1
|
El Bissati K, Redel H, Ting LM, Lykins JD, McPhillie MJ, Upadhya R, Woster PM, Yarlett N, Kim K, Weiss LM. Novel Synthetic Polyamines Have Potent Antimalarial Activities in vitro and in vivo by Decreasing Intracellular Spermidine and Spermine Concentrations. Front Cell Infect Microbiol 2019; 9:9. [PMID: 30838177 PMCID: PMC6382690 DOI: 10.3389/fcimb.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023] Open
Abstract
Twenty-two compounds belonging to several classes of polyamine analogs have been examined for their ability to inhibit the growth of the human malaria parasite Plasmodium falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and one compound from the urea-based analogs were found to be potent inhibitors of both chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis (3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found not to have synergistic antimalarial activity. Furthermore, these inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum, suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL, United States
| | - Henry Redel
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Li-Min Ting
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Joseph D Lykins
- Department of Internal Medicine and Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, United States
| | | | - Rajendra Upadhya
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nigel Yarlett
- Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Louis M Weiss
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
2
|
Abstract
INTRODUCTION Microsporidia have been increasingly reported to infect humans. The most common presentation of microsporidiosis is chronic diarrhea, a significant mortality risk in immune-compromised patients. Albendazole, which inhibits tubulin, and fumagillin, which inhibits methionine aminopeptidase type 2 (MetAP2), are the two main therapeutic agents used for treatment of microsporidiosis. In addition, to their role as emerging pathogens in humans, microsporidia are important pathogens in insects, aquaculture, and veterinary medicine. New therapeutic targets and therapies have become a recent focus of attention for medicine, veterinary, and agricultural use. Areas covered: Herein, we discuss the detection and symptoms of microsporidiosis in humans and the therapeutic targets that have been utilized for the design of new drugs for the treatment of this infection, including triosephosphate isomerase, tubulin, MetAP2, topoisomerase IV, chitin synthases, and polyamines. Expert opinion: Enterocytozoon bieneusi is the most common microsporidia in human infection. Fumagillin has a broader anti-microsporidian activity than albendazole and is active against both Ent. bieneusi and Encephaliozoonidae. Microsporidia lack methionine aminopeptidase type 1 and are, therefore, dependent on MetAP2, while mammalian cells have both enzymes. Thus, MetAP2 is an essential enzyme in microsporidia and new inhibitors of this pathway have significant promise as therapeutic agents.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Louis M. Weiss
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
3
|
Moriya SS, Miura T, Takao K, Sugita Y, Samejima K, Hiramatsu K, Kawakita M. Development of irreversible inactivators of spermine oxidase and N1-acetylpolyamine oxidase. Biol Pharm Bull 2014; 37:475-80. [PMID: 24583866 DOI: 10.1248/bpb.b13-00913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three functional groups (2-propenyl, 2-propynyl, and 2,3-butadienyl) were introduced onto one of the terminal amino groups of spermidine. Of the six compounds synthesized, N-(3-aminopropyl)-N'-2,3-butadienyl-1,4-butanediamine (N(8)-butadienyl Spd) and N-[3-(2,3-butadienylamino)propyl]-1,4-butanediamine (N(1)-butadienyl Spd) irreversibly inactivated human spermine oxidase (SMO) and N(1)-acetylpolyamine oxidase (APAO). Interestingly, N(8)-butadienyl Spd inactivated SMO far more potently than N,N'-di-2,3-butadienyl-1,4-butanediamine (MDL 72527).
Collapse
Affiliation(s)
- Shun-suke Moriya
- Translational Medical Research Center, Tokyo Metropolitan Institute of Medical Science
| | | | | | | | | | | | | |
Collapse
|
4
|
Verlinden BK, Niemand J, Snyman J, Sharma SK, Beattie RJ, Woster PM, Birkholtz LM. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities. J Med Chem 2011; 54:6624-33. [PMID: 21882831 DOI: 10.1021/jm200463z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.
