1
|
Masó-Martínez M, Bond J, Okolo CA, Jadhav AC, Harkiolaki M, Topham PD, Fernández-Castané A. An Integrated Approach to Elucidate the Interplay between Iron Uptake Dynamics and Magnetosome Formation at the Single-Cell Level in Magnetospirillum gryphiswaldense. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62557-62570. [PMID: 39480433 PMCID: PMC11565563 DOI: 10.1021/acsami.4c15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level. To gain insights we employed a holistic multiscale approach, i.e., from elemental iron species to bacterial populations, to elucidate the interplay between iron uptake dynamics and magnetosome formation in Magnetospirillum gryphiswaldense MSR-1 under near-native conditions. We combined a correlative microscopy approach integrating light and X-ray tomography with analytical techniques, such as flow cytometry and inductively coupled plasma spectroscopy, to evaluate the effects of iron and oxygen availability on cellular growth, magnetosome biogenesis, and intracellular iron pool in MSR-1. Our results revealed that increased iron availability under microaerobic conditions significantly promoted the formation of longer magnetosome chains and increased intracellular iron uptake, with a saturation point at 300 μM iron citrate. Beyond this threshold, additional iron did not further extend the magnetosome chain length or increase total intracellular iron levels. Moreover, our work reveals (i) a direct correlation between the labile Fe2+ pool size and magnetosome content, with higher intracellular iron concentrations correlating with increased magnetosome production, and (ii) the existence of an intracellular iron pool, distinct from magnetite, persisting during all stages of biomineralization. This study offers insights into iron dynamics in magnetosome biomineralization at a single-cell level, potentially enhancing the industrial biomanufacturing of magnetosomes.
Collapse
Affiliation(s)
- Marta Masó-Martínez
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Josh Bond
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Chidinma A Okolo
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Archana C Jadhav
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
- Chemistry
Department, University of Warwick, Coventry CV4 7SH, United Kingdom
| | - Paul D Topham
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Alfred Fernández-Castané
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
2
|
Ren G, Zhou X, Long R, Xie M, Kankala RK, Wang S, Zhang YS, Liu Y. Biomedical applications of magnetosomes: State of the art and perspectives. Bioact Mater 2023; 28:27-49. [PMID: 37223277 PMCID: PMC10200801 DOI: 10.1016/j.bioactmat.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023] Open
Abstract
Magnetosomes, synthesized by magnetotactic bacteria (MTB), have been used in nano- and biotechnological applications, owing to their unique properties such as superparamagnetism, uniform size distribution, excellent bioavailability, and easily modifiable functional groups. In this review, we first discuss the mechanisms of magnetosome formation and describe various modification methods. Subsequently, we focus on presenting the biomedical advancements of bacterial magnetosomes in biomedical imaging, drug delivery, anticancer therapy, biosensor. Finally, we discuss future applications and challenges. This review summarizes the application of magnetosomes in the biomedical field, highlighting the latest advancements and exploring the future development of magnetosomes.
Collapse
Affiliation(s)
- Gang Ren
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xia Zhou
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Shibin Wang
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yuangang Liu
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian, 361021, China
| |
Collapse
|
3
|
Salam MA, Korkmaz N, Cycil LM, Hasan F. Isolation, microscopic and magnetotactic characterization of Magnetospirillum moscoviense MS-24 from Banjosa Lake, Pakistan. Biotechnol Lett 2023:10.1007/s10529-023-03390-y. [PMID: 37227600 DOI: 10.1007/s10529-023-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023]
Abstract
At currently, approximately 70 species of magnetotactic bacteria have been identified; thus, there is an urgent need to identify more magnetotactic bacteria from diverse environmental sources with potential applications in industry and biotechnology. To the best of our knowledge, this is the first magnetotactic bacterial strain discovered in Pakistan. The first magnetotactic bacteria, Magnetospirillum moscoviense MS-24, was isolated from Banjosa Lake (Rawalakot), Pakistan, in the current investigation. Magnetospirillum moscoviense MS-24 was screened using the Racetrack method. The Magnetospirillum moscoviense MS-24 were physically characterised using Atomic Force Microscopy, High-Resolution Scanning Electron Microscopy, and Transmission Electron Microscopy. The current study used microscopy to illustrate the shape of bacteria and to find a very obvious chain of magnetosomes within the bacterial cell. The Magnetospirillum moscoviense MS-24 measured about 4 ± 0.04 µm in length and 600 ± 0.02 nm in diameter. The microfluidic chip experiments were also used to detect magnetotaxis behaviour in bacteria.
Collapse
Affiliation(s)
- Maria Abdul Salam
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, Rawalpindi Women University, Rawalpindi, Pakistan
- Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Nuriye Korkmaz
- Biosensor Group, Europe Forschungsgesellschaft mbH, Korea Institute of Science and Technology, Campus E 71, 66123, Saarbrucken, Germany
| | | | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
4
|
Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy. Mar Drugs 2022; 20:md20110724. [PMID: 36422002 PMCID: PMC9692579 DOI: 10.3390/md20110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce magnetosomes, which are membrane-embedded magnetic nanoparticles. Despite their technological applicability, the production of magnetite magnetosomes depends on the cultivation of MTB, which results in low yields. Thus, strategies for the large-scale cultivation of MTB need to be improved. Here, we describe a new approach for bioreactor cultivation of Magnetovibrio blakemorei strain MV-1T. Firstly, a fed-batch with a supplementation of iron source and N2O injection in 24-h pulses was established. After 120 h of cultivation, the production of magnetite reached 24.5 mg∙L−1. The maximum productivity (16.8 mg∙L−1∙day−1) was reached between 48 and 72 h. However, the productivity and mean number of magnetosomes per cell decreased after 72 h. Therefore, continuous culture in the chemostat was established. In the continuous process, magnetite production and productivity were 27.1 mg∙L−1 and 22.7 mg∙L−1∙day−1, respectively, at 120 h. This new approach prevented a decrease in magnetite production in comparison to the fed-batch strategy.
Collapse
|
5
|
Mandal FB. A review of the ecology, genetics, evolution, and magnetosome –induced behaviours of the magnetotactic bacteria. Isr J Ecol Evol 2021. [DOI: 10.1163/22244662-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The discovery of magnetosome and magnetotaxis in its most simple form in the magnetotactic bacteria (MTB) had created the tremendous impetus. MTB, spanning multiple phyla, are distributed worldwide, and they form the organelles called magnetosomes for biomineralization. Eight phylotypes of MTB belong to Alphaproteobacteria and Nitrospirae. MTB show preference for specific redox and oxygen concentration. Magnetosome chains function as the internal compass needle and align the bacterial cells passively along the local geomagnetic field (GMF). The nature of magnetosomes produced by MTB and their phylogeny suggest that bullet-shaped magnetites appeared about 3.2 billion years ago with the first magnetosomes. All MTB contains ten genes in conserved mamAB operon for magnetosome chain synthesis of which nine genes are conserved in greigite-producing MTB. Many candidate genes identify the aero-, redox-, and perhaps phototaxis. Among the prokaryotes, the MTB possess the highest number of O2-binding proteins. Magnetofossils serve as an indicator of oxygen and redox levels of the ancient environments. Most descendants of ancestral MTB lost the magnetosome genes in the course of evolution. Environmental conditions initially favored the evolution of MTB and expansion of magnetosome-formation genes. Subsequent changes in atmospheric oxygen concentration have led to changes in the ecology of MTB, loss of magnetosome genes, and evolution of nonMTB.
