1
|
Zhu K, Liu J, Zhao M, Fu L, Du Z, Meng F, Gu L, Liu P, Liu Y, Zhang C, Zhang X, Li J. An intrusion and environmental effects of man-made silver nanoparticles in cold seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168890. [PMID: 38016565 DOI: 10.1016/j.scitotenv.2023.168890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most widely used metal-based engineered nanomaterials in biomedicine and nanotechnology, and account for >50 % of global nanomaterial consumer products. The increasing use of AgNPs potentially causes marine ecosystem changes; however, the environmental impacts of man-made AgNPs are still poorly studied. This study reports for the first time that man-made AgNPs intruded into cold seeps, which are important marine ecosystems where hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Using a combination of electron microscopy, geochemical and metagenomic analyses, we found that in the cold seeps with high AgNPs concentrations, the relative abundance of genes associated with anaerobic oxidation of methane (AOM) was lower, while those related to the sulfide oxidizing and sulfate reducing were higher. This suggests that AgNPs can stimulate the proliferation of sulfate-reducing and sulfide-oxidizing bacteria, likely due to the effects of activating repair mechanisms of the cells against the toxicant. A reaction of AgNPs with hydrogen sulfide to form silver sulfide could also effectively reduce the amount of available sulfate in local ecosystems, which is generally used as the AOM oxidant. These novel findings indicate that man-made AgNPs may be involved in the biogeochemical cycles of sulfur and carbon in nature, and their potential effects on the releasing of methane from the marine methane seeps should not be ignored in both scientific and environmental aspects.
Collapse
Affiliation(s)
- Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lulu Fu
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zengfeng Du
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Verbeelen T, Fernandez CA, Nguyen TH, Gupta S, Aarts R, Tabury K, Leroy B, Wattiez R, Vlaeminck SE, Leys N, Ganigué R, Mastroleo F. Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity. NPJ Microgravity 2024; 10:3. [PMID: 38200027 PMCID: PMC10781756 DOI: 10.1038/s41526-024-00345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.
Collapse
Affiliation(s)
- Tom Verbeelen
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Celia Alvarez Fernandez
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thanh Huy Nguyen
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Surya Gupta
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Raf Aarts
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, Av. Du Champs de Mars 6, 7000, Mons, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban REsource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Felice Mastroleo
- Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400, Mol, Belgium.
| |
Collapse
|
3
|
Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. mSystems 2021; 6:e0090621. [PMID: 34636676 PMCID: PMC8510549 DOI: 10.1128/msystems.00906-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae, nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae, and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria, Flavobacteriales, and Saprospiraceae MAGs sense carbon availability. In addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia, this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance.
Collapse
|
4
|
Isshiki R, Fujitani H, Tsuneda S. Transcriptome Analysis of the Ammonia-Oxidizing Bacterium Nitrosomonas mobilis Ms1 Reveals Division of Labor between Aggregates and Free-living Cells. Microbes Environ 2020; 35. [PMID: 32115437 PMCID: PMC7308568 DOI: 10.1264/jsme2.me19148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria change their metabolic states to increase survival by forming aggregates. Ammonia-oxidizing bacteria also form aggregates in response to environmental stresses. Nitrosomonas mobilis, an ammonia-oxidizing bacterium with high stress tolerance, often forms aggregates mainly in wastewater treatment systems. Despite the high frequency of aggregate formation by N. mobilis, its relationship with survival currently remains unclear. In the present study, aggregates were formed in the late stage of culture with the accumulation of nitrite as a growth inhibitor. To clarify the significance of aggregate formation in N. mobilis Ms1, a transcriptome analysis was performed. Comparisons of the early and late stages of culture revealed that the expression of stress response genes (chaperones and proteases) increased in the early stage. Aggregate formation may lead to stress avoidance because stress response genes were not up-regulated in the late stage of culture during which aggregates formed. Furthermore, comparisons of free-living cells with aggregates in the early stage of culture showed differences in gene expression related to biosynthesis (ATP synthase and ribosomal proteins) and motility and adhesion (flagella, pilus, and chemotaxis). Biosynthesis genes for growth were up-regulated in free-living cells, while motility and adhesion genes for adaptation were up-regulated in aggregates. These results indicate that N. mobilis Ms1 cells adapt to an unfavorable environment and grow through the division of labor between aggregates and free-living cells.
Collapse
Affiliation(s)
- Rino Isshiki
- Department of Life Science and Medical Bioscience, Waseda University
| | - Hirotsugu Fujitani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology.,Research Organization for Nano & Life Innovation, Waseda University
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University.,Research Organization for Nano & Life Innovation, Waseda University
| |
Collapse
|
5
|
Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. mSystems 2020; 5:5/1/e00562-19. [PMID: 31937676 PMCID: PMC6967387 DOI: 10.1128/msystems.00562-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions. Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium Nitrosomonas europaea is the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of N. europaea, e.g., by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on N. europaea have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole-genome transcriptomics to investigate the overall effect of oxygen limitation on N. europaea. Under oxygen-limited conditions, growth yield was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene (nirK) was significantly lower. In contrast, both heme-copper-containing cytochrome c oxidases encoded by N. europaea were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of N. europaea’s sNOR with regard to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in N. europaea and other ammonia-oxidizing bacteria. IMPORTANCE Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions.