Collapse
Affiliation(s)
- Bianca K Verlinden
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, PO Box x20, Pretoria, 0028, South Africa
| | | | | | | | | | | | | |
Collapse
|
5
|
Bacchi CJ, Yarlett N, Faciane E, Bi X, Rattendi D, Weiss LM, Woster PM. Metabolism of an alkyl polyamine analog by a polyamine oxidase from the microsporidian Encephalitozoon cuniculi. Antimicrob Agents Chemother 2009; 53:2599-604. [PMID: 19223636 PMCID: PMC2687184 DOI: 10.1128/aac.00267-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/07/2008] [Accepted: 02/04/2009] [Indexed: 11/20/2022] Open
Abstract
Encephalitozoon cuniculi is a microsporidium responsible for systemic illness in mammals. In the course of developing leads to new therapy for microsporidiosis, we found that a bis(phenylbenzyl)3-7-3 analog of spermine, 1,15-bis{N-[o-(phenyl)benzylamino}-4,12-diazapentadecane (BW-1), was a substrate for an E. cuniculi amine oxidase activity. The primary natural substrate for this oxidase activity was N'-acetylspermine, but BW-1 had activity comparable to that of the substrate. As the sole substrate, BW-1 gave linear reaction rates over 15 min and K(m) of 2 microM. In the presence of N'-acetylspermine, BW-1 acted as a competitive inhibitor of oxidase activity and may be a subversive substrate, resulting in increased peroxide production. By use of (13)C-labeled BW-1 as a substrate and nuclear magnetic resonance analysis, two products were determined to be oxidative metabolites, a hydrated aldehyde or dicarboxylate and 2(phenyl)benzylamine. These products were detected after exposure of (13)C-labeled BW-1 to E. cuniculi preemergent spore preparations and to uninfected host cells. In previous studies, BW-1 was curative in a rodent model of infection with E. cuniculi. The results in this study demonstrate competitive inhibition of oxidase activity by BW-1 and support further studies of this oxidase activity by the parasite and host.
Collapse
Affiliation(s)
- Cyrus J Bacchi
- Haskins Laboratories, Pace University, 41 Park Row, New York, NY 10038, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Dhanve RS, Kalyani DC, Phugare SS, Jadhav JP. Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation 2008; 20:245-55. [DOI: 10.1007/s10532-008-9217-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|
7
|
Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1845-57. [PMID: 18583528 PMCID: PMC2492618 DOI: 10.1104/pp.108.123802] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/18/2008] [Indexed: 05/18/2023]
Abstract
In contrast to animals, where polyamine (PA) catabolism efficiently converts spermine (Spm) to putrescine (Put), plants have been considered to possess a PA catabolic pathway producing 1,3-diaminopropane, Delta(1)-pyrroline, the corresponding aldehyde, and hydrogen peroxide but unable to back-convert Spm to Put. Arabidopsis (Arabidopsis thaliana) genome contains at least five putative PA oxidase (PAO) members with yet-unknown localization and physiological role(s). AtPAO1 was recently identified as an enzyme similar to the mammalian Spm oxidase, which converts Spm to spermidine (Spd). In this work, we have performed in silico analysis of the five Arabidopsis genes and have identified PAO3 (AtPAO3) as a nontypical PAO, in terms of homology, compared to other known PAOs. We have expressed the gene AtPAO3 and have purified a protein corresponding to it using the inducible heterologous expression system of Escherichia coli. AtPAO3 catalyzed the sequential conversion/oxidation of Spm to Spd, and of Spd to Put, thus exhibiting functional homology to the mammalian PAOs. The best substrate for this pathway was Spd, whereas the N(1)-acetyl-derivatives of Spm and Spd were oxidized less efficiently. On the other hand, no activity was detected when diamines (agmatine, cadaverine, and Put) were used as substrates. Moreover, although AtPAO3 does not exhibit significant similarity to the other known PAOs, it is efficiently inhibited by guazatine, a potent PAO inhibitor. AtPAO3 contains a peroxisomal targeting motif at the C terminus, and it targets green fluorescence protein to peroxisomes when fused at the N terminus but not at the C terminus. These results reveal that AtPAO3 is a peroxisomal protein and that the C terminus of the protein contains the sorting information. The overall data reinforce the view that plants and mammals possess a similar PA oxidation system, concerning both the subcellular localization and the mode of its action.
