1
|
Shahzad S, Krug SA, Mouriño S, Huang W, Kane MA, Wilks A. Pseudomonas aeruginosa heme metabolites biliverdin IXβ and IXδ are integral to lifestyle adaptations associated with chronic infection. mBio 2024; 15:e0276323. [PMID: 38319089 PMCID: PMC10936436 DOI: 10.1128/mbio.02763-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen requiring iron for its survival and virulence within the host. The ability to switch to heme as an iron source and away from siderophore uptake provides an advantage in chronic infection. We have recently shown the extracellular heme metabolites biliverdin IXβ (BVIXβ) and BVIXδ positively regulate the heme-dependent cell surface signaling cascade. We further investigated the role of BVIXβ and BVIXδ in cell signaling utilizing allelic strains lacking a functional heme oxygenase (hemOin) or one reengineered to produce BVIXα (hemOα). Compared to PAO1, both strains show a heme-dependent growth defect, decreased swarming and twitching, and less robust biofilm formation. Interestingly, the motility and biofilm defects were partially rescued on addition of exogenous BVIXβ and BVIXδ. Utilizing liquid chromatography-tandem mass spectrometry, we performed a comparative proteomics and metabolomics analysis of PAO1 versus the allelic strains in shaking and static conditions. In shaking conditions, the hemO allelic strains showed a significant increase in proteins involved in quorum sensing, phenazine production, and chemotaxis. Metabolite profiling further revealed increased levels of Pseudomonas quinolone signal and phenazine metabolites. In static conditions, we observed a significant repression of chemosensory pathways and type IV pili biogenesis proteins as well as several phosphodiesterases associated with biofilm dispersal. We propose BVIX metabolites function as signaling and chemotactic molecules integrating heme utilization as an iron source into the adaptation of P. aeruginosa from a planktonic to sessile lifestyle. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa causes long-term chronic infection in the airways of cystic fibrosis patients. The ability to scavenge iron and to establish chronic infection within this environment coincides with a switch to utilize heme as the primary iron source. Herein, we show the heme metabolites biliverdin beta and delta are themselves important signaling molecules integrating the switch in iron acquisition systems with cooperative behaviors such as motility and biofilm formation that are essential for long-term chronic infection. These significant findings will enhance the development of viable multi-targeted therapeutics effective against both heme utilization and cooperative behaviors essential for survival and persistence within the host.
Collapse
Affiliation(s)
- Saba Shahzad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Samuel A. Krug
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Sass G, Nazik H, Chatterjee P, Stevens DA. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains. Med Mycol 2020; 59:453-464. [PMID: 32827431 DOI: 10.1093/mmy/myaa066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Airways of immunocompromised patients, or individuals with cystic fibrosis (CF), are common ground for Pseudomonas aeruginosa and Aspergillus fumigatus infections. Hence, in such a microenvironment both pathogens compete for resources. While under limiting iron conditions the siderophore pyoverdine is the most effective antifungal P. aeruginosa product, we now provide evidence that under nonlimiting iron conditions P. aeruginosa supernatants lack pyoverdine but still possess considerable antifungal activity. Spectrometric analyses of P. aeruginosa supernatants revealed the presence of phenazines, such as pyocyanin, only under nonlimiting iron conditions. Supernatants of quorum sensing mutants of strain PA14, defective in phenazine production, as well as supernatants of the P. aeruginosa strain PAO1, lacked pyocyanin, and were less inhibitory toward A. fumigatus biofilms under nonlimiting iron conditions. When blood as a natural source of iron was present during P. aeruginosa supernatant production, pyoverdine was absent, and phenazines, including pyocyanin, appeared, resulting in an antifungal effect on A. fumigatus biofilms. Pure pyocyanin reduced A. fumigatus biofilm metabolism. In summary, P. aeruginosa has mechanisms to compete with A. fumigatus under limiting and non-limiting iron conditions, and can switch from iron-denial-based to toxin-based antifungal activity. This has implications for the evolution of the microbiome in clinical settings where the two pathogens co-exist. Important differences in the iron response of P. aeruginosa laboratory strains PA14 and PAO1 were also uncovered.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California, USA
| | - Hasan Nazik
- California Institute for Medical Research, San Jose, California, USA
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
4
|
Kalia M, Singh PK, Yadav VK, Yadav BS, Sharma D, Narvi SS, Mani A, Agarwal V. Structure based virtual screening for identification of potential quorum sensing inhibitors against LasR master regulator in Pseudomonas aeruginosa. Microb Pathog 2017; 107:136-143. [DOI: 10.1016/j.micpath.2017.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
|
5
|
RpoN Modulates Carbapenem Tolerance in Pseudomonas aeruginosa through Pseudomonas Quinolone Signal and PqsE. Antimicrob Agents Chemother 2016; 60:5752-64. [PMID: 27431228 DOI: 10.1128/aac.00260-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023] Open
Abstract
The ability of Pseudomonas aeruginosa to rapidly modulate its response to antibiotic stress and persist in the presence of antibiotics is closely associated with the process of cell-to-cell signaling. The alternative sigma factor RpoN (σ(54)) is involved in the regulation of quorum sensing (QS) and plays an important role in the survival of stationary-phase cells in the presence of carbapenems. Here, we demonstrate that a ΔrpoN mutant grown in nutrient-rich medium has increased expression of pqsA, pqsH, and pqsR throughout growth, resulting in the increased production of the Pseudomonas quinolone signal (PQS). The link between pqsA and its role in carbapenem tolerance was studied using a ΔrpoN ΔpqsA mutant, in which the carbapenem-tolerant phenotype of the ΔrpoN mutant was abolished. In addition, we demonstrate that another mechanism leading to carbapenem tolerance in the ΔrpoN mutant is mediated through pqsE Exogenously supplied PQS abolished the biapenem-sensitive phenotype of the ΔrpoN ΔpqsA mutant, and overexpression of pqsE failed to alter the susceptibility of the ΔrpoN ΔpqsA mutant to biapenem. The mutations in the ΔrpoN ΔrhlR mutant and the ΔrpoN ΔpqsH mutant led to susceptibility to biapenem. Comparison of the changes in the expression of the genes involved in QS in wild-type PAO1 with their expression in the ΔrpoN mutant and the ΔrpoN mutant-derived strains demonstrated the regulatory effect of RpoN on the transcript levels of rhlR, vqsR, and rpoS The findings of this study demonstrate that RpoN negatively regulates the expression of PQS in nutrient-rich medium and provide evidence that RpoN interacts with pqsA, pqsE, pqsH, and rhlR in response to antibiotic stress.
