1
|
Gálvez Romero JL, Parada Sosa CM, Burgoa GL, Lorenzo Leal AC, El Kassis EG, Bautista Rodríguez E, Paredes Juárez GA, Hernández LR, Bach H, Juárez ZN. Antimycobacterial, cytotoxic, and anti-inflammatory activities of Artemisialudoviciana. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115249. [PMID: 35395382 DOI: 10.1016/j.jep.2022.115249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A third part of the world population has been exposed to the pathogen Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB). TB is a deadly disease, and its treatment has been hampered because of the lack of new antibiotics or the development of new antimycobacterial agents against this pathogen. The situation is aggravated because of the appearance of multidrug-resistant strains. In Mexican traditional medicine, records showed Artemisia ludoviciana for the treatment of TB. Thus, the combination of antibiotics and plant extracts might represent new antimycobacterial agents as an attractive alternative. MATERIALS AND METHODS The biological activities of ethanol extract obtained from A. ludoviciana were evaluated for its antimycobacterial activities using an M. tuberculosis clinical isolate. Also, the toxicity of the extracts was assessed ex vivo and in vivo using the human-derived macrophages cell line (THP-1) and the Artemia spp. model, respectively. Lastly, the inflammatory response of macrophages exposed to the extracts was also evaluated. RESULTS The ethanol extract of A. ludoviciana showed antimycobacterial activity with a MIC of 250 μg/mL against a clinical strain of M. tuberculosis. Ex vivo cytotoxicity using the THP-1 cell line incubated with the ethanol extract showed an IC50 of 20 μg/mL. On the other hand, the Artemia model's toxicity test showed moderate toxicity when the A. ludoviciana extract was tested with LC50 of 195.64 μg/mL. Analysis of the inflammatory response of THP-1 cells exposed to the same extract showed no increase in secreted interleukine-6 and -10. Also, no effect was observed in the pro-inflammatory tumor necrosis factor-α cytokine level. Moreover, a chemical profile of the extracts identified achillin as the major component in the ethanol extract, along with other minor components such as thujone and stigmasterol. CONCLUSIONS We showed that the ethanol extract of A. ludoviciana possessed antimycobacterial activity and could potentially be used to supplement the antibiotic treatment of TB.
Collapse
Affiliation(s)
- José Luis Gálvez Romero
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, 72410, Puebla, Mexico
| | - Carla Michelle Parada Sosa
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, 72410, Puebla, Mexico
| | - Griselda León Burgoa
- Mycobacteria Area, Public Health Laboratory and Health Services of the State of Puebla, Antiguo camino a Guadalupe Hidalgo No. 11350, Col. Agua Santa, 72480, Puebla, Mexico
| | - Ana Cecilia Lorenzo Leal
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Elie Girgis El Kassis
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, 72410, Puebla, Mexico
| | - Elizabeth Bautista Rodríguez
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, 72410, Puebla, Mexico
| | - Genaro Alberto Paredes Juárez
- Biology Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, 72410, Puebla, Puebla, Mexico
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula, 72810, Mexico
| | - Horacio Bach
- Division of Infectious Disease, Department of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, 72410, Puebla, Puebla, Mexico.
| |
Collapse
|
2
|
Boumaza AF, Arrindell J, Ben Azzouz E, Desnues B. Phenotypic diversity of Tropheryma whipplei clinical isolates. Microb Pathog 2021; 158:105074. [PMID: 34182076 DOI: 10.1016/j.micpath.2021.105074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Tropheryma whipplei is a bacterial pathogen responsible for a wide range of infections in humans, covering asymptomatic carriage, acute infections, chronic isolated infections and classic Whipple's disease. Although the bacterium is commonly found in the environment, it very rarely causes disease. Genetic comparison of clinical isolates has revealed that main variations were found in region encoding T. whipplei surface glycoproteins called WiSP. However, no association has been made between the genetic diversity and the clinical manifestations of the infection. In this study we evaluated the phenotypic diversity of 26 clinical isolates from different origins and taken from patient with different infection outcomes. MRC5 and macrophages cells were infected, and bacterial uptake, survival and the pro-and anti-inflammatory potential of the different clinical isolates was assessed. No significant difference of phagocytosis was found between the different isolates; however, we found that bacterial replication was increased for bacteria expressing high molecular weight WiSP. In addition, we found that the expression of the genes coding for IL-1β and TGF-β was significantly higher when MRC5 cells were stimulated with isolates from chronic infections compared to isolates from localized infections while no significant differences were observed in macrophages. Overall, our study revealed that, as previously observed at the genetic level, phenotypic diversity of T. whipplei isolates is associated with the expression of different WiSP, which may result in subtle differences in host responses. Other host factors or genetic predisposition may explain the range of clinical manifestations of T. whipplei infections.