Collapse
Affiliation(s)
- Fatik Baran Mandal
- Department of Zoology, Bankura Christian College, College Road, Bankura, West Bengal, 722101, India
| |
Collapse
|
6
|
Chan ACK, Lin H, Koch D, Grass G, Nies DH, Murphy MEP. A copper site is required for iron transport by the periplasmic proteins P19 and FetP. Metallomics 2020; 12:1530-1541. [PMID: 32780051 DOI: 10.1039/d0mt00130a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Campylobacter jejuni is a leading cause of food-borne gastrointestinal disease in humans and uropathogenic Escherichia coli is a leading cause of urinary tract infections. Both human pathogens harbour a homologous iron uptake system (termed cjFetM-P19 in C. jejuni and ecFetM-FetP in E. coli). Although these systems are important for growth under iron limitation, the mechanisms by which these systems function during iron transport remain undefined. The copper ions bound to P19 and FetP, the homologous periplasmic proteins, are coordinated in an uncommon penta-dentate manner involving a Met-Glu-His3 motif and exhibit positional plasticity. Here we demonstrate the function of the Met and Glu residues in modulating copper binding and controlling copper positioning through site-directed variants, binding assays, and crystal structures. Growth of C. jejuni strains with these p19 variants is impaired under iron limited conditions as compared to the wild-type strain. Additionally, an acidic residue-rich secondary site is required for binding iron and function in vivo. Finally, western blot analyses demonstrate direct and specific interactions between periplasmic P19 and FetP with the large periplasmic domain of their respective inner membrane transporters cjFetM and ecFetM.
Collapse
Affiliation(s)
- Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Canada.
| | - Helen Lin
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Canada.
| | - Doreen Koch
- Department of Molecular Microbiology, Martin-Luther-University Halle, Wittenberg, European Community, Germany
| | - Gregor Grass
- Bundeswehr Institute for Microbiology, Munich, Germany
| | - Dietrich H Nies
- Department of Molecular Microbiology, Martin-Luther-University Halle, Wittenberg, European Community, Germany
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Canada.
| |
Collapse
|
7
|
Sannigrahi S, Arumugasamy SK, Mathiyarasu J, K S. Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111071. [PMID: 32993971 DOI: 10.1016/j.msec.2020.111071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
Epidemic Salmonellosis contracted through the consumption of contaminated food substances is a global concern. Thus, simple and effective diagnostic methods are needed. Magnetosome-based biosensors are gaining attention because of their promising features. Here, we developed a biosensor employing a magnetosome-anti-Salmonella antibody complex to detect lipopolysaccharide (somatic "O" antigen) and Salmonella typhimurium in real samples. Magnetosome was extracted from Magnetospirillum sp. RJS1 and characterized by microscopy. The magnetosome samples (1 and 2 mg/mL) were directly conjugated to anti-Salmonella antibody (0.8-200 μg/mL) and confirmed by spectroscopy and zeta potential. The concentrations of magnetosome, antibody and lipopolysaccharide were optimized by ELISA. The 2 mg/mL-0.8 μg/mL magnetosome-antibody complex was optimal for detecting lipopolysaccharide (0.001 μg/mL). Our assay is a cost-effective (60%) and sensitive (50%) method in detection of lipopolysaccharide. The optimized magnetosome-antibody complex was applied to an electrode surface and stabilized using an external magnetic field. Increased resistance confirmed the detection of lipopolysaccharide (at 0.001-0.1 μg/mL) using impedance spectroscopy. Significantly, the R2 value was 0.960. Then, the developed prototype biosensor was applied to food and water samples. ELISA confirmed the presence of lipopolysaccharide in homogenized infected samples and cross reactivity assays confirmed the specificity of the biosensor. Further, the biosensor showed low detection limit (101 CFU/mL) in water and milk sample demonstrating its sensitivity. Regression coefficient of 0.974 in water and 0.982 in milk was obtained. The magnetosome-antibody complex captured 90% of the S. typhimurium in real samples which was also confirmed in FE-SEM. Thus, the developed biosensor is selective, specific, rapid and sensitive for detection of S. typhimurium.
Collapse
Affiliation(s)
- Sumana Sannigrahi
- Marine Biotechnology and Bioproducts Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shiva Kumar Arumugasamy
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Suthindhiran K
- Marine Biotechnology and Bioproducts Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Crystallizing the function of the magnetosome membrane mineralization protein Mms6. Biochem Soc Trans 2017; 44:883-90. [PMID: 27284056 PMCID: PMC4900750 DOI: 10.1042/bst20160057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/18/2022]
Abstract
The literature on the magnetosome membrane (MM) protein, magnetosome membrane specific6 (Mms6), is reviewed. Mms6 is native to magnetotactic bacteria (MTB). These bacteria take up iron from solution and biomineralize magnetite nanoparticles within organelles called magnetosomes. Mms6 is a small protein embedded on the interior of the MM and was discovered tightly associated with the formed mineral. It has been the subject of intensive research as it is seen to control the formation of particles both in vivo and in vitro. Here, we compile, review and discuss the research detailing Mms6’s activity within the cell and in a range of chemical in vitro methods where Mms6 has a marked effect on the composition, size and distribution of synthetic particles, with approximately 21 nm in size for solution precipitations and approximately 90 nm for those formed on surfaces. Furthermore, we review and discuss recent work detailing the structure and function of Mms6. From the evidence, we propose a mechanism for its function as a specific magnetite nucleation protein and summaries the key features for this action: namely, self-assembly to display a charged surface for specific iron binding, with the curvature of the surfaces determining the particle size. We suggest these may aid design of biomimetic additives for future green nanoparticle production.