Collapse
|
6
|
Schmidberger A, Henkel M, Hausmann R, Schwartz T. Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2014; 98:6725-37. [PMID: 24752844 DOI: 10.1007/s00253-014-5747-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Bioprocesses based on sustainable resources and rhamnolipids in particular have become increasingly attractive in recent years. These surface-active glycolipids with various chemical and biological properties have diverse biotechnological applications and are naturally produced by Pseudomonas aeruginosa. Their production, however, is tightly governed by a complex growth-dependent regulatory network, one of the major obstacles in the way to upscale production. P. aeruginosa PAO1 was grown in shake flask cultures using varying concentrations of ferric iron. Gene expression was assessed using quantitative PCR. A strong increase in relative expression of the genes for rhamnolipid synthesis, rhlA and rhlC, as well as the genes of the pqs quorum sensing regulon was observed under iron-limiting conditions. Iron repletion on the other hand caused a down-regulation of those genes. Furthermore, gene expression of different iron regulation-related factors, i.e. pvdS, fur and bqsS, was increased in response to iron limitation. Ensuing from these results, a batch cultivation using production medium without any addition of iron was conducted. Both biomass formation and specific growth rates were not impaired compared to normal cultivation conditions. Expression of rhlA, rhlC and pvdS, as well as the gene for the 3-oxo-C12-HSL synthetase, lasI, increased until late stationary growth phase. After this time point, their expression steadily decreased. Expression of the C4-HSL synthetase gene, rhlI, on the other hand, was found to be highly increased during the entire process.
Collapse
Affiliation(s)
- Anke Schmidberger
- Institute of Functional Interfaces, Department of Interface Microbiology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany,
| | | | | | | |
Collapse
|
7
|
Fothergill JL, Winstanley C, James CE. Novel therapeutic strategies to counterPseudomonas aeruginosainfections. Expert Rev Anti Infect Ther 2014; 10:219-35. [DOI: 10.1586/eri.11.168] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrob Agents Chemother 2013; 57:5629-41. [PMID: 24002091 DOI: 10.1128/aac.00955-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs.
Collapse
|
9
|
Kruczek C, Wachtel M, Alabady MS, Payton PR, Colmer-Hamood JA, Hamood AN. Serum albumin alters the expression of iron-controlled genes in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 158:353-367. [PMID: 22053004 DOI: 10.1099/mic.0.053371-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pseudomonas aeruginosa, which causes serious infections in immunocompromised patients, produces numerous virulence factors, including exotoxin A and the siderophore pyoverdine. As production of these virulence factors is influenced by the host environment, we examined the effect serum has on global transcription within P. aeruginosa strain PAO1 at different phases of growth in an iron-deficient medium. At early exponential phase, serum significantly enhanced expression of 138 genes, most of which are repressed by iron, including pvdS, regA and the pyoverdine synthesis genes. However, serum did not interfere with the repression of these genes by iron. Serum enhanced regA expression in a fur mutant of PAO1 but not in a pvdS mutant. The serum iron-binding protein apotransferrin, but not ferritin, enhanced regA and pvdS expression. However, in PAO1 grown in a chemically defined medium that contains no iron, serum but not apotransferrin enhanced pvdS and regA expression. While complement inactivation failed to eliminate this effect, albumin absorption reduced the effect of serum on pvdS and regA expression in the iron-deficient medium chelexed tryptic soy broth dialysate. Additionally, albumin absorption eliminated the effect of serum on pvdS and regA expression in the chemically defined medium. These results suggest that serum enhances the expression of P. aeruginosa iron-controlled genes by two mechanisms: one through apotransferrin and another one through albumin.