Collapse
|
6
|
|
7
|
Brotto AC, Annavajhala MK, Chandran K. Metatranscriptomic Investigation of Adaptation in NO and N 2O Production From a Lab-Scale Nitrification Process Upon Repeated Exposure to Anoxic-Aerobic Cycling. Front Microbiol 2018; 9:3012. [PMID: 30574136 PMCID: PMC6291752 DOI: 10.3389/fmicb.2018.03012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms of microbial adaptation to repeated anoxic-aerobic cycling were investigated by integrating whole community gene expression (metatranscriptomics) and physiological responses, including the production of nitric (NO) and nitrous (N2O) oxides. Anoxic-aerobic cycling was imposed for 17 days in a lab-scale full-nitrification mixed culture system. Prior to cycling, NO and N2O levels were sustained at 0.097 ± 0.006 and 0.054 ± 0.019 ppmv, respectively. Once the anoxic-aerobic cycling was initiated, peak emissions were highest on the first day (9.8 and 1.3 ppmv, respectively). By the end of day 17, NO production returned to pre-cycling levels (a peak of 0.12 ± 0.007 ppmv), while N2O production reached a new baseline (a peak of 0.32 ± 0.05 ppmv), one order of magnitude higher than steady-state conditions. Concurrently, post-cycling transcription of norBQ and nosZ returned to pre-cycling levels after an initial 5.7- and 9.5-fold increase, while nirK remained significantly expressed (1.6-fold) for the duration of and after cycling conditions. The imbalance in nirK and nosZ mRNA abundance coupled with continuous conversion of NO to N2O might explain the elevated post-cycling baseline for N2O. Metatranscriptomic investigation notably indicated possible NO production by NOB under anoxic-aerobic cycling through a significant increase in nirK expression. Opposing effects on AOB (down-regulation) and NOB (up-regulation) CO2 fixation were observed, suggesting that nitrifying bacteria are differently impacted by anoxic-aerobic cycling. Genes encoding the terminal oxidase of the electron transport chain (ccoNP, coxBC) were the most significantly transcribed, highlighting a hitherto unexplored pathway to manage high electron fluxes resulting from increased ammonia oxidation rates, and leading to overall, increased NO and N2O production. In sum, this study identified underlying metabolic processes and mechanisms contributing to NO and N2O production through a systems-level interrogation, which revealed the differential ability of specific microbial groups to adapt to sustained operational conditions in engineered biological nitrogen removal processes.
Collapse
Affiliation(s)
| | | | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
8
|
Boddicker AM, Mosier AC. Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. THE ISME JOURNAL 2018; 12:2864-2882. [PMID: 30050164 PMCID: PMC6246548 DOI: 10.1038/s41396-018-0240-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
Nitrite-oxidizing bacteria (NOB) play a critical role in the mitigation of nitrogen pollution by metabolizing nitrite to nitrate, which is removed via assimilation, denitrification, or anammox. Recent studies showed that NOB are phylogenetically and metabolically diverse, yet most of our knowledge of NOB comes from only a few cultured representatives. Using cultivation and genomic sequencing, we identified four putative Candidatus Nitrotoga NOB species from freshwater sediments and water column samples in Colorado, USA. Genome analyses indicated highly conserved 16S rRNA gene sequences, but broad metabolic potential including genes for nitrogen, sulfur, hydrogen, and organic carbon metabolism. Genomic predictions suggested that Ca. Nitrotoga can metabolize in low oxygen or anoxic conditions, which may support an expanded environmental niche for Ca. Nitrotoga similar to other NOB. An array of antibiotic and metal resistance genes likely allows Ca. Nitrotoga to withstand environmental pressures in impacted systems. Phylogenetic analyses highlighted a deeply divergent nitrite oxidoreductase alpha subunit (NxrA), suggesting a novel evolutionary trajectory for Ca. Nitrotoga separate from any other NOB and further revealing the complex evolutionary history of nitrite oxidation in the bacterial domain. Ca. Nitrotoga-like 16S rRNA gene sequences were prevalent in globally distributed environments over a range of reported temperatures. This work considerably expands our knowledge of the Ca. Nitrotoga genus and suggests that their contribution to nitrogen cycling should be considered alongside other NOB in wide variety of habitats.
Collapse
Affiliation(s)
- Andrew M Boddicker
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, Denver, CO, USA
| | - Annika C Mosier
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, Denver, CO, USA.