Collapse
Affiliation(s)
- Asma Fatima Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Jeffrey Arrindell
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Eya Ben Azzouz
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
3
|
Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, Kana BD. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet 2020; 54:511-537. [PMID: 32926793 DOI: 10.1146/annurev-genet-022820-085940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| | - Nabila Ismail
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; , .,Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2000, Belgium;
| | - Shuyi Ma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Bavesh D Kana
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| |
Collapse
|
4
|
Bespyatykh JA, Vinogradova ТI, Manicheva OA, Zabolotnykh NV, Dogonadze MZ, Vitovskaya ML, Guliaev AS, Zhuravlev VY, Shitikov EA, Ilina EN. In vivo virulence of Beijing genotype Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2019. [DOI: 10.15789/2220-7619-2019-1-173-182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | | | | | | | | | | | - A. S. Guliaev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | | | - E. A. Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | - E. N. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| |
Collapse
|
5
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights into Mycobacterium tuberculosis through proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [PMID: 31032653 DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/12/2019] [Indexed: 01/25/2023]
Abstract
This review aimed at providing an update on the application of proteomics-based approaches to gain recent insights of Mycobacterium tuberculosis (M.tb) and its relevance to clinic. Proteomics and bioinformatics approaches helped in the identification and characterization of novel proteins. Studying M.tb, causative agent of tuberculosis (TB), at the proteomic level can contribute to the identification of proteins which can be considered as potential targets for developed drugs and can help us in better understanding the pathogen physiology. Areas covered: In this review we have presented a comprehensive literature pertaining to role of proteomics in understanding M.tb. We have also focused on how the development and advancement in technology in the field of proteomics has augmented the research and played a pivotal role in answering many unexplored questions. Lastly, the application of proteomics to clinic has also been discussed. Expert commentary: We envisage that proteomics has gained remarkable momentum over the years. Proteomics can play an important role in the discovery of biomarkers for TB and other diseases. Also, it can aid in development of effective vaccines and simple, rapid and cost-effective test for the diagnosis of TB which is crucial for the management and control of the disease.
Collapse
Affiliation(s)
- Deepa Bisht
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Devesh Sharma
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Divakar Sharma
- b Medical Microbiology and Molecular Biology Laboratory , Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh , India
| | - Rananjay Singh
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| | - Vivek Kumar Gupta
- a Department of Biochemistry , National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR) , Agra , India
| |
Collapse
|
6
|
Gruzdev DA, Musiyak VV, Levit GL, Krasnov VP, Charushin VN. Purine derivatives with antituberculosis activity. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes the data published over the last 10 – 15 years concerning the key groups of purine derivatives with antituberculosis activity. The structures of purines containing heteroatoms (S, O, N), fragments of heterocycles, amino acids and peptides, in the 6-position, as well as of purine nucleosides are presented. The possible targets for the action of such compounds and structure – activity relationship are discussed. Particular attention is paid to the most active compounds, which are of considerable interest as a basis for the development of efficient antituberculosis drugs.
The bibliography includes 99 references.
Collapse
|
7
|
Kumar G, Shankar H, Sharma D, Sharma P, Bisht D, Katoch VM, Joshi B. Proteomics of Culture Filtrate of Prevalent Mycobacterium tuberculosis Strains: 2D-PAGE Map and MALDI-TOF/MS Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:1142-1149. [PMID: 28683213 DOI: 10.1177/2472555217717639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although diverse efforts have been done to identify biomarkers for control of tuberculosis using laboratory strain Mycobacterium tuberculosis H37Rv, the disease still poses a threat to mankind. There are many emerging M. tuberculosis strains, and proteomic profiling of these strains might be important to find out potential targets for diagnosis and/or prevention of tuberculosis. We evaluated the comparative proteomic profiling of culture filtrate (CF) proteins from prevalent M. tuberculosis strains (Central Asian or Delhi type; CAS1_Del, East African-Indian; EAI-3 and Beijing family) by 2D polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. As a result, we could identify 12 CF proteins (Rv0066c, Rv1310, Rv3375, Rv1415, Rv0567, Rv1886c, Rv3803c, Rv3804c, Rv2031c, Rv1038c, Rv2809, and Rv1911c), which were consistently increased in all prevalent M. tuberculosis strains, and interestingly, two CF proteins (Rv2809, Rv1911c) were identified with unknown functions. Consistent increased intensity of these proteins suggests their critical role for survival of prevalent M. tuberculosis isolates, and some of these proteins may also have potential as diagnostic and vaccine candidates for tuberculosis, which needs to be further explored by immunological analysis.
Collapse
Affiliation(s)
- Gavish Kumar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Sri Aurobindo Marg, New Delhi, India
| | - Hari Shankar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| | - Vishwa M Katoch
- Department of Health Research (Ministry of Health and Family Welfare), Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India
| | - Beenu Joshi
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Taj Ganj, Agra, Uttar Pradesh, India
| |
Collapse
|
8
|
Difference in Antibody Responses to Mycobacterium tuberculosis Antigens in Japanese Tuberculosis Patients Infected with the Beijing/Non-Beijing Genotype. J Immunol Res 2017; 2017:4797856. [PMID: 28182078 PMCID: PMC5274661 DOI: 10.1155/2017/4797856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/08/2016] [Indexed: 01/25/2023] Open
Abstract
The Beijing genotype Mycobacterium tuberculosis (MTB), notorious for its virulence and predisposition to relapse, could be identified by spoligotyping based on genetic heterogeneity. The plasma samples from 20 cases of Beijing and 16 cases of non-Beijing MTB infected individuals and 24 healthy controls (HCs) were collected, and antibodies against 11 antigens (Rv0679c142Asn, Rv0679c142Lys, Ag85B, Ag85A, ARC, TDM-M, TDM-K, HBHA, MDP-1, LAM, and TBGL) were measured by ELISA. Compared to the HCs, the MTB infected subjects showed higher titers of anti-Ag85B IgG (positivity 58.2%) and anti-ACR IgG (positivity 48.2%). Of note, anti-ACR IgG showed higher titer in Beijing MTB infected tuberculosis (TB) patients than in HC (Kruskal–Wallis test, p < 0.05), while the levels of anti-Ag85B, anti-TBGL, anti-TDM-K, and anti-TDM-M IgG were higher in non-Beijing TB patients than in HC. Moreover, anti-Ag85B IgG showed higher response in non-Beijing TB patients than in Beijing TB patients (p < 0.05; sensitivity, 76.9% versus 44.4%). The sensitivity and specificity analysis showed that 78.8% Beijing infected individuals were negative in anti-TBGL-IgG or/and anti-Ag85B-IgG, while 75.0% of those were positive in anti-TBGL-IgA or/and anti-ACR-IgG tests. These results indicate the possibility of developing antibody-based test to identify Beijing MTB.