Collapse
Affiliation(s)
- Cassandra Kruczek
- Department of Microbiology & Immunology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mitchell Wachtel
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Magdy S Alabady
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paxton R Payton
- United States Department of Agriculture, Cropping Systems Research Laboratory, The Plant Stress and Germplasm Development Unit, Lubbock, TX 79415, USA
| | - Jane A Colmer-Hamood
- Department of Microbiology & Immunology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Abdul N Hamood
- Department of Microbiology & Immunology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Abstract
Many bacteria use 'quorum sensing' (QS) as a mechanism to regulate gene induction in a population-dependent manner. In its simplest sense this involves the accumulation of a signaling metabolite during growth; the binding of this metabolite to a regulator or multiple regulators activates induction or repression of gene expression. However QS regulation is seldom this simple, because other inputs are usually involved. In this review we have focussed on how those other inputs influence QS regulation and as implied by the title, this often occurs by environmental or physiological effects regulating the expression or activity of the QS regulators. The rationale of this review is to briefly introduce the main QS signals used in Gram-negative bacteria and then introduce one of the earliest understood mechanisms of regulation of the regulator, namely the plant-mediated control of expression of the TraR QS regulator in Agrobacterium tumefaciens. We then describe how in several species, multiple QS regulatory systems can act as integrated hierarchical regulatory networks and usually this involves the regulation of QS regulators. Such networks can be influenced by many different physiological and environmental inputs and we describe diverse examples of these. In the final section, we describe different examples of how eukaryotes can influence QS regulation in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marijke Frederix
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
11
|
Kim CM, Shin SH. Modulation of iron-uptake systems by a mutation of luxS encoding an autoinducer-2 synthase in Vibrio vulnificus. Biol Pharm Bull 2011; 34:632-7. [PMID: 21532149 DOI: 10.1248/bpb.34.632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio vulnificus possesses multiple iron-uptake systems which are mediated by VuuA (vulnibactin receptor), IutA (aerobactin receptor) and HupA (heme receptor). In this study, we determined the effect of a mutation of luxS encoding autoinducer-2 (AI-2) synthase on the expressions of the three receptors. A mutation and an in trans complementation of luxS did not affect the growing ability of V. vulnificus in iron-deficient conditions. Nevertheless, the luxS mutation slightly decreased vuuA expression, but slightly increased iutA and hupA expressions in the transcriptional reporter assay or Western blot analysis. These changes were all recovered by the luxS complementation. These results suggest that AI-2-mediated quorum sensing system may be involved in the fine modulation of V. vulnificus iron-uptake systems, positively affecting vuuA expression but negatively affecting iutA and hupA expressions.
Collapse
Affiliation(s)
- Choon Mee Kim
- Research Center for Resistant Cells, Chosun University Medical School, Gwangju, Republic of Korea
| | | |
Collapse
|
12
|
Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H. Lyngbyoic acid, a "tagged" fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. MOLECULAR BIOSYSTEMS 2011; 7:1205-16. [PMID: 21258753 DOI: 10.1039/c0mb00180e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quorum sensing (QS) is a mechanism of bacterial gene regulation in response to increases in population density. Perhaps most studied are QS pathways mediated by acylhomoserine lactones (AHLs) in Gram-negative bacteria. Production of small molecule QS signals, their accumulation within a diffusion-limited environment and their binding to a LuxR-type receptor trigger QS-controlled gene regulatory cascades. In Pseudomonas aeruginosa, for example, binding of AHLs to their cognate receptors (LasR, RhlR) controls production of virulence factors, pigments, antibiotics and other behaviors important for its interactions with eukaryotic hosts and other bacteria. We have previously shown that marine cyanobacteria produce QS-inhibitory molecules, including 8-epi-malyngamide C (1), malyngamide C (2) and malyngolide (3). Here we isolated a new small cyclopropane-containing fatty acid, lyngbyoic acid (4), as a major metabolite of the marine cyanobacterium, Lyngbya cf. majuscula, collected at various sites in Florida. We screened 4 against four reporters based on different AHL receptors (LuxR, AhyR, TraR and LasR) and found that 4 most strongly affected LasR. We also show that 4 reduces pyocyanin and elastase (LasB) both on the protein and transcript level in wild-type P. aeruginosa, and that 4 directly inhibits LasB enzymatic activity. Conversely, dodecanoic acid (9) increased pyocyanin and LasB, demonstrating that the fused cyclopropane "tag" is functionally relevant and potentially confers resistance to β-oxidation. Global transcriptional effects of 4 in some ways replicate the gene expression changes of P. aeruginosa during chronic lung infections of cystic fibrosis patients, with reduced lasR signaling, increased biofilm and expression of the virulence locus HSI-I. Compound 4 may therefore prove to be a useful tool in the study of P. aeruginosa adaption during such chronic infections.