Collapse
|
9
|
Descamps ECT, Monteil CL, Menguy N, Ginet N, Pignol D, Bazylinski DA, Lefèvre CT. Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae. Syst Appl Microbiol 2017. [PMID: 28622795 DOI: 10.1016/j.syapm.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A magnetotactic bacterium, designated strain BW-1T, was isolated from a brackish spring in Death Valley National Park (California, USA) and cultivated in axenic culture. The Gram-negative cells of strain BW-1T are relatively large and rod-shaped and possess a single polar flagellum (monotrichous). This strain is the first magnetotactic bacterium isolated in axenic culture capable of producing greigite and/or magnetite nanocrystals aligned in one or more chains per cell. Strain BW-1T is an obligate anaerobe that grows chemoorganoheterotrophically while reducing sulfate as a terminal electron acceptor. Optimal growth occurred at pH 7.0 and 28°C with fumarate as electron donor and carbon source. Based on its genome sequence, the G+C content is 40.72mol %. Phylogenomic and phylogenetic analyses indicate that strain BW-1T belongs to the Desulfobacteraceae family within the Deltaproteobacteria class. Based on average amino acid identity, strain BW-1T can be considered as a novel species of a new genus, for which the name Desulfamplus magnetovallimortis is proposed. The type strain of D. magnetovallimortis is BW-1T (JCM 18010T-DSM 103535T).
Collapse
Affiliation(s)
- Elodie C T Descamps
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance, France
| | - Caroline L Monteil
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance, France
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Nicolas Ginet
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance, France; CNRS/Aix-Marseille Université, UMR7283 Laboratoire de Chimie Bactérienne, 13009 Marseille, France
| | - David Pignol
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance, France
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance, France.
| |
Collapse
|
10
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
11
|
Ali I, Peng C, Khan ZM, Naz I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J Basic Microbiol 2017; 57:643-652. [PMID: 28464298 DOI: 10.1002/jobm.201700052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/11/2017] [Accepted: 04/09/2017] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) have started to be employed for the biosynthesis of magnetic nanoparticles, due to the rapidly increasing demand for nanoparticles in biomedical, biotechnology and environmental protection. MBT are the group of prokaryotes that have the ability to produce bio-magnetic minerals or bio-magnetic crystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in numerous shapes and size ranges, known as magnetosomes (MS). MS compel MTB to respond to the applied external magnetic field. However, it is extremely difficult to grow MTB and produce high yield of MS under artificial environmental conditions, thus creating a major hurdle to relocate MTB technology from laboratory scale to industrial or commercial level. Therefore, to best of our knowledge this review is the first attempt to highlight existing research developments about the laboratory scale and mass production of MS by MTB. Moreover, the optimum culture media and environmental conditions used for the cultivation of MTB were also considered. Finally, future research is encouraged for the improvement of MS yield which will result in the development of advanced nanotechnology/magnetotechnology.
Collapse
Affiliation(s)
- Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zahid M Khan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan
| | - Iffat Naz
- Department of Biology, Scientific Unit, Deanship of Educational services, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Shi XY, Zhang LL, Wu F, Fu YY, Yin SJ, Si YX, Park YD. Kinetics for Cu(2+) induced Sepia pharaonis arginine kinase inactivation and aggregation. Int J Biol Macromol 2016; 91:926-33. [PMID: 27318110 DOI: 10.1016/j.ijbiomac.2016.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/01/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
Arginine kinase plays an important role in cellular energy metabolism and is closely related to the environmental stress response in marine invertebrates. We studied the Cu(2+)-mediated inhibition and aggregation of Sepia pharaonis arginine kinase (SPAK) and found that Cu(2+) markedly inhibited the SPAK activity along with mixed-type inhibition against the arginine substrate and noncompetitive inhibition against the ATP cofactor. Spectrofluorimetry results showed that Cu(2+) induced a tertiary structure change in SPAK, resulting in exposure of the hydrophobic surface and increased aggregation. Cu(2+)-mediated SPAK aggregation followed first-order kinetics consistent with monophasic and a biphasic processes. Addition of osmolytes, including glycine and proline, effectively blocked SPAK aggregation and restored SPAK activity. Our results demonstrated the effects of Cu(2+) on SPAK catalytic function, conformation, and aggregation, as well as the protective effects of osmolytes on SPAK folding. This study provided important insights into the role of Cu(2+) as a negative effector of the S. pharaonis metabolic enzyme AK and the possible responses of cephalopods to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Xiao-Yu Shi
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Li-Li Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Feng Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yang-Yong Fu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Yue-Xiu Si
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China.
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, PR China.
| |
Collapse
|
13
|
Mériaux S, Boucher M, Marty B, Lalatonne Y, Prévéral S, Motte L, Lefèvre CT, Geffroy F, Lethimonnier F, Péan M, Garcia D, Adryanczyk-Perrier G, Pignol D, Ginet N. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Adv Healthc Mater 2015; 4:1076-83. [PMID: 25676134 DOI: 10.1002/adhm.201400756] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Indexed: 12/28/2022]
Abstract
The fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T₂-contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range. Purified magnetosomes are water-dispersible and stable within physiological conditions and exhibit at 17.2 T a transverse relaxivity r₂ four times higher than commercial ferumoxide. The subsequent gain in sensitivity by T₂(*) -weighted imaging at 17.2 T of the mouse brain vasculature is evidenced in vivo after tail vein injection of magnetosomes representing a low dose of iron (20 μmoliron kg(-1)), whereas no such phenomenon with the same dose of ferumoxide is observed. Preclinical studies of human pathologies in animal models will benefit from the combination of high magnetic field MRI with sensitive, low dose, easy-to-produce biocompatible contrast agents derived from bacterial magnetosomes.
Collapse
Affiliation(s)
- Sébastien Mériaux
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | - Marianne Boucher
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | - Benjamin Marty
- Institute of Myology (NMR Laboratory); CEA/DSV/I BM/MIRCen (IdM NMR Laboratory); UPMC Paris 6 University; 75013 Paris France
| | - Yoann Lalatonne
- Paris 13 University/Sorbonne Paris Cité/CSPBAT/CNRS (UMR7244); 93017 Bobigny Cedex France
| | - Sandra Prévéral
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Laurence Motte
- Paris 13 University/Sorbonne Paris Cité/CSPBAT/CNRS (UMR7244); 93017 Bobigny Cedex France
| | - Christopher T. Lefèvre
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Françoise Geffroy
- CEA/DSV/I BM/NeuroSpin/UNIRS; CEA Saclay; 91191 Gif-sur-Yvette Cedex France
| | | | - Michel Péan
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Daniel Garcia
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Géraldine Adryanczyk-Perrier
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - David Pignol
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| | - Nicolas Ginet
- CEA/Aix-Marseille University/CNRS (UMR7265); DSV/IBEB/SBVME/LBC; CEA Cadarache; 13108 Saint-Paul-lez-Durance Cedex France
| |
Collapse
|
14
|
Wen Q, Liu X, Wang H, Lin J. A versatile and efficient markerless gene disruption system forAcidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol 2014; 16:3499-514. [DOI: 10.1111/1462-2920.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Qing Wen
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Huiyan Wang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| |
Collapse
|
15
|
Abstract
Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Collapse
|
16
|
Moisescu C, Ardelean II, Benning LG. The effect and role of environmental conditions on magnetosome synthesis. Front Microbiol 2014; 5:49. [PMID: 24575087 PMCID: PMC3920197 DOI: 10.3389/fmicb.2014.00049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/23/2014] [Indexed: 12/14/2022] Open
Abstract
Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, "magnetofossils," have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron.