| |
Collapse
|
9
|
Ilgrande C, Leroy B, Wattiez R, Vlaeminck SE, Boon N, Clauwaert P. Metabolic and Proteomic Responses to Salinity in Synthetic Nitrifying Communities of Nitrosomonas spp. and Nitrobacter spp. Front Microbiol 2018; 9:2914. [PMID: 30555445 PMCID: PMC6284046 DOI: 10.3389/fmicb.2018.02914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Typically, nitrification is a two-stage microbial process and is key in wastewater treatment and nutrient recovery from waste streams. Changes in salinity represent a major stress factor that can trigger response mechanisms, impacting the activity and the physiology of bacteria. Despite its pivotal biotechnological role, little information is available on the specific response of nitrifying bacteria to varying levels of salinity. In this study, synthetic communities of ammonia-oxidizing bacteria (AOB Nitrosomonas europaea and/or Nitrosomonas ureae) and nitrite-oxidizing bacteria (NOB Nitrobacter winogradskyi and/or Nitrobacter vulgaris) were tested at 5, 10, and 30 mS cm-1 by adding sodium chloride to the mineral medium (0, 40, and 200 mM NaCl, respectively). Ammonia oxidation activity was less affected by salinity than nitrite oxidation. AOB, on their own or in combination with NOB, showed no significant difference in the ammonia oxidation rate among the three conditions. However, N. winogradskyi improved the absolute ammonia oxidation rate of both N. europaea and N. ureae. N. winogradskyi’s nitrite oxidation rate decreased to 42% residual activity upon exposure to 30 mS cm-1, also showing a similar behavior when tested with Nitrosomonas spp. The nitrite oxidation rate of N. vulgaris, as a single species, was not affected when adding sodium chloride up to 30 mS cm-1, however, its activity was completely inhibited when combined with Nitrosomonas spp. in the presence of ammonium/ammonia. The proteomic analysis of a co-culture of N. europaea and N. winogradskyi revealed the production of osmolytes, regulation of cell permeability and an oxidative stress response in N. europaea and an oxidative stress response in N. winogradskyi, as a result of increasing the salt concentration from 5 to 30 mS cm-1. A specific metabolic response observed in N. europaea suggests the role of carbon metabolism in the production of reducing power, possibly to meet the energy demands of the stress response mechanisms, induced by high salinity. For the first time, metabolic modifications and response mechanisms caused by the exposure to salinity were described, serving as a tool toward controllability and predictability of nitrifying systems exposed to salt fluctuations.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Siegfried Elias Vlaeminck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Miyamoto T, Yokota A, Ota Y, Tsuruga M, Aoi R, Tsuneda S, Noda N. Nitrosomonas europaea MazF Specifically Recognises the UGG Motif and Promotes Selective RNA Degradation. Front Microbiol 2018; 9:2386. [PMID: 30349517 PMCID: PMC6186784 DOI: 10.3389/fmicb.2018.02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in prokaryotic stress adaptation. Previously, bioinformatics analysis predicted that such systems are abundant in some slowly growing chemolithotrophs; e.g., Nitrosomonas europaea. Nevertheless, the molecular functions of these stress-response modules remain largely unclear, limiting insight regarding their physiological roles. Herein, we show that one of the putative MazF family members, encoded at the ALW85_RS04820 locus, constitutes a functional toxin that engenders a TA pair with its cognate MazE antitoxin. The coordinate application of a specialised RNA-Seq and a fluorescence quenching technique clarified that a unique triplet, UGG, serves as the determinant for MazF cleavage. Notably, statistical analysis predicted that two transcripts, which are unique in the autotroph, comprise the prime targets of the MazF endoribonuclease: hydroxylamine dehydrogenase (hao), which is essential for ammonia oxidation, and a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL), which plays an important role in carbon assimilation. Given that N. europaea obtains energy and reductants via ammonia oxidation and the carbon for its growth from carbon dioxide, the chemolithotroph might use the MazF endoribonuclease to modulate its translation profile and subsequent biochemical reactions.
Collapse
Affiliation(s)
- Tatsuki Miyamoto
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Akiko Yokota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuri Ota
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masako Tsuruga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Rie Aoi
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
11
|
Zorz JK, Kozlowski JA, Stein LY, Strous M, Kleiner M. Comparative Proteomics of Three Species of Ammonia-Oxidizing Bacteria. Front Microbiol 2018; 9:938. [PMID: 29867847 PMCID: PMC5960693 DOI: 10.3389/fmicb.2018.00938] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Ammonia-oxidizing bacteria (AOB) are important members of terrestrial, marine, and industrial microbial communities and play a fundamental role in the Nitrogen cycle within these systems. They are responsible for the first step of nitrification, ammonia oxidation to nitrite. Although AOB are widespread and essential to environmental and industrial systems, where they regularly experience fluctuations in ammonia availability, no comparative studies of the physiological response of diverse AOB species at the protein level exist. In the present study, we used 1D-LC-MS/MS proteomics to compare the metabolism and physiology of three species of ammonia AOB, Nitrosomonas europaea, Nitrosospira multiformis, and Nitrosomonas ureae, under ammonia replete and ammonia starved conditions. Additionally, we compared the expression of orthologous genes to determine the major differences in the proteome composition of the three species. We found that approximately one-third of the predicted proteome was expressed in each species and that proteins for the key metabolic processes, ammonia oxidation and carbon fixation, were among the most abundant. The red copper protein, nitrosocyanin was highly abundant in all three species hinting toward its possible role as a central metabolic enzyme in AOB. The proteomic data also allowed us to identify pyrophosphate-dependent 6-phosphofructokinase as the potential enzyme replacing the Calvin-Benson-Bassham cycle enzyme Fructose-1,6-bisphosphatase missing in N. multiformis and N. ureae. Additionally, between species, there were statistically significant differences in the expression of many abundant proteins, including those related to nitrogen metabolism (nitrite reductase), motility (flagellin), cell growth and division (FtsH), and stress response (rubrerythrin). The three species did not exhibit a starvation response at the proteome level after 24 h of ammonia starvation, however, the levels of the RuBisCO enzyme were consistently reduced after the starvation period, suggesting a decrease in capacity for biomass accumulation. This study presents the first published proteomes of N. ureae and N. multiformis, and the first comparative proteomics study of ammonia-oxidizing bacteria, which gives new insights into consistent metabolic features and differences between members of this environmentally and industrially important group.