Collapse
Affiliation(s)
- Jason Christopher Kwan
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32610, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Cornelis P. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 2010; 86:1637-45. [DOI: 10.1007/s00253-010-2550-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/07/2010] [Accepted: 03/07/2010] [Indexed: 12/21/2022]
|
14
|
Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Déziel E, Lépine F, Rahme LG. Homeostatic interplay between bacterial cell-cell signaling and iron in virulence. PLoS Pathog 2010; 6:e1000810. [PMID: 20300606 PMCID: PMC2837411 DOI: 10.1371/journal.ppat.1000810] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 02/05/2010] [Indexed: 12/28/2022] Open
Abstract
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens. Bacterial cells can communicate with one another about their surrounding environment. This information can be in the form of small self-secreted molecules acting as signals to activate or inhibit the expression of genes. Pseudomonas aeruginosa is an environmental bacterium that infects diverse organisms from plants to humans. Our results show that this pathogen uses two highly sensitive networks, namely MvfR and LasR/RhlR pathways, to modulate its virulence functions by titrating the concentration of the small molecules HHQ and PQS in a manner that depends upon the presence or absence of iron. Via negative and positive feedback loops, this bacterium processes the signaled information to regulate its virulence functions and homeostatically balance the production of the small molecules required for the activation of the MvfR virulence network. Our study sheds light on paradigmatic complex networks that maintain a homeostatic bacterial virulence response.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gaoping Xiao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Yiorgos Apidianakis
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Biliana Lesic
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christos Astrakas
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 2010; 192:2973-80. [PMID: 20154129 DOI: 10.1128/jb.01601-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Iron is an essential element for life but also serves as an environmental signal for biofilm development in the opportunistic human pathogen Pseudomonas aeruginosa. Under iron-limiting conditions, P. aeruginosa displays enhanced twitching motility and forms flat unstructured biofilms. In this study, we present evidence suggesting that iron-regulated production of the biosurfactant rhamnolipid is important to facilitate the formation of flat unstructured biofilms. We show that under iron limitation the timing of rhamnolipid expression is shifted to the initial stages of biofilm formation (versus later in biofilm development under iron-replete conditions) and results in increased bacterial surface motility. In support of this observation, an rhlAB mutant defective in biosurfactant production showed less surface motility under iron-restricted conditions and developed structured biofilms similar to those developed by the wild type under iron-replete conditions. These results highlight the importance of biosurfactant production in determining the mature structure of P. aeruginosa biofilms under iron-limiting conditions.
Collapse
|
16
|
Kümmerli R, Jiricny N, Clarke LS, West SA, Griffin AS. Phenotypic plasticity of a cooperative behaviour in bacteria. J Evol Biol 2008; 22:589-98. [PMID: 19170825 DOI: 10.1111/j.1420-9101.2008.01666.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is strong evidence that natural selection can favour phenotypic plasticity as a mechanism to maximize fitness in animals. Here, we aim to investigate phenotypic plasticity of a cooperative trait in bacteria--the production of an iron-scavenging molecule (pyoverdin) by Pseudomonas aeruginosa. Pyoverdin production is metabolically costly to the individual cell, but provides a benefit to the local group and can potentially be exploited by nonpyoverdin-producing cheats. Here, we subject bacteria to changes in the social environment in media with different iron availabilities and test whether cells can adjust pyoverdin production in response to these changes. We found that pyoverdin production per cell significantly decreased at higher cell densities and increased in the presence of cheats. This phenotypic plasticity significantly influenced the costs and benefits of cooperation. Specifically, the investment of resources into pyoverdin production was reduced in iron-rich environments and at high cell densities, but increased under iron limitation, and when pyoverdin was exploited by cheats. Our study demonstrates that phenotypic plasticity in a cooperative trait as a response to changes in the environment occurs in even the simplest of organisms, a bacterium.
Collapse
Affiliation(s)
- R Kümmerli
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK Food Microbiology Research Group, University of Ulster, UK.
| | | | | | | | | |
Collapse
|
17
|
Kaur AP, Lansky IB, Wilks A. The role of the cytoplasmic heme-binding protein (PhuS) of Pseudomonas aeruginosa in intracellular heme trafficking and iron homeostasis. J Biol Chem 2008; 284:56-66. [PMID: 18990702 DOI: 10.1074/jbc.m806068200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic heme-binding protein PhuS, encoded within the Fur-regulated Pseudomonas heme utilization (phu) operon, has previously been shown to traffic heme to the iron-regulated heme oxygenase (HO). We further investigate the role of PhuS in heme trafficking to HO on disruption of the phuS and hemO genes in a Pseudomonas aeruginosa siderophore-deficient and wild-type background. Previous studies have shown that deletion of hemO prevents the cells from utilizing heme as the sole source of iron. However, disruption of phuS alone resulted in a slow growth phenotype, consistent with its role as a heme-trafficking protein to HO. Furthermore, in contrast to the hemO and hemO/phuS deletion strains, the phuS knockout prematurely produced pyocyanin in the presence of heme. Western blot analysis of PhuS protein levels in the wild-type strain showed that Fur-regulation of the phu operon could be derepressed in the presence of heme. In addition the premature onset of pyocyanin production requires both heme and a functional HO. Suppression of the phenotype on increasing the external heme concentration suggested that the decreased heme-flux through HO results in premature production of pyocyanin. The premature production of pyocyanin was not due to lower intracellular iron levels as a result of decreased heme flux through HO. However, transcriptional analysis of the phuS mutants indicates that the cells are sensing iron deprivation. The present data suggest that PhuS has a dual function in trafficking heme to HO, and in directly or indirectly sensing and maintaining iron and heme homeostasis.