Collapse
Affiliation(s)
- Cristina Moisescu
- Department of Microbiology, Institute of Biology BucharestBucharest, Romania
| | - Ioan I. Ardelean
- Department of Microbiology, Institute of Biology BucharestBucharest, Romania
| | | |
Collapse
|
17
|
Lefèvre CT, Wu LF. Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol 2013; 21:534-43. [PMID: 23948365 DOI: 10.1016/j.tim.2013.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023]
Abstract
There are few examples of protein- and lipid-bounded organelles in bacteria that are encoded by conserved gene clusters and lead to a specific function. The magnetosome chain represents one of these rare examples and is responsible for magnetotaxis in magnetotactic bacteria (MTB), a behavior thought to aid in finding their optimal growth conditions. The origin and evolution of the magnetotaxis is still a matter of debate. Recent breakthroughs in isolation, cultivation, single-cell separation, and whole-genome sequencing have generated abundant data that give new insights into the biodiversity and evolution of MTB.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Université, Unité Mixte de Recherche (UMR) 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, 13108, Saint-Paul-lès-Durance, France.
| | | |
Collapse
|
18
|
Magnetotactic bacteria from extreme environments. Life (Basel) 2013; 3:295-307. [PMID: 25369742 PMCID: PMC4187138 DOI: 10.3390/life3020295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.
Collapse
|
19
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
20
|
Abreu F, Sousa AA, Aronova MA, Kim Y, Cox D, Leapman RD, Andrade LR, Kachar B, Bazylinski DA, Lins U. Cryo-electron tomography of the magnetotactic vibrio Magnetovibrio blakemorei: insights into the biomineralization of prismatic magnetosomes. J Struct Biol 2012; 181:162-8. [PMID: 23246783 DOI: 10.1016/j.jsb.2012.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/10/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
We examined the structure and biomineralization of prismatic magnetosomes in the magnetotactic marine vibrio Magnetovibrio blakemorei strain MV-1 and a non-magnetotactic mutant derived from it, using a combination of cryo-electron tomography and freeze-fracture. The vesicles enveloping the Magnetovibrio magnetosomes were elongated and detached from the cell membrane. Magnetosome crystal formation appeared to be initiated at a nucleation site on the membrane inner surface. Interestingly, while scattered filaments were observed in the surrounding cytoplasm, their association with the magnetosome chains could not be unequivocally established. Our data suggest fundamental differences between prismatic and octahedral magnetosomes in their mechanisms of nucleation and crystal growth as well as in their structural relationships with the cytoplasm and plasma membrane.
Collapse
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, CCS, Bloco I, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Biophysical and bioinformatic analyses implicate the Treponema pallidum Tp34 lipoprotein (Tp0971) in transition metal homeostasis. J Bacteriol 2012; 194:6771-81. [PMID: 23042995 DOI: 10.1128/jb.01494-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis is a critical function of many integral and peripheral membrane proteins. The genome of the etiologic agent of syphilis, Treponema pallidum, is compact and devoid of many metabolic enzyme genes. Nevertheless, it harbors genes coding for homologs of several enzymes that typically require either iron or zinc. The product of the tp0971 gene of T. pallidum, designated Tp34, is a periplasmic lipoprotein that is thought to be tethered to the inner membrane of this organism. Previous work on a water-soluble (nonacylated) recombinant version of Tp34 established that this protein binds to Zn(2+), which, like other transition metal ions, stabilizes the dimeric form of the protein. In this study, we employed analytical ultracentrifugation to establish that four transition metal ions (Ni(2+), Co(2+), Cu(2+), and Zn(2+)) readily induce the dimerization of Tp34; Cu(2+) (50% effective concentration [EC(50)] = 1.7 μM) and Zn(2+) (EC(50) = 6.2 μM) were the most efficacious of these ions. Mutations of the crystallographically identified metal-binding residues hindered the ability of Tp34 to dimerize. X-ray crystallography performed on crystals of Tp34 that had been incubated with metal ions indicated that the binding site could accommodate the metals examined. The findings presented herein, coupled with bioinformatic analyses of related proteins, point to Tp34's likely role in metal ion homeostasis in T. pallidum.
Collapse
|
22
|
Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J, Beveridge TJ, Moskowitz BM, Ward B, Schübbe S, Dubbels BL, Simpson B. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol 2012; 63:1824-1833. [PMID: 22984137 DOI: 10.1099/ijs.0.044453-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A magnetotactic bacterium, designated strain MV-1(T), was isolated from sulfide-rich sediments in a salt marsh near Boston, MA, USA. Cells of strain MV-1(T) were Gram-negative, and vibrioid to helicoid in morphology. Cells were motile by means of a single polar flagellum. The cells appeared to display a transitional state between axial and polar magnetotaxis: cells swam in both directions, but generally had longer excursions in one direction than the other. Cells possessed a single chain of magnetosomes containing truncated hexaoctahedral crystals of magnetite, positioned along the long axis of the cell. Strain MV-1(T) was a microaerophile that was also capable of anaerobic growth on some nitrogen oxides. Salinities greater than 10 % seawater were required for growth. Strain MV-1(T) exhibited chemolithoautotrophic growth on thiosulfate and sulfide with oxygen as the terminal electron acceptor (microaerobic growth) and on thiosulfate using nitrous oxide (N2O) as the terminal electron acceptor (anaerobic growth). Chemo-organoautotrophic and methylotrophic growth was supported by formate under microaerobic conditions. Autotrophic growth occurred via the Calvin-Benson-Bassham cycle. Chemo-organoheterotrophic growth was supported by various organic acids and amino acids, under microaerobic and anaerobic conditions. Optimal growth occurred at pH 7.0 and 26-28 °C. The genome of strain MV-1(T) consisted of a single, circular chromosome, about 3.7 Mb in size, with a G+C content of 52.9-53.5 mol%.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MV-1(T) belongs to the family Rhodospirillaceae within the Alphaproteobacteria, but is not closely related to the genus Magnetospirillum. The name Magnetovibrio blakemorei gen. nov., sp. nov. is proposed for strain MV-1(T). The type strain of Magnetovibrio blakemorei is MV-1(T) ( = ATCC BAA-1436(T) = DSM 18854(T)).