Collapse
|
9
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
10
|
Jacobs AJ, Mongkolsapaya J, Screaton GR, McShane H, Wilkinson RJ. Antibodies and tuberculosis. Tuberculosis (Edinb) 2016; 101:102-113. [PMID: 27865379 PMCID: PMC5120988 DOI: 10.1016/j.tube.2016.08.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB) remains a major public health problem internationally, causing 9.6 million new cases and 1.5 million deaths worldwide in 2014. The Bacillus Calmette-Guérin vaccine is the only licensed vaccine against TB, but its protective effect does not extend to controlling the development of infectious pulmonary disease in adults. The development of a more effective vaccine against TB is therefore a pressing need for global health. Although it is established that cell-mediated immunity is necessary for the control of latent infection, the presupposition that such immunity is sufficient for vaccine-induced protection has recently been challenged. A greater understanding of protective immunity against TB is required to guide future vaccine strategies against TB. In contrast to cell-mediated immunity, the human antibody response against M.tb is conventionally thought to exert little immune control over the course of infection. Humoral responses are prominent during active TB disease, and have even been postulated to contribute to immunopathology. However, there is evidence to suggest that specific antibodies may limit the dissemination of M.tb, and potentially also play a role in prevention of infection via mucosal immunity. Further, antibodies are now understood to confer protection against a range of intracellular pathogens by modulating immunity via Fc-receptor mediated phagocytosis. In this review, we will explore the evidence that antibody-mediated immunity could be reconsidered in the search for new vaccine strategies against TB.
Collapse
Affiliation(s)
- Ashley J Jacobs
- Department of Medicine, Imperial College London, W2 1PG, United Kingdom; Clinical Infectious Diseases Research Initiative and Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.
| | | | - Gavin R Screaton
- Department of Medicine, Imperial College London, W2 1PG, United Kingdom
| | - Helen McShane
- The Jenner Institute, University of Oxford, OX3 7DQ, United Kingdom
| | - Robert J Wilkinson
- Department of Medicine, Imperial College London, W2 1PG, United Kingdom; Clinical Infectious Diseases Research Initiative and Department of Medicine, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; The Francis Crick Institute, London NW1 2AT, United Kingdom
| |
Collapse
|
11
|
de Keijzer J, Mulder A, de Ru AH, van Soolingen D, van Veelen PA. Parallel reaction monitoring of clinical Mycobacterium tuberculosis lineages reveals pre-existent markers of rifampicin tolerance in the emerging Beijing lineage. J Proteomics 2016; 150:9-17. [PMID: 27576137 DOI: 10.1016/j.jprot.2016.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/05/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022]
Abstract
The spread of multidrug resistant Mycobacterium tuberculosis is one of the major challenges in tuberculosis control. In Eurasia, the spread of multidrug resistant tuberculosis is driven by the M. tuberculosis Beijing genotype. In this study, we examined whether selective advantages are present in the proteome of Beijing isolates that contribute to the emergence of this genotype. To this end, we compared the proteome of M. tuberculosis Beijing to that of M. tuberculosis H37Rv, both in the presence and absence of the first-line antibiotic rifampicin. During rifampicin exposure, both M. tuberculosis genotypes express proteins belonging to the DosR dormancy regulon, which induces a metabolically hypoactive-, drug tolerant phenotype. However, these markers of rifampicin tolerance were already more abundant in the M. tuberculosis Beijing isolate prior to drug exposure. To determine whether the a priori high abundance of specific proteins contribute to the formation of antibiotic resistance in M. tuberculosis Beijing, we quantified the abundance of 33 selected proteins in 27 clinical isolates from the five most common M. tuberculosis lineages using parallel reaction monitoring. The observed pre-existing high abundance of dormancy proteins in Beijing strains provides an evolutionary advantage that allows these strains to persist for prolonged periods during rifampicin treatment. SIGNIFICANCE M. tuberculosis is the leading cause of death by a bacterial infection worldwide. Treatment-regimen to eradicate this pathogen make use of the first-line antibiotic rifampicin, which is considered to be the cornerstone of modern day anti-tuberculosis treatment. Despite the potency of rifampicin, there is an increasing occurrence of rifampicin resistant mutants in a specific cluster of M. tuberculosis, the Beijing genotype. Using both a data dependent acquisition and a targeted proteomic approach we identified markers of rifampicin tolerance to be high abundant in members of the M. tuberculosis Beijing genotype, already prior drug exposure. The identification of this M. tuberculosis Beijing specific trait will contribute to improved diagnostics and treatment of M. tuberculosis.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands.