Collapse
Affiliation(s)
- Ajinder P Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1140
| | - Ila B Lansky
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1140
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1140.
| |
Collapse
|
18
|
Martin CA, Hoven AD, Cook AM. Therapeutic frontiers: preventing and treating infectious diseases by inhibiting bacterial quorum sensing. Eur J Clin Microbiol Infect Dis 2008; 27:635-42. [DOI: 10.1007/s10096-008-0489-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
19
|
Zheng P, Sun J, Geffers R, Zeng AP. Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol 2007; 132:342-52. [PMID: 17889392 DOI: 10.1016/j.jbiotec.2007.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/10/2007] [Accepted: 08/01/2007] [Indexed: 10/23/2022]
Abstract
The function unknown gene PA2384 of Pseudomonas aeruginosa PAO1 has been previously shown dramatically responsive to iron limitation. In the present study, a bioinformatics analysis showed that PA2384 has a weak similarity to the N-terminus DNA-binding domain of Fur, the well-known ferric uptake regulator. To investigate the potential function of PA2384 in iron regulation a P. aeruginosa PAO1 recombinant (pUCP20::PA2384) over-expressing PA2384 and a PA2384 disrupted mutant PAO1*PA2384 were constructed. Physiological characterization showed that the knockout mutant had a longer lag phase. Genome-scale transcriptional profiles at different growth stages were compared between the wild type and the DeltaPA2384 mutant grown under iron-limiting conditions. The expression of more than 350 genes was affected by the knockout of PA2384. Among them, 71 genes involved in iron uptake were significantly down-regulated in the absence of PA2384. One hundred two quorum sensing (QS) dependent genes displayed differential transcriptions, including genes involved in the biosynthesis of some important virulence factors such as pyocyanin, rhamnolipids and hydrogen cyanide. The transcription of genes responsible for the synthesis of Pseudomonas quinolone signal (PQS) was greatly enhanced by the knockout of PA2384. Furthermore, the knockout of PA2384 also resulted in an altered expression of genes involved in electron transfer, central metabolism, phosphorus starvation and translation. It implies that PA2384 might affect more physiological processes than iron acquisition in P. aeruginosa.
Collapse
Affiliation(s)
- Ping Zheng
- Systems Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
20
|
Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2007; 153:1318-1328. [PMID: 17464046 DOI: 10.1099/mic.0.2006/004911-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracellular DNA is one of the major matrix components in Pseudomonas aeruginosa biofilms. It functions as an intercellular connector and plays a role in stabilization of the biofilms. Evidence that DNA release in P. aeruginosa PAO1 biofilms is controlled by the las-rhl and pqs quorum-sensing systems has been previously presented. This paper provides evidence that DNA release in P. aeruginosa PAO1 biofilms is also under iron regulation. Experiments involving cultivation of P. aeruginosa in microtitre trays suggested that pqs expression, DNA release and biofilm formation were favoured in media with low iron concentrations (5 microM FeCl(3)), and decreased with increasing iron concentrations. Experiments involving cultivation of P. aeruginosa in a flow-chamber system suggested that a high level of iron (100 microM FeCl(3)) in the medium suppressed DNA release, structural biofilm development, and the development of subpopulations with increased tolerance toward antimicrobial compounds. Experiments with P. aeruginosa strains harbouring fluorescent reporters suggested that expression of the pqs operon was induced in particular subpopulations of the biofilm cells under low-iron conditions (1 microM FeCl(3)), but repressed in the biofilm cells under high-iron conditions (100 microM FeCl(3)).