Collapse
Affiliation(s)
- Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher T Lefèvre
- CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire de Bioénergétique Cellulaire, 13108 Saint Paul lez Durance, France
| | - Denis Trubitsyn
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Jiasong Fang
- Department of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI 96744, USA
| | - Terrence J Beveridge
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bruce M Moskowitz
- Institute for Rock Magnetism, Department of Earth Sciences, University of Minnesota-Twin Cities, 310 Pillsbury Dr., SE, Minneapolis, MN 55455, USA
| | - Bruce Ward
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, UK
| | - Sabrina Schübbe
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Bradley L Dubbels
- Life Technologies Corporation, 29851 Willow Creek Road, Eugene, OR 97402, USA
| | - Brian Simpson
- United States Navy, Helseacombatron Two Three, San Diego, CA 92135, USA
| |
Collapse
|
23
|
The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. Infect Immun 2012; 80:3880-91. [PMID: 22927049 DOI: 10.1128/iai.00086-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD(50)) relative to the Yfe(+) Feo(+) parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified.
Collapse
|
24
|
Goldhawk DE, Rohani R, Sengupta A, Gelman N, Prato FS. Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:378-88. [DOI: 10.1002/wnan.1165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Nishida K, Silver PA. Induction of biogenic magnetization and redox control by a component of the target of rapamycin complex 1 signaling pathway. PLoS Biol 2012; 10:e1001269. [PMID: 22389629 PMCID: PMC3289596 DOI: 10.1371/journal.pbio.1001269] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022] Open
Abstract
Most organisms are simply diamagnetic, while magnetotactic bacteria and migratory animals are among organisms that exploit magnetism. Biogenic magnetization not only is of fundamental interest, but also has industrial potential. However, the key factor(s) that enable biogenic magnetization in coordination with other cellular functions and metabolism remain unknown. To address the requirements for induction and the application of synthetic bio-magnetism, we explored the creation of magnetism in a simple model organism. Cell magnetization was first observed by attraction towards a magnet when normally diamagnetic yeast Saccharomyces cerevisiae were grown with ferric citrate. The magnetization was further enhanced by genetic modification of iron homeostasis and introduction of ferritin. The acquired magnetizable properties enabled the cells to be attracted to a magnet, and be trapped by a magnetic column. Superconducting quantum interference device (SQUID) magnetometry confirmed and quantitatively characterized the acquired paramagnetism. Electron microscopy and energy-dispersive X-ray spectroscopy showed electron-dense iron-containing aggregates within the magnetized cells. Magnetization-based screening of gene knockouts identified Tco89p, a component of TORC1 (Target of rapamycin complex 1), as important for magnetization; loss of TCO89 and treatment with rapamycin reduced magnetization in a TCO89-dependent manner. The TCO89 expression level positively correlated with magnetization, enabling inducible magnetization. Several carbon metabolism genes were also shown to affect magnetization. Redox mediators indicated that TCO89 alters the intracellular redox to an oxidized state in a dose-dependent manner. Taken together, we demonstrated that synthetic induction of magnetization is possible and that the key factors are local redox control through carbon metabolism and iron supply.
Collapse
Affiliation(s)
- Keiji Nishida
- Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School and the Wyss Institute of Biological Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Yersinia pestis transition metal divalent cation transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:267-79. [PMID: 22782773 DOI: 10.1007/978-1-4614-3561-7_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 2011; 62:2443-2450. [PMID: 22140150 DOI: 10.1099/ijs.0.037697-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A marine, magnetotactic bacterium, designated strain MMS-1(T), was isolated from mud and water from a salt marsh in Woods Hole, Massachusetts, USA, after enrichment in defined oxygen-concentration/redox-gradient medium. Strain MMS-1(T) is an obligate microaerophile capable of chemoorganoheterotrophic and chemolithoautotrophic growth. Optimal growth occurred at pH 7.0 and 24-26 °C. Chemolithoautotrophic growth occurred with thiosulfate as the electron donor and autotrophic carbon fixation was via the Calvin-Benson-Bassham cycle. The G+C content of the DNA of strain MMS-1(T) was 47.2 mol%. Cells were Gram-negative and morphologically variable, with shapes that ranged from that of a lima bean to fully helical. Cells were motile by means of a single flagellum at each end of the cell (amphitrichous). Regardless of whether grown in liquid or semi-solid cultures, strain MMS-1(T) displayed only polar magnetotaxis and possessed a single chain of magnetosomes containing elongated octahedral crystals of magnetite, positioned along the long axis of the cell. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MMS-1(T) belongs to the family Rhodospirillaceae within the Alphaproteobacteria, and is distantly related to species of the genus Magnetospirillum. Strain MMS-1(T) is therefore considered to represent a novel species of a new genus, for which the name Magnetospira thiophila gen. nov., sp. nov. is proposed. The type strain of Magnetospira thiophila is MMS-1(T) ( = ATCC BAA-1438(T) = JCM 17960(T)).
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher T Lefèvre
- Laboratoire de Bioénergétique Cellulaire UMR 6191, CEA Cadarache, DSV, IBEB, Saint-Paul-lez-Durance 13108, France
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| | - Weidong Zhao
- Northeast Ohio Medical University, 4209 SR 44, PO Box 95, Rootstown, OH 44272, USA
| | - Terry J Beveridge
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA
| |
Collapse
|
28
|
Koch D, Chan ACK, Murphy MEP, Lilie H, Grass G, Nies DH. Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11. J Biol Chem 2011; 286:25317-30. [PMID: 21596746 PMCID: PMC3137103 DOI: 10.1074/jbc.m111.222745] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/25/2011] [Indexed: 11/06/2022] Open
Abstract
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His(44), Met(90), His(97), and His(127), and CuB, a second degenerate octahedral geometry with the addition of Glu(46). The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.
Collapse
Affiliation(s)
| | - Anson C. K. Chan
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hauke Lilie
- the Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Gregor Grass
- the School of Biological Sciences, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588, and
- the Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | | |
Collapse
|
29
|
Baumgartner J, Faivre D. Magnetite biomineralization in bacteria. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:3-27. [PMID: 21877261 DOI: 10.1007/978-3-642-21230-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetotactic bacteria are able to biomineralize magnetic crystals in intracellular organelles, so-called "magnetosomes." These particles exhibit species- and strain-specific size and morphology. They are of great interest for biomimetic nanotechnological and biotechnological research due to their fine-tuned magnetic properties and because they challenge our understanding of the classical principles of crystallization. Magnetotactic bacteria use these highly optimized particles, which form chains within the bacterial cells, as a magnetic field actuator, enabling them to navigate. In this chapter, we discuss the current biological and chemical knowledge of magnetite biomineralization in these bacteria. We highlight the extraordinary properties of magnetosomes and some resulting potential applications.