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, BA, The Netherlands; Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500, HB, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, 2300, RC, The Netherlands
| |
Collapse
|
12
|
Phong TQ, Ha DTT, Volker U, Hammer E. Using a Label Free Quantitative Proteomics Approach to Identify Changes in Protein Abundance in Multidrug-Resistant Mycobacterium tuberculosis. Indian J Microbiol 2015; 55:219-30. [PMID: 25805910 DOI: 10.1007/s12088-015-0511-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Reports in recent years indicate that the increasing emergence of resistance to drugs be using to TB treatment. The resistance to them severely affects to options for effective treatment. The emergence of multidrug-resistant tuberculosis has increased interest in understanding the mechanism of drug resistance in M. tuberculosis and the development of new therapeutics, diagnostics and vaccines. In this study, a label-free quantitative proteomics approach has been used to analyze proteome of multidrug-resistant and susceptible clinical isolates of M. tuberculosis and identify differences in protein abundance between the two groups. With this approach, we were able to identify a total of 1,583 proteins. The majority of identified proteins have predicted roles in lipid metabolism, intermediary metabolism, cell wall and cell processes. Comparative analysis revealed that 68 proteins identified by at least two peptides showed significant differences of at least twofolds in relative abundance between two groups. In all protein differences, the increase of some considering proteins such as NADH dehydrogenase, probable aldehyde dehydrogenase, cyclopropane mycolic acid synthase 3, probable arabinosyltransferase A, putative lipoprotein, uncharacterized oxidoreductase and six membrane proteins in resistant isolates might be involved in the drug resistance and to be potential diagnostic protein targets. The decrease in abundance of proteins related to secretion system and immunogenicity (ESAT-6-like proteins, ESX-1 secretion system associated proteins, O-antigen export system and MPT63) in the multidrug-resistant strains can be a defensive mechanism undertaken by the resistant cell.
Collapse
Affiliation(s)
- Truong Quoc Phong
- Center for Research and Development in Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Do Thi Thu Ha
- Center for Research and Development in Biotechnology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Uwe Volker
- Interfaculty Institute for Genetic and Functional Genomic, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetic and Functional Genomic, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Schubert OT, Aebersold R. Microbial Proteome Profiling and Systems Biology: Applications to Mycobacterium tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:235-54. [PMID: 26621471 DOI: 10.1007/978-3-319-23603-2_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Each year, 1.3 million people die from tuberculosis, an infectious disease caused by Mycobacterium tuberculosis. Systems biology-based strategies might significantly contribute to the knowledge-guided development of more effective vaccines and drugs to prevent and cure infectious diseases. To build models simulating the behaviour of a system in response to internal or external stimuli and to identify potential targets for therapeutic intervention, systems biology approaches require the acquisition of quantitative molecular profiles on many perturbed states. Here we review the current state of proteomic analyses in Mycobacterium tuberculosis and discuss the potential of recently emerging targeting mass spectrometry-based techniques which enable fast, sensitive and accurate protein measurements.
Collapse
Affiliation(s)
- Olga T Schubert
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, CH-8093, Switzerland.
- Systems Biology Graduate School, Zurich, CH-8057, Switzerland.
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, CH-8093, Switzerland.
- Faculty of Science, University of Zurich, Zurich, CH-8057, Switzerland.
| |
Collapse
|
14
|
Genetic diversity and dynamic distribution of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in Thailand. J Clin Microbiol 2014; 52:4267-74. [PMID: 25297330 DOI: 10.1128/jcm.01467-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies.
Collapse
|
15
|
Ramos DF, Tavares L, da Silva PEA, Dellagostin OA. Molecular typing of Mycobacterium bovis isolates: a review. Braz J Microbiol 2014; 45:365-72. [PMID: 25242917 PMCID: PMC4166258 DOI: 10.1590/s1517-83822014005000045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 09/09/2013] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium bovis is the main causative agent of animal tuberculosis (TB) and it may cause TB in humans. Molecular typing of M. bovis isolates provides precise epidemiological data on issues of inter- or intra-herd transmission and wildlife reservoirs. Techniques used for typing M. bovis have evolved over the last 2 decades, and PCR-based methods such as spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) have been extensively used. These techniques can provide epidemiological information about isolates of M. Bovis that may help control bovine TB by indicating possible links between diseased animals, detecting and sampling outbreaks, and even demonstrating cases of laboratory cross-contamination between samples. This review will focus on techniques used for the molecular typing of M. bovis and discuss their general aspects and applications.