Collapse
Affiliation(s)
- Jackie K Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jessica A Kozlowski
- Department of Ecogenomics and Systems Biology, Division Archaea Biology and Ecogenomics, University of Vienna, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
12
|
Böhnke S, Perner M. Unraveling RubisCO Form I and Form II Regulation in an Uncultured Organism from a Deep-Sea Hydrothermal Vent via Metagenomic and Mutagenesis Studies. Front Microbiol 2017; 8:1303. [PMID: 28747908 PMCID: PMC5506194 DOI: 10.3389/fmicb.2017.01303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/04/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first major step of carbon fixation in the Calvin-Benson-Bassham (CBB) cycle. This autotrophic CO2 fixation cycle accounts for almost all the assimilated carbon on Earth. Due to the primary role that RubisCO plays in autotrophic carbon fixation, it is important to understand how its gene expression is regulated and the enzyme is activated. Since the majority of all microorganisms are currently not culturable, we used a metagenomic approach to identify genes and enzymes associated with RubisCO expression. The investigated metagenomic DNA fragment originates from the deep-sea hydrothermal vent field Nibelungen at 8°18′ S along the Mid-Atlantic Ridge. It is 13,046 bp and resembles genes from Thiomicrospira crunogena. The fragment encodes nine open reading frames (ORFs) which include two types of RubisCO, form I (CbbL/S) and form II (CbbM), two LysR transcriptional regulators (LysR1 and LysR2), two von Willebrand factor type A (CbbO-m and CbbO-1), and two AAA+ ATPases (CbbQ-m and CbbQ-1), expected to function as RubisCO activating enzymes. In silico analyses uncovered several putative LysR binding sites and promoter structures. Functions of some of these DNA motifs were experimentally confirmed. For example, according to mobility shift assays LysR1’s binding ability to the intergenic region of lysR1 and cbbL appears to be intensified when CbbL or LysR2 are present. Binding of LysR2 upstream of cbbM appears to be intensified if CbbM is present. Our study suggests that CbbQ-m and CbbO-m activate CbbL and that LysR1 and LysR2 proteins promote CbbQ-m/CbbO-m expression. CbbO-1 seems to activate CbbM and CbbM itself appears to contribute to intensifying LysR’s binding ability and thus its own transcriptional regulation. CbbM furthermore appears to impair cbbL expression. A model summarizes the findings and predicts putative interactions of the different proteins influencing RubisCO gene regulation and expression.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
13
|
Steady-State Growth under Inorganic Carbon Limitation Conditions Increases Energy Consumption for Maintenance and Enhances Nitrous Oxide Production in Nitrosomonas europaea. Appl Environ Microbiol 2016; 82:3310-3318. [PMID: 27016565 DOI: 10.1128/aem.00294-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia-oxidizing microorganisms and nitrite-oxidizing bacteria. Most nitrifiers are chemolithoautotrophs that fix inorganic carbon (CO2) for growth. Here, we investigate how inorganic carbon limitation modifies the physiology and transcriptome of Nitrosomonas europaea, a model ammonia-oxidizing bacterium, and report on increased production of N2O, a potent greenhouse gas. This study, along with previous work, suggests that inorganic carbon limitation may be an important factor in controlling N2O emissions from nitrification in soils and wastewater treatment.
Collapse
|
14
|
Abstract
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts.
Collapse
|
15
|
Ma Y, Sundar S, Park H, Chandran K. The effect of inorganic carbon on microbial interactions in a biofilm nitritation-anammox process. WATER RESEARCH 2015; 70:246-254. [PMID: 25540838 DOI: 10.1016/j.watres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
The overarching goal of this study was to determine the role of inorganic carbon (IC) in influencing the microbial ecology, performance and nitrogen turnover by individual microbial communities of a biofilm based combined nitritation-anammox process. IC limitation was transiently imposed by reducing the IC input from 350% to 40% of the stoichiometric requirement for 40 days. The principal impact observed during IC limitation was the overgrowth of nitrite oxidizing bacteria (NOB) at the expense of anaerobic ammonia oxidizing bacteria (AMX). On the other hand, the concentrations of ammonia oxidizing bacteria (AOB) were relatively stable during the imposition of and recovery from IC limitation. The resulting dominance of NOB, in terms of their concentration and contribution to nitrite consumption over AMX, resulted, in turn, in a decrease in overall nitrogen removal from 78 ± 2.0% before IC limitation to 46 ± 2.9% during IC limitation. Upon recovery back to non-limiting IC input, it took an inordinately long time (about 57*HRT) for the N-removal to recover back to pre-limitation conditions. Even after recovery, NOB were still persistent in the biofilm and could not be washed out to pre-limitation concentrations. The emission of nitrous oxide (N₂O) and nitric oxide (NO), likely from AOB, transiently increased in concert with transient increases in ammonia and hydroxylamine concentrations during the period of IC limitation. Therefore, an unintended consequence of IC limitation in nitritation-anammox systems can be an increase in their greenhouse gas footprint, in addition to compromised process performance. Most emphasis to date on nitritation and anammox studies has been on the nitrogen cycle. The results of this study demonstrate that the differing strategies used by AOB, NOB and AMX to compete for their preferred assimilative carbon source can also significantly influence the microbial ecology, performance and carbon footprint of such processes.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Suneethi Sundar
- Center for Environmental Studies, Anna University, Chennai, India
| | - Hongkeun Park
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Jiang D, Khunjar WO, Wett B, Murthy SN, Chandran K. Characterizing the metabolic trade-off in Nitrosomonas europaea in response to changes in inorganic carbon supply. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2523-2531. [PMID: 25546702 DOI: 10.1021/es5043222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The link between the nitrogen and one-carbon cycles forms the metabolic basis for energy and biomass synthesis in autotrophic nitrifying organisms, which in turn are crucial players in engineered nitrogen removal processes. To understand how autotrophic nitrifying organisms respond to inorganic carbon (IC) conditions that could be encountered in engineered partially nitrifying systems, we investigated the response of one of the most extensively studied model ammonia oxidizing bacteria, Nitrosomonas europaea (ATCC19718), to three IC availability conditions: excess gaseous and excess ionic IC supply (40× stoichiometric requirement), excess gaseous IC supply (4× stoichiometric requirement in gaseous form only), and limiting IC supply (0.25× stoichiometric requirement). We found that, when switching from excess gaseous and excess ionic IC supply to excess gaseous IC supply, N. europaea chemostat cultures demonstrated an acclimation period that was characterized by transient decreases in the ammonia removal efficiency and transient peaks in the specific oxygen uptake rate. Limiting IC supply led to permanent reactor failures (characterized by biomass washout and failure of ammonia removal) that were preceded by similar decreases in the ammonia removal efficiency and peaks in the specific oxygen uptake rate. Notably, both excess gaseous IC supply and limiting IC supply elicited a previously undocumented increase in nitric and nitrous oxide emissions. Further, gene expression patterns suggested that excess gaseous IC supply and limiting IC supply led to consistent up-regulation of ammonia respiration genes and carbon assimilation genes. Under these conditions, interrogation of the N. europaea proteome revealed increased levels of carbon fixation and transport proteins and decreased levels of ammonia oxidation proteins (active in energy synthesis pathways). Together, the results indicated that N. europaea mobilized enhanced IC scavenging pathways for biosynthesis and turned down respiratory pathways for energy synthesis, when challenged with excess gaseous IC supply and limiting IC supply.