Collapse
Affiliation(s)
- Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
30
|
Desrosiers DC, Bearden SW, Mier I, Abney J, Paulley JT, Fetherston JD, Salazar JC, Radolf JD, Perry RD. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence. Infect Immun 2010; 78:5163-77. [PMID: 20855510 PMCID: PMC2981304 DOI: 10.1128/iai.00732-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/12/2010] [Accepted: 09/08/2010] [Indexed: 01/08/2023] Open
Abstract
Little is known about Zn homeostasis in Yersinia pestis, the plague bacillus. The Znu ABC transporter is essential for zinc (Zn) uptake and virulence in a number of bacterial pathogens. Bioinformatics analysis identified ZnuABC as the only apparent high-affinity Zn uptake system in Y. pestis. Mutation of znuACB caused a growth defect in Chelex-100-treated PMH2 growth medium, which was alleviated by supplementation with submicromolar concentrations of Zn. Use of transcriptional reporters confirmed that Zur mediated Zn-dependent repression and that it can repress gene expression in response to Zn even in the absence of Znu. Virulence testing in mouse models of bubonic and pneumonic plague found only a modest increase in survival in low-dose infections by the znuACB mutant. Previous studies of cluster 9 (C9) transporters suggested that Yfe, a well-characterized C9 importer for manganese (Mn) and iron in Y. pestis, might function as a second, high-affinity Zn uptake system. Isothermal titration calorimetry revealed that YfeA, the solute-binding protein component of Yfe, binds Mn and Zn with comparably high affinities (dissociation constants of 17.8 ± 4.4 nM and 6.6 ± 1.2 nM, respectively), although the complete Yfe transporter could not compensate for the loss of Znu in in vitro growth studies. Unexpectedly, overexpression of Yfe interfered with the znu mutant's ability to grow in low concentrations of Zn, while excess Zn interfered with the ability of Yfe to import iron at low concentrations; these results suggest that YfeA can bind Zn in the bacterial cell but that Yfe is incompetent for transport of the metal. In addition to Yfe, we have now eliminated MntH, FetMP, Efe, Feo, a substrate-binding protein, and a putative nickel transporter as the unidentified, secondary Zn transporter in Y. pestis. Unlike other bacterial pathogens, Y. pestis does not require Znu for high-level infectivity and virulence; instead, it appears to possess a novel class of transporter, which can satisfy the bacterium's Zn requirements under in vivo metal-limiting conditions. Our studies also underscore the need for bacterial cells to balance binding and transporter specificities within the periplasm in order to maintain transition metal homeostasis.
Collapse
Affiliation(s)
- Daniel C. Desrosiers
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Scott W. Bearden
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - James T. Paulley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jacqueline D. Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Juan C. Salazar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Justin D. Radolf
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, Connecticut, Departments of Medicine, Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
31
|
Chan ACK, Doukov TI, Scofield M, Tom-Yew SAL, Ramin AB, Mackichan JK, Gaynor EC, Murphy MEP. Structure and function of P19, a high-affinity iron transporter of the human pathogen Campylobacter jejuni. J Mol Biol 2010; 401:590-604. [PMID: 20600116 DOI: 10.1016/j.jmb.2010.06.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
Campylobacter jejuni, a major cause of acute bacterial diarrhea in humans, expresses numerous proteins to import diverse forms of essential iron. The expression of p19 and an adjacent iron transporter homologue (ftr1) is strongly induced upon iron limitation, suggesting a function in iron acquisition. Here, we show that the loss of P19 alone is detrimental to growth on iron-restricted media. Furthermore, metal binding analysis demonstrates that recombinant P19 has distinct copper and iron binding sites. Crystal structures of P19 have been solved to 1.41 A resolution, revealing an immunoglobulin-like fold. A P19 homodimer in which both monomers contribute ligands to two equivalent copper sites located adjacent to methionine-rich patches is observed. Copper coordination occurs via three histidine residues (His42, His95, and His132) and Met88. A solvent channel lined with conserved acidic residues leads to the copper site. Soaking crystals with a solution of manganese as iron analog reveals a second metal binding site in this solvent channel (metal-metal distance, 7.7 A). Glu44 lies between the metal sites and displays multiple conformations in the crystal structures, suggesting a role in regulating metal-metal interaction. Dimerization is shown to be metal dependent in vitro and is detected in vivo by cross-linking.
Collapse
Affiliation(s)
- Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Fetherston JD, Kirillina O, Bobrov AG, Paulley JT, Perry RD. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun 2010; 78:2045-52. [PMID: 20160020 PMCID: PMC2863531 DOI: 10.1128/iai.01236-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/30/2009] [Accepted: 02/04/2010] [Indexed: 01/18/2023] Open
Abstract
Iron acquisition from the host is an important step in the pathogenic process. While Yersinia pestis has multiple iron transporters, the yersiniabactin (Ybt) siderophore-dependent system plays a major role in iron acquisition in vitro and in vivo. In this study, we determined that the Ybt system is required for the use of iron bound by transferrin and lactoferrin and examined the importance of the Ybt system for virulence in mouse models of bubonic and pneumonic plague. Y. pestis mutants unable to either transport Ybt or synthesize the siderophore were both essentially avirulent via subcutaneous injection (bubonic plague model). Surprisingly, via intranasal instillation (pneumonic plague model), we saw a difference in the virulence of Ybt biosynthetic and transport mutants. Ybt biosynthetic mutants displayed an approximately 24-fold-higher 50% lethal dose (LD(50)) than transport mutants. In contrast, under iron-restricted conditions in vitro, a Ybt transport mutant had a more severe growth defect than the Ybt biosynthetic mutant. Finally, a Delta pgm mutant had a greater loss of virulence than the Ybt biosynthetic mutant, indicating that the 102-kb pgm locus encodes a virulence factor, in addition to Ybt, that plays a role in the pathogenesis of pneumonic plague.
Collapse
Affiliation(s)
- Jacqueline D. Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Alexander G. Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - James T. Paulley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0298
| |
Collapse
|
33
|
Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 2010; 76:3220-7. [PMID: 20363801 DOI: 10.1128/aem.00408-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 microm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of < or =480 nm (blue). We devised a "light racetrack" to exploit this behavior, which was used to photoconcentrate nMMPs for specific purposes (e.g., DNA extraction) even though their numbers were low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class.