Collapse
Affiliation(s)
- Daniela Fernandes Ramos
- Núcleo de Biotecnologia Universidade Federal de Pelotas PelotasRS Brazil Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lucas Tavares
- Núcleo de Biotecnologia Universidade Federal de Pelotas PelotasRS Brazil Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro Eduardo Almeida da Silva
- Faculdade de Medicina Universidade Federal de Rio Grande Rio GrandeRS Brazil Faculdade de Medicina, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia Universidade Federal de Pelotas PelotasRS Brazil Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
16
|
Parandhaman DK, Sharma P, Bisht D, Narayanan S. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis. Life Sci 2014; 109:116-26. [PMID: 24972353 DOI: 10.1016/j.lfs.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
Abstract
AIMS Serine/threonine protein kinases (STPKs) have prominent roles in the survival mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Previous studies from our laboratory underscored the role of PknE, an STPK in virulence, adaptation and the suppression of host cell apoptosis. In this study, two-dimensional gel electrophoresis was used to study the proteome and phosphoproteome profiles of wild type M. tuberculosis and its isogenic pknE deletion mutant (ΔpknE) during growth in Middlebrook 7H9 and nitric oxide stress. MAIN METHODS Wild-type M. tuberculosis and its isogenic pknE deletion mutant strain were grown in Middlebrook 7H9 as well as subjected to nitric oxide stress using sodium nitroprusside. Whole cell lysates were prepared and analyzed by 2D-gel electrophoresis. Phosphoproteomes were analyzed using phospho serine and phospho threonine antibodies after subjecting the 2D-gels to western blotting. Proteins of interest were identified using mass spectrometry. KEY FINDINGS Our analysis provides insights into the targets that impose pro-apoptotic as well as altered cellular phenotypes on ΔpknE, revealing novel substrates and functions for PknE. SIGNIFICANCE For the first time, our proteome and phosphoproteome data decipher the function of PknE in cell division, virulence, dormancy, suppression of sigma factor B and its regulated genes, suppression of two-component systems and in the metabolic activity of M. tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India; Department of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, 110067,India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India.
| |
Collapse
|
17
|
Kerns PW, Ackhart DF, Basaraba RJ, Leid JG, Shirtliff ME. Mycobacterium tuberculosis pellicles express unique proteins recognized by the host humoral response. Pathog Dis 2014; 70:347-58. [PMID: 24453174 DOI: 10.1111/2049-632x.12142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) causes both acute and chronic infections in humans characterized by tolerance to antibiotics and reactivation to cause secondary tuberculosis. These characteristics have led to renewed interest in the in vitro pellicle, or biofilm mode of growth, where bacteria grow to produce a thick aggregate at the air-liquid interface and exhibit increased phenotypic resistance to antibiotics. We infected guinea pigs with the virulent H37Rv strain of MTB for 60 days at which point we collected blood. To identify antigenic proteins, membrane protein extracts of MTB H37Ra pellicles and shaken cultures grown for 3, 5, or 7 weeks were probed with the infected animals' sera after the proteins were separated by two-dimensional gel electrophoresis (2DGE). Antigenic proteins were then identified using MALDI-TOF/TOF mass spectrometry peptide mass fingerprinting. Antigenic pellicle proteins were compared across the three timepoints to identify those that were produced consistently during pellicle growth. They were also compared to those membrane proteins identified from harvested shaken cultures to determine pellicle-specific vs. universally expressed proteins. Using this technique, we identified 44 distinct antigenic proteins, nine of which were pellicle-specific. The sequence of antigenic pellicle-specific proteins was checked for sequence conservation across 15 sequenced MTB clinical isolates, three other members of the MTB complex, as well as M. avium and M. smegmatis. The antigenic pellicle-specific protein Rv0097 was found to have very high sequence conservation within the MTB complex but not with related mycobacteria, while FabG4 was highly conserved in all mycobacteria analyzed. These conserved pellicle-specific proteins represent targets for the development of future diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Patrick W Kerns
- Graduate Program in Molecular Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
18
|
Jagusztyn-Krynicka EK, Dadlez M, Grabowska A, Roszczenko P. Proteomic technology in the design of new effective antibacterial vaccines. Expert Rev Proteomics 2014; 6:315-30. [DOI: 10.1586/epr.09.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Wang X, Jiao J, Xu W, Chai X, Li Z, Wang Q. A simple, rapid and economic method for detecting multidrug-resistant tuberculosis. Braz J Infect Dis 2013; 17:667-71. [PMID: 24029439 PMCID: PMC9427339 DOI: 10.1016/j.bjid.2013.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE To evaluate multiplex allele specific polymerase chain reaction as a rapid molecular tool for detecting multidrug-resistant tuberculosis. METHODS Based on drug susceptibility testing, 103 isolates were multidrug-resistant tuberculosis and 45 isolates were sensitive to isonicotinylhydrazine and rifampin. Primers were designed to target five mutations hotspots that confer resistance to the first-line drugs isoniazid and rifampin, and multiplex allele specific polymerase chain reaction was performed. Whole-genome sequencing confirmed drug resistance mutations identified by multiplex allele specific polymerase chain reaction. RESULTS DNA sequencing revealed that 68.9% of multidrug-resistant strains have point mutations at codon 315 of the katG gene, 19.8% within the mabA-inhA promoter, and 98.0% at three hotspots within rpoB. Multiplex allele specific polymerase chain reaction detected each of these five mutations, yielding 82.3% sensitivity and 100% specificity for isoniazid resistance, and 97.9% sensitivity and 100% specificity for rifampin resistance as compared to drug susceptibility testing. CONCLUSIONS The results show that multiplex allele specific polymerase chain reaction is an inexpensive and practical method for rapid detection of multidrug-resistant tuberculosis in developing countries.