Collapse
Affiliation(s)
- D Jiang
- Department of Earth and Environmental Engineering, Columbia University , 500 W. 120th Street, Mudd 918, New York, New York 10027-4711, United States
| | | | | | | | | |
Collapse
|
17
|
Interactions of Nitrosomonas europaea and Nitrobacter winogradskyi grown in co-culture. Arch Microbiol 2014; 197:79-89. [DOI: 10.1007/s00203-014-1056-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
18
|
Transcriptional response of the archaeal ammonia oxidizer Nitrosopumilus maritimus to low and environmentally relevant ammonia concentrations. Appl Environ Microbiol 2013; 79:6911-6. [PMID: 23995944 DOI: 10.1128/aem.02028-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2 fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeon Nitrosopumilus maritimus SCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above the Km for ammonia oxidation (∼500 μM) and the other well below the Km (<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2 fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment.
Collapse
|
19
|
L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea. Antonie Van Leeuwenhoek 2013; 104:645-55. [PMID: 23881243 DOI: 10.1007/s10482-013-9973-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.
Collapse
|
20
|
Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol 2013; 15:3040-53. [PMID: 23663433 DOI: 10.1111/1462-2920.12144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023]
Abstract
Pseudonocardia is an actinobacterial genus of interest due to its potential biotechnological, medical and environmental remediation applications, as well as for the ecologically relevant symbiotic relationships it forms with attine ants. Some Pseudonocardia spp. can grow autotrophically, but the genetic basis of this capability has not previously been reported. In this study, we examined autotrophy in Pseudonocardia dioxanivorans CB1190, which can grow using H2 and CO2, as well as heterotrophically. Genomic and transcriptomic analysis of CB1190 cells grown with H2/bicarbonate implicated the Calvin-Benson-Bassham (CBB) cycle in growth-supporting CO2 fixation, as well as a [NiFe] hydrogenase-encoding gene cluster in H2 oxidation. The CBB cycle genes are evolutionarily most related to actinobacterial homologues, although synteny has not been maintained. Ribulose-1,5-bisphosphate carboxylase activity was confirmed in H2/bicarbonate-grown CB1190 cells and was detected in cells grown with the C1 compounds formate, methanol and carbon monoxide. We also demonstrated the upregulation of CBB cycle genes upon exposure of CB1190 to these C1 substrates, and identified genes putatively involved in generating CO2 from the C1 substrates by using RT-qPCR. Finally, the potential for autotrophic growth of other Pseudonocardia spp. was explored, and the ecological implications of autotrophy in attine ant- and plant root-associated Pseudonocardia discussed.
Collapse
Affiliation(s)
- Ariel Grostern
- Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA, USA.
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
21
|
Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Appl Microbiol Biotechnol 2012; 97:6513-23. [DOI: 10.1007/s00253-012-4436-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/13/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
|
22
|
Ribeiro DA, Ferraz LFC, Vicentini R, Ottoboni LMM. Gene expression modulation by heat stress in Acidithiobacillus ferrooxidans LR. Antonie van Leeuwenhoek 2011; 101:583-93. [PMID: 22086463 DOI: 10.1007/s10482-011-9673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/03/2011] [Indexed: 11/27/2022]
Abstract
During bioleaching, Acidithiobacillus ferrooxidans is subjected to different types of stress, including heat stress, which affect bacterial growth. In this work, real time quantitative PCR was used to analyze the expression of heat shock genes, as well as genes that encode proteins related to several functional categories in A. ferrooxidans. Cells were submitted to long-term growth and heat shock, both at 40°C. The results showed that heat shock affected the expression levels of most genes investigated, whilst long-term growth at 40°C resulted in minor changes in gene expression, except for certain genes related to iron transport, which were strongly down-regulated, suggesting that the iron processing capability of A. ferrooxidans was affected by long-term growth at 40°C. A bioinformatic analysis of the genes' promoter regions indicated a putative transcriptional regulation by the σ(32) factor in 12 of the 31 genes investigated, suggesting the involvement of other regulatory mechanisms in the response of A. ferrooxidans to heat stress.