Collapse
|
34
|
Pieper R, Huang ST, Parmar PP, Clark DJ, Alami H, Fleischmann RD, Perry RD, Peterson SN. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation. BMC Microbiol 2010; 10:30. [PMID: 20113483 PMCID: PMC2835676 DOI: 10.1186/1471-2180-10-30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/29/2010] [Indexed: 11/29/2022] Open
Abstract
Background The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C). Results Differential protein display was performed for three Y. pestis subcellular fractions. Five characterized Y. pestis iron/siderophore acquisition systems (Ybt, Yfe, Yfu, Yiu and Hmu) and a putative iron/chelate outer membrane receptor (Y0850) were increased in abundance in iron-starved cells. The iron-sulfur (Fe-S) cluster assembly system Suf, adapted to oxidative stress and iron starvation in E. coli, was also more abundant, suggesting functional activity of Suf in Y. pestis under iron-limiting conditions. Metabolic and reactive oxygen-deactivating enzymes dependent on Fe-S clusters or other iron cofactors were decreased in abundance in iron-depleted cells. This data was consistent with lower activities of aconitase and catalase in iron-starved vs. iron-rich cells. In contrast, pyruvate oxidase B which metabolizes pyruvate via electron transfer to ubiquinone-8 for direct utilization in the respiratory chain was strongly increased in abundance and activity in iron-depleted cells. Conclusions Many protein abundance differences were indicative of the important regulatory role of the ferric uptake regulator Fur. Iron deficiency seems to result in a coordinated shift from iron-utilizing to iron-independent biochemical pathways in the cytoplasm of Y. pestis. With growth temperature as an additional variable in proteomic comparisons of the Y. pestis fractions (26°C and 37°C), there was little evidence for temperature-specific adaptation processes to iron starvation.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals 2010; 23:275-94. [DOI: 10.1007/s10534-009-9286-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/17/2009] [Indexed: 01/20/2023]
|
36
|
Abstract
Magnetosomes are specialized organelles for magnetic navigation that comprise membrane-enveloped, nano-sized crystals of a magnetic iron mineral; they are formed by a diverse group of magnetotactic bacteria (MTB). The synthesis of magnetosomes involves strict genetic control over intracellular differentiation, biomineralization, and their assembly into highly ordered chains. Physicochemical control over biomineralization is achieved by compartmentalization within vesicles of the magnetosome membrane, which is a phospholipid bilayer associated with a specific set of proteins that have known or suspected functions in vesicle formation, iron transport, control of crystallization, and arrangement of magnetite particles. Magnetosome formation is genetically complex, and relevant genes are predominantly located in several operons within a conserved genomic magnetosome island that has been likely transferred horizontally and subsequently adapted between diverse MTB during evolution. This review summarizes the recent progress in our understanding of magnetobacterial cell biology, genomics, and the genetic control of magnetosome formation and magnetotaxis.
Collapse
Affiliation(s)
- Christian Jogler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany.
| | | |
Collapse
|
37
|
Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2009; 75:4835-52. [PMID: 19465526 DOI: 10.1128/aem.02874-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci.
Collapse
|
38
|
A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J Bacteriol 2008; 190:8075-85. [PMID: 18931123 DOI: 10.1128/jb.00821-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal "twin arginine" signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.
Collapse
|
39
|
Affiliation(s)
- Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
40
|
Schüler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 2008; 32:654-72. [PMID: 18537832 DOI: 10.1111/j.1574-6976.2008.00116.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.
Collapse
Affiliation(s)
- Dirk Schüler
- Faculty of Biology, Microbiology, Ludwig Maximilians University, München, Germany.
| |
Collapse
|
41
|
Bazylinski DA, Schübbe S. Controlled biomineralization by and applications of magnetotactic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:21-62. [PMID: 17869601 DOI: 10.1016/s0065-2164(07)62002-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada 89154, USA
| | | |
Collapse
|
42
|
Wenbing L, Longjiang Y, Pengpeng Z, Min Z. Isolation of magnetotactic bacterium WM-1 from freshwater sediment and phylogenetic characterization. Arch Microbiol 2007; 188:97-102. [PMID: 17429614 DOI: 10.1007/s00203-007-0231-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/27/2007] [Indexed: 11/30/2022]
Abstract
The magnetotactic bacterium was isolated from freshwater sediment from North Lake of Wuhan. The isolate, designated WM-1, was Gram-negative, helical shaped, and studied by means of electron microscopy. The strain WM-1 was 0.2-0.4 microm in diameter and 3-4 microm in length. The DNA G + C content was found to be 65.7 mol%. Phylogenetic analysis of the 16S rDNA gene (Accession number DQ899734 in GeneBank) revealed that this isolate was a member ofalphasubdivision of the Proteobacteria. Strain WM-1 was closely related (97.7%) to Magnetospirillum sp. AMB-1. Randomly amplified polymorphic DNA analysis showed that these two strains were in fact different strains. Electron diffraction patterns of WM-1 magnetosomes indicated that the magnetosomes were composed of magnetite. The magnetosomes from WM-1 were cuboidal in shape as observed by electron microscopy. Statistical analysis of magnetite crystals from WM-1 showed narrow asymmetric size distribution. The average number of magnetosomes in each WM-1 bacterium was 8 +/- 3.4. The average length of magnetosomes in WM-1 was 54 +/- 12.3 nm and the average width is 43 +/- 10.9 nm. These data showed that the grains in WM-1 were single-domain crystals.
Collapse
Affiliation(s)
- Li Wenbing
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Grosse C, Scherer J, Koch D, Otto M, Taudte N, Grass G. A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 2007; 62:120-31. [PMID: 16987175 DOI: 10.1111/j.1365-2958.2006.05326.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli possesses multiple routes for iron uptake. Here we present EfeU (YcdN), a novel iron acquisition system of E. coli strain Nissle 1917. Laboratory strains of E. coli such as K12 lack a functional (efeU) ycdN gene caused by a frameshift mutation. EfeU, a member of the oxidase-dependent iron transporters (OFeT), is a homologue of the iron permease Ftr1p from yeast. The ycdN gene is part of the ycdNOB tricistronic operon which is expressed in response to iron deprivation in a Fur-dependent manner. Expression of efeU resulted in improved growth of an E. coli mutant lacking all known iron-uptake systems and mediated increased iron uptake into cells. Furthermore, the presence of other divalent metal cations did not impair growth of strains expressing efeU. The EfeU protein functioned as ferrous iron permease in proteoliposomes in vitro. Topology analysis indicated that EfeU is an integral cytoplasmic membrane protein exhibiting seven transmembrane helices. Two REXXE motifs within transmembrane helices of OFeT family members are implicated in iron translocation. Site-directed mutagenesis of each REGLE motif of EfeU diminished iron uptake in vivo and growth yield. In vitro the EfeU variant protein with an altered first REGLE motif was impaired in iron permeation, whereas activity of the EfeU variant with a mutation in the second motif was similar to the wild-type protein.