Collapse
Affiliation(s)
- Xia Wang
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical University, Henan Province, China.
| | | | | | | | | | | |
Collapse
|
20
|
Kruh-Garcia NA, Murray M, Prucha JG, Dobos KM. Antigen 85 variation across lineages of Mycobacterium tuberculosis-implications for vaccine and biomarker success. J Proteomics 2013; 97:141-50. [PMID: 23891556 DOI: 10.1016/j.jprot.2013.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Mycobacterium tuberculosis secretes several hundred proteins; many of which elicit immune responses. As a result, many of these proteins have been explored for their potential as diagnostic and vaccine candidates. Of these, the Antigen 85 complex proteins, represented by Antigen85 A, B, and C, are the most studied from the mycobacterial secretome. However, vaccine constructs exploiting Antigen 85 as the sole antigen repertoire have not experienced the pre-clinical and clinical trials success originally anticipated. Anecdotal and biochemical evidence suggests that differences in protein abundance may explain this phenomenon. Here, biochemical, molecular, and mass spectrometry approaches were used to quantify Antigen 85 among six M. tuberculosis strains from four phylogenetically distinct clades. Our data demonstrates that the greatest variation in Antigen 85 is ascribed to protein quantities, whereas few transcriptional differences were found. In addition, the ratio of Antigen 85 A, to B, to C is conserved within clades and phylogenetic neighbors. In contrast, no such relationship between individual protein quantities was observed, and in the case of Antigen85 B, this variation even extends within biological replicates of individual isolates. The relevance of Antigen 85 protein quantities and vaccine efficacy remains to be defined. BIOLOGICAL SIGNIFICANCE Absolute quantitation via multiple reaction monitoring mass spectrometry was used to determine the exact molar concentrations of Antigen 85A, B, and C; three key immunodominant proteins present in M. tuberculosis. Further, the concentration of these three proteins was compared among various clades of M. tuberculosis, and demonstrated differences in abundance of two of the three proteins. These proteins have been identified as key antigens in multiple vaccine and diagnostic platforms, thus the potential relevance of their abundance in various M. tuberculosis clades to the successful outcome of these interventions is discussed. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Nicole A Kruh-Garcia
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Madeleine Murray
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John G Prucha
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
21
|
Cohen T, Dye C, Colijn C, Williams B, Murray M. Mathematical models of the epidemiology and control of drug-resistant TB. Expert Rev Respir Med 2012; 3:67-79. [PMID: 20477283 DOI: 10.1586/17476348.3.1.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent reports of extensively drug-resistant TB in South Africa have renewed concerns that antibiotic resistance may undermine progress in TB control. We review three major questions for which mathematical models elucidate the epidemiology and control of drug-resistant TB. How is multiple drug-resistant Mycobacterium tuberculosis selected for in individuals exposed to combination chemotherapy? What factors determine the prevalence of drug-resistant TB? Which interventions to prevent the spread of drug-resistant TB are effective and feasible? Models offer insight into the acquisition and amplification of drug resistance, reveal the importance of distinguishing the intrinsic and extrinsic determinants of the reproductive capacity of drug-resistant M. tuberculosis, and demonstrate the cost effectiveness of interventions for drug-resistant TB. These models also highlight knowledge gaps for which new research will improve our ability to project trends of drug resistance and develop more effective policies for its control.
Collapse
Affiliation(s)
- Ted Cohen
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA and Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
22
|
Cho YS, Dobos KM, Prenni J, Yang H, Hess A, Rosenkrands I, Andersen P, Ryoo SW, Bai GH, Brennan MJ, Izzo A, Bielefeldt-Ohmann H, Belisle JT. Deciphering the proteome of the in vivo diagnostic reagent "purified protein derivative" from Mycobacterium tuberculosis. Proteomics 2012; 12:979-91. [PMID: 22522804 DOI: 10.1002/pmic.201100544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purified protein derivative (PPD) has served as a safe and effective diagnostic reagent for 60 years and is the only broadly available material to diagnose latent tuberculosis infections. This reagent is also used as a standard control for a number of in vitro immunological assays. Nevertheless, the molecular composition and specific products that contribute to the extraordinary immunological reactivity of PPD are poorly defined. Here, a proteomic approach was applied to elucidate the gene products in the U.S. Food and Drug Administration (FDA) standard PPD-S2. Many known Mycobacterium tuberculosis T-cell antigens were detected. Of significance, four heat shock proteins (HSPs) (GroES, GroEL2, HspX, and DnaK) dominated the composition of PPD. The chaperone activities and capacity of these proteins to influence immunological responses may explain the exquisite solubility and immunological potency of PPD. Spectral counting analysis of three separate PPD reagents revealed significant quantitative variances. Gross delayed-type hypersensitivity (DTH) responses in M. tuberculosis infected guinea pigs were comparable among these PPD preparations; however, detailed histopathology of the DTH lesions exposed unique differences, which may be explained by the variability observed in the presence and abundance of early secretory system (Esx) proteins. Variability in PPD reagents may explain differences in DTH responses reported among populations.