Collapse
Affiliation(s)
- Liang Yang
- Centre for BioScience and Technology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kim B Barken
- Centre for BioScience and Technology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mette E Skindersoe
- Centre for BioScience and Technology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Allan B Christensen
- Centre for BioScience and Technology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Michael Givskov
- Centre for BioScience and Technology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Tim Tolker-Nielsen
- Centre for BioScience and Technology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
21
|
Wiehlmann L, Munder A, Adams T, Juhas M, Kolmar H, Salunkhe P, Tümmler B. Functional genomics of Pseudomonas aeruginosa to identify habitat-specific determinants of pathogenicity. Int J Med Microbiol 2007; 297:615-23. [PMID: 17481950 DOI: 10.1016/j.ijmm.2007.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 11/26/2022] Open
Abstract
Half of all genes in the Pseudomonas aeruginosa genome have either no homology to any previously reported sequence or are homologues of previously reported genes of unknown function. The signature-tagged mutagenesis (STM) screening method allows to explore the role of these hypothetical and unknown proteins for the colonization and persistence of P. aeruginosa in eukaryotic hosts. A plasposon STM library was constructed in the virulent clinical P. aeruginosa isolate TBCF10839 that can persist in polymorphonuclear leukocytes (PMNs). The STM library was screened for plasposon mutants that were attenuated in the killing of the nematode Caenorhabditis elegans, deficient in quorum sensing and production of type II secretion effector proteins or had become more susceptible to killing by PMNs in phagocytosis assays. The three screens revealed in total 69 attenuated mutants. Fifteen mutants that carried the transposon in potential novel virulence determinants of yet unknown function were selected for further analysis. The mutants were characterized in their transcriptome and proteome and their cytotoxicity in vitro and their virulence in worm and mouse infection models in vivo. Previous studies had revealed a remarkable degree of conservation in the virulence mechanisms used by P. aeruginosa to infect hosts of divergent evolutionary origins. Testing of our novel targets did not reveal such a strict conservation. The functional characterization revealed that the fifteen proteins play highly diverse roles in the cell and become habitat-specific virulence factors upon exposure to specific hosts and/or upon exposure to specific stress conditions or host defense mechanisms.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Klinische Forschergruppe, Abteilung Pädiatrische Pneumologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Strass1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang TP, Wong ACL. A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Appl Environ Microbiol 2007; 73:5034-40. [PMID: 17574998 PMCID: PMC1951048 DOI: 10.1128/aem.00366-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia WR-C possesses an rpf/diffusible signal factor (DSF) cell-cell communication system. It produces cis-Delta2-11-methyl-dodecenoic acid, a DSF, and seven structural derivatives, which require rpfF and rpfB for synthesis. Acquisition of iron from the environment is important for bacterial growth as well as the expression of virulence genes. We identified a gene homologous to fecA, which encodes a ferric citrate receptor that transports exogenous siderophore ferric citrate from the environment into the bacterial periplasm. Western blot analysis with anti-FecA-His(6) antibody showed that the FecA homologue was induced in the iron-depleted medium supplemented with a low concentration of ferric citrate. Deletion of rpfF or rpfB resulted in reduced FecA expression compared to the wild type. Synthetic DSF restored FecA expression by the DeltarpfF mutant to the wild-type level. Reverse transcription-PCR showed that the fecA transcript was decreased in the DeltarpfF mutant compared to the wild type. These data suggest that DSF affected the level of fecA mRNA. Transposon inactivation of crp, which encodes cyclic AMP (cAMP) receptor protein (CRP) resulted in reduced FecA expression and rpfF transcript level. Putative CRP binding sites were located upstream of the rpfF promoter, indicating that the effect of CRP on FecA is through the rpf/DSF pathway and by directly controlling rpfF. We propose that CRP may serve as a checkpoint for iron uptake, protease activity, and hemolysis in response to environmental changes such as changes in concentrations of glucose, cAMP, iron, or DSF.
Collapse
Affiliation(s)
- Tzu-Pi Huang
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
23
|
Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 2007; 15:22-30. [PMID: 17118662 DOI: 10.1016/j.tim.2006.11.004] [Citation(s) in RCA: 365] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/28/2006] [Accepted: 11/08/2006] [Indexed: 11/23/2022]
Abstract
Pyoverdines are a group of structurally related siderophores produced by fluorescent Pseudomonas species. Recent genomic and biochemical data have shed new light on the complex molecular steps of pyoverdine biogenesis and explained the chemical diversity of these compounds. In the opportunistic pathogen Pseudomonas aeruginosa, pyoverdine is necessary for infection in several different disease models. The occurrence of pyoverdine-defective strains in chronic infections of patients with cystic fibrosis and the extremely high sequence diversity of genes involved in pyoverdine synthesis and uptake indicate that pyoverdine production is subject to high evolutionary pressure. Pyoverdine-dependent iron transport is also crucial for biofilm development, further expanding the importance of these siderophores in Pseudomonas biology.
Collapse
Affiliation(s)
- Paolo Visca
- Department of Biology, University Roma Tre, Rome I-00146, Italy
| | | | | |
Collapse
|
24
|
Vilchez R, Lemme A, Thiel V, Schulz S, Sztajer H, Wagner-Döbler I. Analysing traces of autoinducer-2 requires standardization of the Vibrio harveyi bioassay. Anal Bioanal Chem 2006; 387:489-96. [PMID: 17143597 DOI: 10.1007/s00216-006-0824-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 12/24/2022]
Abstract
Autoinducer-2 (furanosyl borate diester) is a biologically active compound whose role as a universal bacterial signalling molecule is currently under intense investigation. Because of its instability and the low concentrations of it found in biological samples, its detection relies at present on a bioassay that measures the difference in the timing of the luminescence of the Vibrio harveyi BB170 sensor strain with and without externally added AI-2. Here we systematically investigated which parameters affected the fold induction values of luminescence obtained in the bioassay and developed a modified protocol. Our experiments showed that growth and luminescence of V. harveyi BB170 are strongly influenced by trace elements. In particular, addition of Fe(3+) within a certain concentration range to the growth medium of the preinoculum culture improved the reproducibility and reduced the variance of the bioassay. In contrast, trace elements and vitamins introduced directly into the bioassay caused inhibitory effects. The initial density and luminescence of the sensor strain are very important and the values required for these parameters were defined. Borate interferes with the detection of AI-2 by giving false positive results. The response of V. harveyi BB170 to chemically synthesized AI-2 in the bioassay is nonlinear except over a very small concentration range; it is maximum over three orders of magnitude and shows inhibition above 35 microM. Based on the modified protocol, we were able to detect AI-2 in the absence of inhibitors with maximum fold induction values for the positive control (chemically synthesized AI-2) of >120 with a standard deviation of approximately 30% in a reliable and reproducible way.