Collapse
Affiliation(s)
- Cornelia Grosse
- Institute for Microbiology, Martin-Luther-University, Halle, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Rodionov DA, Gelfand MS, Todd JD, Curson ARJ, Johnston AWB. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2006; 2:e163. [PMID: 17173478 PMCID: PMC1698941 DOI: 10.1371/journal.pcbi.0020163] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/18/2006] [Indexed: 01/08/2023] Open
Abstract
We used comparative genomics to investigate the distribution of conserved DNA-binding motifs in the regulatory regions of genes involved in iron and manganese homeostasis in alpha-proteobacteria. Combined with other computational approaches, this allowed us to reconstruct the metal regulatory network in more than three dozen species with available genome sequences. We identified several classes of cis-acting regulatory DNA motifs (Irr-boxes or ICEs, RirA-boxes, Iron-Rhodo-boxes, Fur-alpha-boxes, Mur-box or MRS, MntR-box, and IscR-boxes) in regulatory regions of various genes involved in iron and manganese uptake, Fe-S and heme biosynthesis, iron storage, and usage. Despite the different nature of the iron regulons in selected lineages of alpha-proteobacteria, the overall regulatory network is consistent with, and confirmed by, many experimental observations. This study expands the range of genes involved in iron homeostasis and demonstrates considerable interconnection between iron-responsive regulatory systems. The detailed comparative and phylogenetic analyses of the regulatory systems allowed us to propose a theory about the possible evolution of Fe and Mn regulons in alpha-proteobacteria. The main evolutionary event likely occurred in the common ancestor of the Rhizobiales and Rhodobacterales, where the Fur protein switched to regulating manganese transporters (and hence Fur had become Mur). In these lineages, the role of global iron homeostasis was taken by RirA and Irr, two transcriptional regulators that act by sensing the physiological consequence of the metal availability rather than its concentration per se, and thus provide for more flexible regulation.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
45
|
Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T. Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 2006; 188:2275-9. [PMID: 16513757 PMCID: PMC1428134 DOI: 10.1128/jb.188.6.2275-2279.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron uptake systems were identified by global expression profiling of Magnetospirillum magneticum AMB-1. feo, tpd, and ftr, which encode ferrous iron transporters, were up-regulated under iron-rich conditions. The concomitant rapid iron uptake and magnetite formation suggest that these uptake systems serve as iron supply lines for magnetosome synthesis.
Collapse
Affiliation(s)
- Takeyuki Suzuki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Tokyo, Japan 184-8588
| | | | | | | | | |
Collapse
|
46
|
Grass G. Iron Transport in Escherichia Coli: All has not been said and Done. Biometals 2006; 19:159-72. [PMID: 16718601 DOI: 10.1007/s10534-005-4341-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/24/2005] [Indexed: 11/30/2022]
Abstract
During recent years new systems involved in iron transport were identified in the old workhorse Escherichia coli (and in other enterobacteria). This came as a bit of a surprise because one might think transport of this essential trace element was already thoroughly studied. Moreover, it appears that iron homeostasis consists not only of uptake but also of efflux of this potentially toxic redox-active metal. New findings in E. coli will be discussed and compared to the situation in other bacteria.
Collapse
Affiliation(s)
- Gregor Grass
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
47
|
Debut AJ, Dumay QC, Barabote RD, Saier MH. The Iron/Lead Transporter Superfamily of Fe 3+/Pb 2+ Uptake Systems. J Mol Microbiol Biotechnol 2006; 11:1-9. [PMID: 16825785 DOI: 10.1159/000092814] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oxidase-dependent ferrous iron uptake transporters of the OFeT family and lead uptake transporters of the PbrT family comprise the iron/lead transporter (ILT) superfamily (transporter classification No. 9.A.10). All sequenced homologues of the ILT superfamily were multiply aligned, and conserved motifs, including fully conserved acidic residues in putative transmembrane segments (TMSs) 1 and 4, previously implicated in heavy metal binding, were identified. Topological analyses confirmed the presence of 7 conserved TMSs in a 3 + 3 + 1 arrangement where the two 3 TMS elements are internally repeated. Phylogenetic analyses revealed the presence of several sequence divergent clusters of orthologous proteins that group roughly according to the phylogenes of the organisms of origin. The results serve to characterize and provide evolutionary insight into a novel superfamily of heavy metal uptake transporters.
Collapse
Affiliation(s)
- Aurore J Debut
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | |
Collapse
|
48
|
Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 2005; 187:7176-84. [PMID: 16237001 PMCID: PMC1272989 DOI: 10.1128/jb.187.21.7176-7184.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes involved in magnetite biomineralization are clustered in the genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense. We analyzed a 482-kb genomic fragment, in which we identified an approximately 130-kb region representing a putative genomic "magnetosome island" (MAI). In addition to all known magnetosome genes, the MAI contains genes putatively involved in magnetosome biomineralization and numerous genes with unknown functions, as well as pseudogenes, and it is particularly rich in insertion elements. Substantial sequence polymorphism of clones from different subcultures indicated that this region undergoes frequent rearrangements during serial subcultivation in the laboratory. Spontaneous mutants affected in magnetosome formation arise at a frequency of up to 10(-2) after prolonged storage of cells at 4 degrees C or exposure to oxidative stress. All nonmagnetic mutants exhibited extended and multiple deletions in the MAI and had lost either parts of or the entire mms and mam gene clusters encoding magnetosome proteins. The mutations were polymorphic with respect to the sites and extents of deletions, but all mutations were found to be associated with the loss of various copies of insertion elements, as revealed by Southern hybridization and PCR analysis. Insertions and deletions in the MAI were also found in different magnetosome-producing clones, indicating that parts of this region are not essential for the magnetic phenotype. Our data suggest that the genomic MAI undergoes frequent transposition events, which lead to subsequent deletion by homologous recombination under physiological stress conditions. This can be interpreted in terms of adaptation to physiological stress and might contribute to the genetic plasticity and mobilization of the magnetosome island.
Collapse
Affiliation(s)
- Susanne Ullrich
- MPI für Marine Mikrobiologie, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
50
|
Tree JJ, Kidd SP, Jennings MP, McEwan AG. Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochem Biophys Res Commun 2005; 328:1205-10. [PMID: 15708004 DOI: 10.1016/j.bbrc.2005.01.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Indexed: 11/17/2022]
Abstract
The cueO gene of Escherichia coli encodes a multi-copper oxidase, which contributes to copper tolerance in this bacterium. It was observed that a cueO mutant was highly sensitive to killing by copper ions when cells were grown on defined minimal media. Copper sensitivity was correlated with accumulation of copper in the mutant strain. Growth of the cueO mutant in the presence of copper could be restored by addition of divalent zinc and manganese ions or ferrous iron but not by other first row transition metal ions or magnesium ions. Copper toxicity towards a cueO mutant could also be suppressed by addition of the superoxide quencher 1,2-dihydroxybenzene-3,5-disulfonic acid (tiron), suggesting that a primary cause of copper toxicity is the copper-catalyzed production of superoxide anions in the cytoplasm.
Collapse
Affiliation(s)
- Jai J Tree
- Centre for Metals in Biology, School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | | |
Collapse
|