Collapse
Affiliation(s)
- Yun Sang Cho
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery. Clin Microbiol Rev 2012; 24:792-805. [PMID: 21976609 DOI: 10.1128/cmr.00014-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Mycobacterium tuberculosis causes a variety of clinical conditions ranging from life-long asymptomatic infection to overt disease with increasingly severe tissue damage and a heavy bacillary burden. Immune biomarkers should follow the evolution of infection and disease because the host immune response is at the core of protection against disease and tissue damage in M. tuberculosis infection. Moreover, levels of immune markers are often affected by the antigen load. We review how the clinical spectrum of M. tuberculosis infection correlates with the evolution of granulomatous lesions and how granuloma structural changes are reflected in the peripheral circulation. We also discuss how antigen-specific, peripheral immune responses change during infection and how these changes are associated with the physiology of the tubercle bacillus. We propose that a dynamic approach to immune biomarker research should overcome the challenges of identifying those asymptomatic and symptomatic stages of infection that require antituberculosis treatment. Implementation of such a view requires longitudinal studies and a systems immunology approach leading to multianalyte assays.
Collapse
|
24
|
Zhang L, Wang Q, Wang W, Liu Y, Wang J, Yue J, Xu Y, Xu W, Cui Z, Zhang X, Wang H. Identification of putative biomarkers for the serodiagnosis of drug-resistant Mycobacterium tuberculosis. Proteome Sci 2012; 10:12. [PMID: 22364187 PMCID: PMC3305424 DOI: 10.1186/1477-5956-10-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 02/25/2012] [Indexed: 02/02/2023] Open
Abstract
Background Early diagnosis and treatment of Mycobacterium tuberculosis infection can prevent most deaths resulting from this pathogen; however, multidrug-resistant strains present serious threats to global tuberculosis control and prevention efforts. In this study, we identified antigens that could be used for the serodiagnosis of drug-resistant M. tuberculosis strains, using a proteomics-based analysis. Results Serum from patients infected with drug-resistant or drug-susceptible M. tuberculosis strains and healthy controls was subjected to two-dimensional gel electrophoresis using a western blot approach. This procedure identified nine immunoreactive proteins, which were subjected to MALDI-TOF-MS analysis. Six recombinant proteins, namely rRv2031c, rRv0444c, rRv2145c, rRv3692, rRv0859c, and rRv3040, were expressed and used to determine the immuno-reactivity of 100 serum samples. Antibody reactivity against rRv2031c, rRv3692, and rRv0444c was consistently observed. Among them, the best sensitivity and specificity of rRv3692 were 37% and 95% respectively. Furthermore, when rRv2031c and rRv3692 or rRv2031c, rRv3692, and rRv0444c were combined in 2:1 or equal amounts, the assay sensitivity and specificity were improved to 56.7% and 100% respectively. Conclusions These results suggest that Rv2031c, Rv3692, and Rv0444c are possible candidate biomarkers for effective use in the serodiagnosis of drug-resistant tuberculosis infections, and a combined formula of these antigens should be considered when designing a subunit assay kit.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Road, 200433 Shanghai, Peoples Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hanekom M, Gey van Pittius N, McEvoy C, Victor T, Van Helden P, Warren R. Mycobacterium tuberculosis Beijing genotype: A template for success. Tuberculosis (Edinb) 2011; 91:510-23. [DOI: 10.1016/j.tube.2011.07.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/27/2011] [Accepted: 07/17/2011] [Indexed: 12/30/2022]
|
26
|
Rivera-Ordaz A, Gonzaga-Bernachi J, Serafín-López J, Hernández-Pando R, Van Soolingen D, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Mycobacterium tuberculosis Beijing genotype induces differential cytokine production by peripheral blood mononuclear cells of healthy BCG vaccinated individuals. Immunol Invest 2011; 41:144-56. [PMID: 21877937 DOI: 10.3109/08820139.2011.596604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the Mycobacterium tuberculosis (Mtb) Beijing genotype are a major concern due to their high prevalence in tuberculosis patients and their high rate of multi-drug resistance. Although it has been shown that Beijing modifies macrophage behavior, little is known about how this genotype could affect the cellular immune response. In order to address this issue, peripheral blood mononuclear cells (PBMC) from healthy BCG vaccinated individuals were stimulated with protein extracts from three Mycobacterium tuberculosis genotypes: Canetti, H37Rv and Beijing evaluating T cell proliferation and cytokine production. In this system both CD4+ and CD8+ proliferated in a similar manner independently of the Mtb genotype used for stimulation. Regarding cytokines, all strains induced similar levels of IFN-γ, but were unable to induce IL-4 and TGF-β. Contrasting, Canetti strain induced lower production of IL-10, TNF-α and IL-12 compared to H37Rv and Beijing. Interestingly, PBMC stimulated with the Beijing strain produced the highest levels of IL-12 and IL-10 than those stimulated with other strains. This differential cytokine expression could affect the pathogenesis induced by Beijing strain through the modulation of inflammatory process in the host, but the precise mechanisms by which this cytokine environment affects the Beijing strain pathogenesis needs further characterization.