Collapse
Affiliation(s)
- Daniela A Ribeiro
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
23
|
Vajrala N, Sayavedra-Soto LA, Bottomley PJ, Arp DJ. Role of a Fur homolog in iron metabolism in Nitrosomonas europaea. BMC Microbiol 2011; 11:37. [PMID: 21338516 PMCID: PMC3050691 DOI: 10.1186/1471-2180-11-37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of Nitrosomonas europaea, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family. Results Of the three N. europaea fur homologs, only the Fur homolog encoded by gene NE0616 complemented the Escherichia coli H1780 fur mutant. A N. europaea fur:kanP mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 fur homolog. The total cellular iron contents of the fur:kanP mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the fur:kanP mutant exhibited increased sensitivity to iron at or above 500 μM concentrations. Unlike the wild type, the fur:kanP mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability. Conclusions Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by N. europaea NE0616 gene. Additional studies are required to fully delineate role of this fur homolog.
Collapse
Affiliation(s)
- Neeraja Vajrala
- Department of Botany and Plant Pathology, 2082 Cordley, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
24
|
Dissecting iron uptake and homeostasis in Nitrosomonas europaea. Methods Enzymol 2010. [PMID: 21185446 DOI: 10.1016/b978-0-12-381294-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The chemolithoautotroph Nitrosomonas europaea oxidizes about 25 mol of NH(3) for each mole of CO(2) that is converted to biomass using an array of heme and nonheme Fe-containing proteins. Hence mechanisms of efficient iron (Fe) uptake and homeostasis are particularly important for this Betaproteobacterium. Among nitrifiers, N.europaea has been the most studied to date. Characteristics that make N.europaea a suitable model to study Fe uptake and homeostasis are as follows: (a) its sequenced genome, (b) its capability to grow relatively well in 0.2 μM Fe in the absence of heterologous siderophores, and (c) its amenability to mutagenesis. In this chapter, we describe the methodology we use in our laboratory to dissect Fe uptake and homeostasis in the ammonia oxidizer N. europaea.
Collapse
|
25
|
Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiol 2010; 10:229. [PMID: 20799944 PMCID: PMC2942843 DOI: 10.1186/1471-2180-10-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2). Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4) in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB) cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39) and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA) were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs) confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19). Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II RubisCO could promote the ability of A. ferrooxidans to fix CO2 at different concentrations of CO2. Conclusions A. ferrooxidans has features of cbb gene organization for CO2-assimilating functions that are characteristic of obligate chemolithoautotrophs and distinguish this group from facultative autotrophs. The most conspicuous difference is a separate operon for the cbbP gene. It is hypothesized that this organization may provide greater flexibility in the regulation of expression of genes involved in inorganic carbon assimilation.
Collapse
Affiliation(s)
- Mario Esparza
- Center for Bioinformatics and Genome Biology, MIFAB, Fundación Ciencia para la Vida and Depto. de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
26
|
Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes. Arch Microbiol 2010; 192:899-908. [DOI: 10.1007/s00203-010-0620-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/12/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
27
|
Schmidt I. Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 2009; 59:130-8. [PMID: 19452213 DOI: 10.1007/s00284-009-9409-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
The ammonia oxidizers Nitrosomonas europaea and Nitrosomonas eutropha are able to grow chemoorganotrophically under anoxic conditions with pyruvate, lactate, acetate, serine, succinate, alpha-ketoglutarate, or fructose as substrate and nitrite as terminal electron acceptor. The growth yield of both bacteria is about 3.5 mg protein (mmol pyruvate)(-1) and the maximum growth rates of N. europaea and N. eutropha are 0.094 d(-1) and 0.175 d(-1), respectively. In the presence of pyruvate and CO2 about 80% of the incorporated carbon derives from pyruvate and about 20% from CO2. Pyruvate is used as energy and only carbon source in the absence of CO2 (chemoorganoheterotrophic growth). CO2 stimulates the chemoorganotrophic growth of both ammonia oxidizers and the expression of ribulose bisphosphate carboxylase/oxygenase is down-regulated at increasing CO2 concentration. Ammonium, although required as nitrogen source, is inhibitory for the chemoorganotrophic metabolism of N. europaea and N. eutropha. In the presence of ammonium pyruvate consumption and the expression of the genes aceE, ppc, gltA, odhA, and ppsA (energy conservation) as well as nirK, norB, and nsc (denitrification) are reduced.
Collapse
Affiliation(s)
- Ingo Schmidt
- Department Microbiology, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
28
|
Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. Appl Environ Microbiol 2008; 74:5475-82. [PMID: 18606795 DOI: 10.1128/aem.00500-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heavy metals have been shown to be strong inhibitors of nitrification in wastewater treatment plants. In this research, the effects of cadmium, copper, and mercury on Nitrosomonas europaea were studied in quasi-steady-state batch reactors. When cells were exposed to 1 microM CdCl2, 6 microM HgCl2, or 8 microM CuCl2, ammonia oxidation rates were decreased by about 90%. Whole-genome transcriptional and proteomic responses of N. europaea to cadmium were used to identify heavy metal stress response genes. When cells were exposed to 1 microM CdCl2 for 1 h, 66 genes (of the total of 2,460 genes) were upregulated, and 50 genes were downregulated more than twofold. Of these, the mercury resistance genes (merTPCADE) averaged 277-fold upregulation under 1 microM CdCl2, with merA (mercuric reductase) showing 297-fold upregulation. In N. europaea cells exposed to 6 microM HgCl2 or to 8 microM CuCl2, merA showed 250-fold and 1.7-fold upregulation, respectively. Cells showed the ability to recover quickly from Hg2+-related toxic effects, apparently associated with upregulation of the mercury resistance genes and amoA, but no such recovery was evident in Cd2+-exposed cells even though merTPCADE were highly upregulated. We suggest that the upregulation of merA in response to CdCl2 and HgCl2 exposure may provide a means to develop an early-warning indicator for inhibition of nitrification by these metals.
