Based on these data we propose a model in which ExsD regulates ExsA-dependent transcription by inhibiting the DNA-binding and self-association properties of ExsA.
Collapse
|
45
|
Abstract
ExsA is a transcriptional activator of the Pseudomonas aeruginosa type III secretion system (T3SS). The T3SS consists of >40 genes organized within 10 transcriptional units, each of which is controlled by the transcriptional activator ExsA. ExsA-dependent promoters contain two adjacent ExsA binding sites that when occupied protect the -30 to -70 region from DNase I cleavage. The promoters also possess regions bearing strong resemblance to the consensus -10 and -35 regions of sigma(70)-dependent promoters. The spacing distance between the putative -10 and -35 regions of ExsA-dependent promoters, however, is increased by 4 to 5 bp compared to that in typical sigma(70)-dependent promoters. In the present study, we demonstrate that ExsA-dependent transcriptional activation requires a 21- or 22-bp spacer length between the -10 and -35 regions. Despite the atypical spacing in this region, in vitro transcription assays using sigma(70)-saturated RNA polymerase holoenzyme (RNAP-sigma(70)) confirm that ExsA-dependent promoters are indeed sigma(70) dependent. Potassium permanganate footprinting experiments indicate that ExsA facilitates an early step in transcriptional initiation. Although RNAP-sigma(70) binds to the promoters with low affinity in the absence of ExsA, the activator stimulates transcription by enhancing recruitment of RNAP-sigma(70) to the P(exsC) and P(exsD) promoters. Abortive initiation assays confirm that ExsA enhances the equilibrium binding constant for RNAP while having only a modest effect on the isomerization rate constant.
Collapse
|
46
|
Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. Appl Environ Microbiol 2009; 75:6382-92. [PMID: 19684162 DOI: 10.1128/aem.00222-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Aeromonas hydrophila type III secretion system (T3SS) has been shown to play a crucial role in this pathogen's interactions with its host. We previously described the genetic organization of the T3SS cluster and the existence of at least one effector, called AexT, in A. hydrophila strain AH-3. In this study, we analyzed the expression of the T3SS regulon by analyzing the activity of the aopN-aopD and aexT promoters (T3SS machinery components and effector, respectively) by means of two different techniques: promoterless gfp fusions and real-time PCR. The expression of the A. hydrophila AH-3 T3SS regulon was induced in response to several environmental factors, of which calcium depletion, a high magnesium concentration, and a high growth temperature were shown to be the major ones. Once the optimal conditions were established, we tested the expression of the T3SS regulon in the background of several virulence determinant knockouts of strain AH-3. The analysis of the data obtained from axsA and aopN mutants, both of which have been described to be T3SS regulators in other species, allowed us to corroborate their function as the major transcription regulator and valve of the T3SS, respectively, in Aeromonas hydrophila. We also demonstrated the existence of a complicated interconnection between the expression of the T3SS and several other different virulence factors, such as the lipopolysaccharide, the PhoPQ two-component system, the ahyIR quorum sensing system, and the enzymatic complex pyruvate deshydrogenase. To our knowledge, this is the first study of the A. hydrophila T3SS regulatory network.
Collapse
|
47
|
Mikkelsen H, Bond NJ, Skindersoe ME, Givskov M, Lilley KS, Welch M. Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2009; 155:687-698. [PMID: 19246740 DOI: 10.1099/mic.0.025551-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes acute and chronic infections in immunocompromised individuals. It is also a model organism for bacterial biofilm formation. Acute infections are often associated with planktonic or free-floating cells, high virulence and fast growth. Conversely, chronic infections are often associated with the biofilm mode of growth, low virulence and slow growth that resembles that of planktonic cells in stationary phase. Biofilm formation and type III secretion have been shown to be reciprocally regulated, and it has been suggested that factors related to acute infection may be incompatible with biofilm formation. In a previous proteomic study of the interrelationships between planktonic cells, colonies and continuously grown biofilms, we showed that biofilms under the growth conditions applied are more similar to planktonic cells in exponential phase than to those in stationary phase. In the current study, we investigated how these conditions influence the production of virulence factors using a transcriptomic approach. Our results show that biofilms express the type III secretion system, whereas planktonic cells do not. This was confirmed by the detection of PcrV in the cellular and secreted fractions of biofilms, but not in those of planktonic cells. We also detected the type III effector proteins ExoS and ExoT in the biofilm effluent, but not in the supernatants of planktonic cells. Biofilm formation and type III secretion are therefore not mutually exclusive in P. aeruginosa, and biofilms could play a more active role in virulence than previously thought.