Collapse
|
8
|
Taupin V, Méténier G, Vivarès CP, Prensier G. An improved procedure for Percoll gradient separation of sporogonial stages in Encephalitozoon cuniculi (Microsporidia). Parasitol Res 2006; 99:708-14. [PMID: 16738886 DOI: 10.1007/s00436-006-0231-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
Intracellular development of microsporidian parasites comprises a proliferative phase (merogony) followed by a differentiation phase (sporogony) leading to the release of resistant spores. Sporogony implies, successively, meront-to-sporont transformation, sporont division into sporoblasts, and sporogenesis. We report a procedure improving the separation of sporogonial stages of Encephalitozoon cuniculi, a species that develops inside parasitophorous vacuoles of mammalian cells. Supernatants of E. cuniculi-infected Madin-Darby canine kidney cell cultures provided a large number of parasites mixed with host-cell debris. This material was gently homogenized in phosphate-buffered saline containing 0.05% saponin and 0.05% Triton X-100 then filtered through glass wool columns. Centrifugation of the filtrate on 70% Percoll-0.23 M sucrose gradient gave a reproducible pattern of bands at different densities. Transmission electron microscopy showed that three of the four collected fractions were free of visible contaminants. Corresponding prominent cell stages were early sporoblasts (fraction B), late sporoblasts plus immature spores (fraction C), and mature spores (fraction D). Further centrifugation of the lightest fraction (A) on 30% Percoll-0.23 M sucrose gradient generated a sporont-rich fraction (A2). First analysis of proteins from fractions A2 and D by two-dimensional gel electrophoresis suggested a potential use of the described method for proteomic profiling.
Collapse
Affiliation(s)
- Vanessa Taupin
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
9
|
Chavant P, Taupin V, El Alaoui H, Wawrzyniak I, Chambon C, Prensier G, Méténier G, Vivarès CP. Proteolytic activity in Encephalitozoon cuniculi sporogonial stages: predominance of metallopeptidases including an aminopeptidase-P-like enzyme. Int J Parasitol 2005; 35:1425-33. [PMID: 16137693 DOI: 10.1016/j.ijpara.2005.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/20/2005] [Accepted: 05/09/2005] [Indexed: 11/17/2022]
Abstract
A fraction enriched in spore precursor cells (sporoblasts) of the microsporidian Encephalitozoon cuniculi, an intracellular parasite of mammals, was obtained by Percoll gradient centrifugation. Soluble extracts of these cells exhibited proteolytic activity towards azocasein, with an alkaline optimum pH range (9-10). Prevalence of some metallopeptidases was supported by the stimulating effect of Ca2+, Mg2+, Mn2+ and Zn2+ ions, and inhibition by two chelating agents (EDTA and 1,10-phenanthroline), a thiol reductant (dithiothreitol) and two aminopeptidase inhibitors (bestatin and apstatin). Zymographic analysis revealed four caseinolytic bands at about 76, 70, 55 and 50 kDa. Mass spectrometry of tryptic peptides from one-dimensional gel slices identified a cytosol (leucine) aminopeptidase homologue (M17 family) in 50-kDa band and an enzyme similar to aminopeptidase P (AP-P) of cytosolic type (M24B subfamily) in 70-kDa band. Multiple sequence alignments showed conservation of critical residues for catalysis and metal binding. A long insertion in a common position was found in AP-P sequences from E. cuniculi and Nosema locustae, an insect-infecting microsporidian. The expression of cytosolic AP-P in sporogonial stages of microsporidia may suggest a key role in the attack of proline-containing peptides as a prerequisite to long-duration biosynthesis of structural proteins destined to the sporal polar tube.
Collapse
Affiliation(s)
- Patrick Chavant
- Parasitologie Moléculaire et Cellulaire, LBP, UMR-CNRS 6023, Université Blaise Pascal-Clermont 2, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Nigel Yarlett
- Department of Chemistry and Physical Sciences and Haskins Laboratories, Pace University, New York, NY 10038, USA
| |
Collapse
|