Collapse
|
29
|
Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl Environ Microbiol 2008; 74:3559-72. [PMID: 18390676 DOI: 10.1128/aem.02722-07] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196(T)) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.
Collapse
|
30
|
Radniecki T, Ely R. Zinc chloride inhibition ofNitrosococcus mobilis. Biotechnol Bioeng 2008; 99:1085-95. [DOI: 10.1002/bit.21672] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Park S, Ely RL. Genome-wide transcriptional responses of Nitrosomonas europaea to zinc. Arch Microbiol 2007; 189:541-8. [PMID: 18097650 DOI: 10.1007/s00203-007-0341-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/24/2007] [Accepted: 12/04/2007] [Indexed: 11/28/2022]
Abstract
Nitrosomonas europaea, a Gram-negative obligate chemolithoautotroph, participates in global nitrogen cycling by carrying out nitrification and derives energy for growth through oxidation of ammonia. In this work, the physiological, proteomic, and transcriptional responses of N. europaea to zinc stress were studied. The nitrite production rate and ammonia-dependent oxygen uptake rate of the cells exposed to 3.4 microM ZnCl2 decreased about 61 and 69% within 30 min, respectively. Two proteins were notably up regulated in zinc treatment and the mRNA levels of their encoding genes started to increase by 1 h after the addition of zinc. A total of 27 genes were up regulated and 30 genes were down regulated. Up-regulated genes included mercury resistance genes (merTPCAD), inorganic ion transport genes, oxidative stress genes, toxin-antitoxin genes, and two-component signal transduction systems genes. merTPCAD was the highest up-regulated operon (46-fold). Down-regulated genes included the RubisCO operon (cbbO), biosynthesis (mrsA), and amino acid transporter.
Collapse
Affiliation(s)
- Sunhwa Park
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
32
|
Cherif-Zahar B, Durand A, Schmidt I, Hamdaoui N, Matic I, Merrick M, Matassi G. Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. J Bacteriol 2007; 189:9090-100. [PMID: 17921289 PMCID: PMC2168606 DOI: 10.1128/jb.01089-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/04/2007] [Indexed: 12/31/2022] Open
Abstract
The family of ammonia and ammonium channel proteins comprises the Amt proteins, which are present in all three domains of life with the notable exception of vertebrates, and the homologous Rh proteins (Rh50 and Rh30) that have been described thus far only in eukaryotes. The existence of an RH50 gene in bacteria was first revealed by the genome sequencing of the ammonia-oxidizing bacterium Nitrosomonas europaea. Here we have used a phylogenetic approach to study the evolution of the N. europaea RH50 gene, and we show that this gene, probably as a component of an integron cassette, has been transferred to the N. europaea genome by horizontal gene transfer. In addition, by functionally characterizing the Rh50(Ne) protein and the corresponding knockout mutant, we determined that NeRh50 can mediate ammonium uptake. The RH50(Ne) gene may thus have replaced functionally the AMT gene, which is missing in the genome of N. europaea and may be regarded as a case of nonorthologous gene displacement.
Collapse
|
33
|
Wei X, Sayavedra-Soto LA, Arp DJ. Characterization of the ferrioxamine uptake system of Nitrosomonas europaea. MICROBIOLOGY-SGM 2007; 153:3963-3972. [PMID: 18048911 DOI: 10.1099/mic.0.2007/010603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemolithoautotroph Nitrosomonas europaea has two genes predicted to encode outer-membrane (OM) ferrioxamine transporters. Expression of the ferrioxamine uptake system required induction, as shown by the shorter lag phase in ferrioxamine-containing cultures when ferrioxamine-exposed cells were used as an inoculum. The two OM ferrioxamine siderophore transporters encoded by foxA(1) (NE1097) and foxA(2) (NE1088) were produced only in cells grown in Fe-limited ferrioxamine-containing medium. The inactivation of foxA(1), singly or in combination with foxA(2), prevented growth in Fe-limited medium containing excess desferrioxamine (DFX). The foxA(2)-disrupted single mutant grew poorly in the regular Fe-limited (0.2 microM) medium with 10 microM DFX, but grew well when the Fe level was raised to 1.0 microM with 10 microM DFX. For efficient acquisition of Fe-loaded ferrioxamine, N. europaea needs both ferrioxamine transporters FoxA(1) and FoxA(2). FoxA(1) probably regulates its own production, and it controls the production of FoxA(2) as well.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
34
|
Nunes A, Gomes JP, Mead S, Florindo C, Correia H, Borrego MJ, Dean D. Comparative expression profiling of the Chlamydia trachomatis pmp gene family for clinical and reference strains. PLoS One 2007; 2:e878. [PMID: 17849007 PMCID: PMC1963315 DOI: 10.1371/journal.pone.0000878] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/18/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis, an obligate intracellular pathogen, is a leading worldwide cause of ocular and urogenital diseases. Advances have been made in our understanding of the nine-member polymorphic membrane protein (Pmp) gene (pmp) family of C. trachomatis. However, there is only limited information on their biologic role, especially for biological variants (biovar) and clinical strains. METHODOLOGY/PRINCIPAL FINDINGS We evaluated expression for pmps throughout development for reference strains E/Bour and L2/434, representing different biovars, and for clinical E and L2 strains. Immunoreactivity of patient sera to recombinant (r)Pmps was also determined. All pmps were expressed at two hours. pmpA had the lowest expression but was up-regulated at 12 h for all strains, indicating involvement in reticulate body development. For pmpD, expression peaked at 36 h. Additionally, 57.7% of sera from infected and 0% from uninfected adolescents were reactive to rPmpD (p = 0.001), suggesting a role in immunogenicity. pmpF had the highest expression levels for all clinical strains and L2/434 with differential expression of the pmpFE operon for the same strains. Sera were nonreactive to rPmpF despite immunoreactivity to rMOMP and rPmpD, suggesting that PmpF is not associated with humoral immune responses. pmpFE sequences for clinical strains were identical to those of the respective reference strains. We identified the putative pmpFE promoter, which was, surprisingly, 100% conserved for all strains. Analyses of ribosomal binding sites, RNase E, and hairpin structures suggested complex regulatory mechanism(s) for this >6 Kb operon. CONCLUSIONS/SIGNIFICANCE The dissimilar expression of the same pmp for different C. trachomatis strains may explain different strain-specific needs and phenotypic distinctions. This is further supported by the differential immunoreactivity to rPmpD and rPmpF of sera from patients infected with different strains. Furthermore, clinical E strains did not correlate with the E reference strain at the gene expression level, reinforcing the need for expansive studies of clinical strains.