Collapse
Affiliation(s)
- H Mikkelsen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - N J Bond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - M Givskov
- Department of International Health, Immunology and Microbiology, Faculty of Health, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - K S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - M Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
48
|
Manos J, Arthur J, Rose B, Bell S, Tingpej P, Hu H, Webb J, Kjelleberg S, Gorrell MD, Bye P, Harbour C. Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett 2009; 292:107-114. [PMID: 19222585 DOI: 10.1111/j.1574-6968.2008.01472.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Epidemic Pseudomonas aeruginosa have been identified in cystic fibrosis (CF) patients worldwide. The Australian Epidemic Strain-2 (AES-2) infects up to 40% of patients in three eastern Australian CF clinics. To investigate whether AES-2 isolates from chronically infected CF adults differentially express well-conserved genes potentially associated with transmissibility, we compared the transcriptomes of planktonic and biofilm-grown AES-2, infrequent P. aeruginosa clones and the reference P. aeruginosa PAO1 using the Affymetrix PAO1 array. The most interesting findings emerged from comparisons of planktonic and biofilm AES-2. AES-2 biofilms upregulated Type III secretion system genes, but downregulated quorum-sensing (QS)-regulatory genes, except lasR, QS-regulated, oxidative-stress and iron-storage genes. QS-regulated and iron-storage genes were downregulated to a greater extent in AES-2 biofilms compared with infrequent clone and PAO1 biofilms, suggesting enhanced anaerobic respiration in AES-2. Chitinase and chitin-binding protein maintained high expression in AES-2 biofilms compared with infrequent clone and PAO1 biofilms. Planktonic AES-2 upregulated QS regulators and QS-regulated genes, iron acquisition and aerobic respiration genes, and had high expression of Group III Type IV pilA compared with low expression of Group I Type IV pilA in infrequent clones. Together, these properties may enhance long-term survival of AES-2 in CF lung and contribute to its transmissibility.
Collapse
Affiliation(s)
- Jim Manos
- Department of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shen DK, Filopon D, Chaker H, Boullanger S, Derouazi M, Polack B, Toussaint B. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. MICROBIOLOGY-SGM 2008; 154:2195-2208. [PMID: 18667553 DOI: 10.1099/mic.0.2007/013680-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) is known to be a very important virulence factor in acute human infections, but it is less important in maintaining chronic infections in which T3SS genes are downregulated. In vitro, the activation of T3SS expression involves a positive activating loop that acts on the transcriptional regulator ExsA. We have observed that in vivo T3SS expression is cell density-dependent in a manner that does not need known quorum-sensing (QS) signals. In addition, stationary-phase culture supernatants added to exponential-phase growing strains can inhibit T3SS expression. The analysis of transposon insertion mutants showed that the production of such T3SS-inhibiting signals might depend on tryptophan synthase and hence tryptophan, which is the precursor of signalling molecules such as indole-3-acetic acid (IAA), kynurenine and Pseudomonas quinolone signal (PQS). Commercially available tryptophan-derived molecules were tested for their role in the regulation of T3SS expression. At millimolar concentrations, IAA, 1-naphthalacetic acid (NAA) and 3-hydroxykynurenine inhibited T3SS expression. Inactivation of the tryptophan dioxygenase-encoding kynA gene resulted in a decrease in the T3SS-inhibiting activity of supernatants. These observations suggest that tryptophan catabolites are involved in the downregulation of T3SS expression in the transition from a low- to a high-cell-density state.
Collapse
Affiliation(s)
- Da-Kang Shen
- Department of Microbiology and Parasitology, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, PR China.,GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Didier Filopon
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Hichem Chaker
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Stephanie Boullanger
- Service Spectrométrie de Masse, CERMAV-CNRS, BP53, 38041 Grenoble cedex 9, France
| | - Madiha Derouazi
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Benoit Polack
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Bertrand Toussaint
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| |
Collapse
|
50
|
Willcox MDP, Zhu H, Conibear TCR, Hume EBH, Givskov M, Kjelleberg S, Rice SA. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology (Reading) 2008; 154:2184-2194. [DOI: 10.1099/mic.0.2008/019281-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- M. D. P. Willcox
- Vision CRC, Sydney, Australia
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - H. Zhu
- Vision CRC, Sydney, Australia
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - T. C. R. Conibear
- Vision CRC, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - E. B. H. Hume
- Vision CRC, Sydney, Australia
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - M. Givskov
- BioScience and Technology, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - S. Kjelleberg
- School of Biotechnology and Biomolecular Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - S. A. Rice
- School of Biotechnology and Biomolecular Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|