Collapse
Affiliation(s)
- Ramiro Vilchez
- Microbial Communication Group, Department of Cell Biology and Immunology, Helmholtz-Center for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 2006; 188:8601-6. [PMID: 17028277 PMCID: PMC1698233 DOI: 10.1128/jb.01378-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The expression of virulence determinants in Pseudomonas aeruginosa is coordinately regulated in response to both the social environment--commonly referred to as quorum sensing--and to environmental cues. In this study we have dissected the various independent regulation levels for pyocyanin production, which is influenced by the homoserine lactone- and Pseudomonas quinolone signal (PQS)-mediated quorum-sensing systems as well as by iron and phosphate availability. We demonstrate that the phosphate regulon is involved in the transcriptional activation of rhlR and the augmentation of PQS and pyocyanin production under phosphate limitation. However, we also observed an enhancement of rhlR transcription under low-iron medium conditions and after the addition of PQS that was independent of the phosphate regulon. These results highlight the complexity of secondary metabolite production in P. aeruginosa via environmental cues and the quorum-sensing system.
Collapse
Affiliation(s)
- Vanessa Jensen
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bredenbruch F, Geffers R, Nimtz M, Buer J, Häussler S. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 2006; 8:1318-29. [PMID: 16872396 DOI: 10.1111/j.1462-2920.2006.01025.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virulence factor production and the development of biofilms in Pseudomonas aeruginosa have been shown to be regulated by two hierarchically organized quorum-sensing systems activated by two types of small acyl-homoserine lactone signal molecules. Recently, a third type of bacterial signal molecule, the Pseudomonas quinolone signal (PQS), has been identified, which positively regulates a subset of genes dependent on the quorum-sensing systems. However, the molecular mechanism underlying PQS signalling has remained poorly understood. In this study the global transcriptional profile of P. aeruginosa in response to PQS revealed a marked upregulation of genes belonging to the tightly interdependent functional groups of the iron acquisition and the oxidative stress response. Remarkably, most of the differentially regulated genes, as well as the induction of rhlR, could be traced back to an iron-chelating effect of PQS. Our results amount to the elucidation of how PQS affects P. aeruginosa and have important implications for the understanding of the complex regulatory circuits involved in P. aeruginosa gene regulation.
Collapse
Affiliation(s)
- Florian Bredenbruch
- Department of Cell Biology, German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
27
|
Carty NL, Layland N, Colmer-Hamood JA, Calfee MW, Pesci EC, Hamood AN. PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1. Mol Microbiol 2006; 61:782-94. [PMID: 16803594 DOI: 10.1111/j.1365-2958.2006.05269.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of several virulence factors by Pseudomonas aeruginosa is regulated through the hierarchical cell-density dependent quorum sensing (QS) systems las and rhl. A third component of the QS hierarchy, the Pseudomonas quinolone signal PQS, also controls the expression of several genes. We previously described P. aeruginosa PtxR as a transcriptional activator of the exotoxin A gene toxA. Here, we provide evidence that PtxR regulates the production of other virulence factors. Mutation of ptxR in PAO1 increased pyocyanin production. This increase was reduced in the presence of a ptxR plasmid. Throughout the growth cycle, PtxR reduced the expression of the pyocyanin operon phzA1-G1 but not phzA2-G2. As pyocyanin production is stringently controlled by QS, we examined the effect of PtxR on QS-related genes in PAO1. PtxR also reduced the expression of the PQS synthesis operon pqsABCDE. ptxR mutation increased the expression of the rhamnolipid synthesis gene rhlA but decreased lasB expression. The expression of the RhlI synthase gene rhlI and the production of the C(4)-HSL autoinducer were increased in the ptxR mutant, while the expression of the LasI synthase gene lasI and the production of 3OC(12)-HSL were reduced. These results suggest that PtxR negatively regulates the expression of the rhamnolipid and pyocyanin genes through rhlI and the pqsABCDE operon while it positively regulates the expression of lasB through lasI.
Collapse
Affiliation(s)
- Nancy L Carty
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-5907, USA
| | | | | | | | | | | |
Collapse
|
28
|
Heurlier K, Dénervaud V, Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 2006; 296:93-102. [PMID: 16503417 DOI: 10.1016/j.ijmm.2006.01.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments.