Collapse
Affiliation(s)
- Alexandra Nunes
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - João P. Gomes
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Sally Mead
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Carlos Florindo
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Helena Correia
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Maria J. Borrego
- Departamento de Bacteriologia, Instituto Nacional de Saúde, Lisboa, Portugal
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
- Department of Medicine, School of Medicine, University of California at San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Berube PM, Samudrala R, Stahl DA. Transcription of all amoC copies is associated with recovery of Nitrosomonas europaea from ammonia starvation. J Bacteriol 2007; 189:3935-44. [PMID: 17384196 PMCID: PMC1913382 DOI: 10.1128/jb.01861-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/14/2007] [Indexed: 11/20/2022] Open
Abstract
The chemolithotrophic ammonia-oxidizing bacterium Nitrosomonas europaea is known to be highly resistant to starvation conditions. The transcriptional response of N. europaea to ammonia addition following short- and long-term starvation was examined by primer extension and S1 nuclease protection analyses of genes encoding enzymes for ammonia oxidation (amoCAB operons) and CO(2) fixation (cbbLS), a third, lone copy of amoC (amoC(3)), and two representative housekeeping genes (glyA and rpsJ). Primer extension analysis of RNA isolated from growing, starved, and recovering cells revealed two differentially regulated promoters upstream of the two amoCAB operons. The distal sigma(70) type amoCAB promoter was constitutively active in the presence of ammonia, but the proximal promoter was only active when cells were recovering from ammonia starvation. The lone, divergent copy of amoC (amoC(3)) was expressed only during recovery. Both the proximal amoC(1,2) promoter and the amoC(3) promoter are similar to gram-negative sigma(E) promoters, thus implicating sigma(E) in the regulation of the recovery response. Although modeling of subunit interactions suggested that a nonconservative proline substitution in AmoC(3) may modify the activity of the holoenzyme, characterization of a DeltaamoC(3) strain showed no significant difference in starvation recovery under conditions evaluated. In contrast to the amo transcripts, a delayed appearance of transcripts for a gene required for CO(2) fixation (cbbL) suggested that its transcription is retarded until sufficient energy is available. Overall, these data revealed a programmed exit from starvation likely involving regulation by sigma(E) and the coordinated regulation of catabolic and anabolic genes.
Collapse
Affiliation(s)
- Paul M Berube
- Department of Microbiology, University of Washington, Seattle, WA 98195-2700, USA
| | | | | |
Collapse
|
36
|
Gvakharia BO, Permina EA, Gelfand MS, Bottomley PJ, Sayavedra-Soto LA, Arp DJ. Global transcriptional response of Nitrosomonas europaea to chloroform and chloromethane. Appl Environ Microbiol 2007; 73:3440-5. [PMID: 17369330 PMCID: PMC1907119 DOI: 10.1128/aem.02831-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon exposure of Nitrosomonas europaea to chloroform (7 microM, 1 h), transcripts for 175 of 2,460 genes were found at higher levels in treated cells than in untreated cells and transcripts for 501 genes were found at lower levels. With chloromethane (3.2 mM, 1 h), transcripts for 67 genes were at higher levels and transcripts for 148 genes were at lower levels. Transcripts for 37 genes were at higher levels following both treatments and included genes for heat shock proteins, sigma-factors of the extracytoplasmic function subfamily, and toxin-antitoxin loci. N. europaea has higher levels of transcripts for a variety of defense genes when exposed to chloroform or chloromethane.
Collapse
Affiliation(s)
- Barbara O Gvakharia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wei X, Yan T, Hommes NG, Liu X, Wu L, McAlvin C, Klotz MG, Sayavedra-Soto LA, Zhou J, Arp DJ. Transcript profiles of Nitrosomonas europaea during growth and upon deprivation of ammonia and carbonate. FEMS Microbiol Lett 2006; 257:76-83. [PMID: 16553835 DOI: 10.1111/j.1574-6968.2006.00152.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The transcriptome of Nitrosomonas europaea was analyzed with whole-genome microarrays. Growing cells were compared to cells deprived of (NH4)2SO4 and Na2CO3. Hybridization signals were detected for 76% of the genes represented on the array under either or both conditions. Transcript levels for 68% of the genes were at least twofold higher in growing cells than in deprived cells, while only 0.42% of the genes were present at more than twofold higher levels in deprived cells. Transcript levels for the remaining 7% of the genes did not change significantly with the treatments. These trends were confirmed for selected genes by Northern hybridizations and quantitative RT-PCR. Compared to heterotrophic bacteria, N. europaea downregulates a greater proportion of its genes and fewer genes appear to be associated with the adaptation to starvation.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|