Collapse
Affiliation(s)
- Karin Heurlier
- Institute of Infection, Immunity, and Inflammation, Centre for Biomolecular Sciences, Nottingham University, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
29
|
Abstract
Work over the past few years has provided evidence that quorum sensing is a generic regulatory mechanism that allows bacteria to launch a unified, coordinated response in a population density-dependent manner to accomplish tasks which would be difficult, if not impossible, to achieve for a single bacterial cell. Quorum sensing systems are widespread among pseudomonads and the one of the human opportunistic pathogen Pseudomonas aeruginosa belongs to the most extensively studied cell-to-cell communication systems. In this organism, quorum sensing is highly complex and is made up of two interlinked N-acyl homoserine lactone (AHL)-dependent regulatory circuits, which are further modulated by a non-AHL-related signal molecule and numerous regulators acting both at the transcriptional and post-transcriptional level. This genetic complexity may be one of the key elements responsible for the tremendous environmental versatility of P. aeruginosa. Work of the past few years showed that quorum sensing is essential for the expression of a battery of virulence factors as well as for biofilm formation in P. aeruginosa and thus represents an attractive target for the design of novel drugs for the treatment of P. aeruginosa infections. Furthermore, the cell-to-cell communication ability was also demonstrated in a number of additional pseudomonads.
Collapse
Affiliation(s)
- Mario Juhas
- University of Oxford, Nuffield Department of Clinical Laboratory Sciences, Headington, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
30
|
Kim EJ, Wang W, Deckwer WD, Zeng AP. Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. MICROBIOLOGY-SGM 2005; 151:1127-1138. [PMID: 15817780 DOI: 10.1099/mic.0.27566-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of the transcriptional regulatory protein LasR, a main component of the quorum-sensing (QS) system in Pseudomonas aeruginosa, was recently found to be sensitive to several environmental factors in addition to its dependency on cell density. However, the inherent effects of the different factors have seldom been separately demonstrated due to concurrent changes of culture conditions in typical experimental settings. Furthermore, the interplays of the different factors are unknown. In this work, the effects and interplay of iron concentration and dissolved oxygen tension (pO(2)) on the expression of lasR in P. aeruginosa were studied in defined growth media with varied iron concentration and pO(2) values in computer-controlled batch and continuous cultures. beta-Galactosidase activity in a recombinant P. aeruginosa PAO1 (NCCB 2452) strain with a lasRp-lacZ fusion was used as a reporter for lasR expression. In batch culture with a constant pO(2) approximately 10 % air saturation, a strong correlation between the exhaustion of iron and the increase of lasR expression was observed. In continuous culture with nearly constant cell density but varied pO(2) values, lasR expression generally increased with increasing oxidative stress with the exception of growth under O(2)-limited conditions (pO(2) approximately equal to 0 %). Under O(2) limitation, the expression of lasR strongly depended on the concentration of iron. It showed a nearly twofold increase in cells grown under iron deprivation in comparison with cells grown in iron-replete conditions and reached the expression level seen at high oxidative stress. A preliminary proteomic analysis was carried out for extracellular proteins in samples from batch cultures grown under different iron concentrations. Several of the extracellular proteins (e.g. AprA, LasB, PrpL) which were up-regulated under iron-limited conditions were found to be QS regulated proteins. Thus, this study clearly shows the links between QS and genes involved in iron and oxygen regulation in P. aeruginosa.
Collapse
Affiliation(s)
- Eun-Jin Kim
- Division of Molecular Biotechnology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Wei Wang
- Group of TU-BCE, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Wolf-Dieter Deckwer
- Group of TU-BCE, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - An-Ping Zeng
- Division of Molecular Biotechnology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| |
Collapse
|
31
|
Aendekerk S, Diggle SP, Song Z, Høiby N, Cornelis P, Williams P, Cámara M. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. MICROBIOLOGY (READING, ENGLAND) 2005; 151:1113-1125. [PMID: 15817779 DOI: 10.1099/mic.0.27631-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Pseudomonas aeruginosa the production of multiple virulence factors depends on cell-to-cell communication through the integration of N-acylhomoserine lactone (AHL)- and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS)- dependent signalling. Mutation of genes encoding the efflux protein MexI and the porin OpmD from the MexGHI-OpmD pump resulted in the inability to produce N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-c12-hsl) and pqs and a marked reduction in n-butanoyl-L-homoserine lactone levels. Both pump mutants were impaired in growth and exhibited enhanced rather than reduced antibiotic resistance. Provision of exogenous PQS improved growth and restored AHL and virulence factor production as well as antibiotic susceptibility, indicating that the pump mutants retained their capacity to respond to PQS. RT-PCR analysis indicated that expression of the PQS biosynthetic genes, phnA and pqsA, was inhibited when the mutants reached stationary phase, suggesting that the pleiotropic phenotype observed may be due to intracellular accumulation of a toxic PQS precursor. To explore this hypothesis, double mexI phnA (unable to produce anthranilate, the precursor of PQS) and mexI pqsA mutants were constructed; the improved growth of the former suggested that the toxic compound is likely to be anthranilate or a metabolite of it. Mutations in mexI and opmD also resulted in the attenuation of virulence in rat and plant infection models. In plants, addition of PQS restored the virulence of mexI and opmD mutants. Collectively, these results demonstrate an essential function for the MexGHI-OpmD pump in facilitating cell-to-cell communication, antibiotic susceptibility and promoting virulence and growth in P. aeruginosa.
Collapse
Affiliation(s)
- Séverine Aendekerk
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zhijun Song
- Dept Clinical Microbiology 9301, University Hospital of Copenhagen, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Niels Høiby
- Dept Clinical Microbiology 9301, University Hospital of Copenhagen, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Room 6.6, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|