Collapse
Affiliation(s)
- Araceli Rivera-Ordaz
- Department of Immunology, National School of Biological Sciences, ENCB-IPN, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Weisenberg SA, Gibson AL, Huard RC, Kurepina N, Bang H, Lazzarini LCO, Chiu Y, Li J, Ahuja S, Driscoll J, Kreiswirth BN, Ho JL. Distinct clinical and epidemiological features of tuberculosis in New York City caused by the RD(Rio) Mycobacterium tuberculosis sublineage. INFECTION GENETICS AND EVOLUTION 2011; 12:664-70. [PMID: 21835266 DOI: 10.1016/j.meegid.2011.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Genetic tracking of Mycobacterium tuberculosis is a cornerstone of tuberculosis (TB) control programs. The RD(Rio) M. tuberculosis sublineage was previously associated with TB in Brazil. We investigated 3847 M. tuberculosis isolates and registry data from New York City (NYC) (2001-2005) to: (1) affirm the position of RD(Rio) strains within the M. tuberculosis phylogenetic structure, (2) determine its prevalence, and (3) define transmission, demographic, and clinical characteristics associated with RD(Rio) TB. METHODS Isolates classified as RD(Rio) or non-RD(Rio) M. tuberculosis by multiplex PCR were further classified as clustered (≥2 isolates) or unique based primarily upon IS6110-RFLP patterns and lineage-specific cluster proportions were calculated. The secondary case rate of RD(Rio) was compared with other prevalent M. tuberculosis lineages. Genotype data were merged with the data from the NYC TB Registry to assess demographic and clinical characteristics. RESULTS RD(Rio) strains were found to: (1) be restricted to the Latin American-Mediterranean family, (2) cause approximately 8% of TB cases in NYC, and (3) be associated with heightened transmission as shown by: (i) a higher cluster proportion compared to other prevalent lineages, (ii) a higher secondary case rate, and (iii) cases in children. Furthermore, RD(Rio) strains were significantly associated with US-born Black or Hispanic race, birth in Latin American and Caribbean countries, and isoniazid resistance. CONCLUSIONS The RD(Rio) genotype is a single M. tuberculosis strain population that is emerging in NYC. The findings suggest that expanded RD(Rio) case and exposure identification could be of benefit due to its association with heightened transmission.
Collapse
Affiliation(s)
- Scott A Weisenberg
- Division of Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mehaffy C, Hess A, Prenni JE, Mathema B, Kreiswirth B, Dobos KM. Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis. Proteomics 2010; 10:1966-84. [PMID: 20217870 PMCID: PMC3517044 DOI: 10.1002/pmic.200900836] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/16/2010] [Indexed: 01/29/2023]
Abstract
The use of isobaric tags such as iTRAQ allows the relative and absolute quantification of hundreds of proteins in a single experiment for up to eight different samples. More classical techniques such as 2-DE can offer a complimentary approach for the analysis of complex protein samples. In this study, the proteomes of secreted and cytosolic proteins of genetically closely related strains of Mycobacterium tuberculosis were analyzed. Analysis of 2-D gels afforded 28 spots with variations in protein abundance between strains. These were identified by MS/MS. Meanwhile, a rigorous statistical analysis of iTRAQ data allowed the identification and quantification of 101 and 137 proteins in the secreted and cytosolic fractions, respectively. Interestingly, several differences in protein levels were observed between the closely related strains BE, C28 and H6. Seven proteins related to cell wall and cell processes were more abundant in BE, while enzymes related to metabolic pathways (GltA2, SucC, Gnd1, Eno) presented lower levels in the BE strain. Proteins involved in iron and sulfur acquisition (BfrB, ViuB, TB15.3 and SseC2) were more abundant in C28 and H6. In general, iTRAQ afforded rapid identification of fine differences between protein levels such as those presented between closely related strains. This provides a platform from which the relevance of these differences can be assessed further using complimentary proteomic and biological modeling methods.
Collapse
Affiliation(s)
- Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University; Fort Collins, CO, 80523
| | - Ann Hess
- Center for bioinformatics and Department of Statistics, Colorado State University, Fort Collins, CO, 80523
| | - Jessica E. Prenni
- Proteomics and Metabolomics Facility, Colorado State University Fort Collins, CO, 80523
| | | | | | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University; Fort Collins, CO, 80523
| |
Collapse
|
29
|
Kumar G, Shankar H, Bisht D, Sharma P, Singhal N, Katoch VM, Joshi B. A simple and rapid method of sample preparation from culture filtrate of M. tuberculosis for two-dimensional gel electrophoresis. Braz J Microbiol 2010; 41:295-9. [PMID: 24031494 PMCID: PMC3768669 DOI: 10.1590/s1517-83822010000200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/06/2009] [Accepted: 11/07/2009] [Indexed: 11/24/2022] Open
Abstract
Sample preparation for Two-dimensional gel electrophoresis (2DE) is tedious and not sufficient to provide a comparative profile of secreted proteins for various strains of M. tuberculosis. High lipid content in mycobacteria limits the use of common methods as it can hinder the 2DE run. This study highlights the significance of SDS-TCA procedure over common used methods for the preparation of sample from culture filtrate as well as other proteinaceous fluids.
Collapse
Affiliation(s)
- Gavish Kumar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR) , Tajganj , Agra 282 001(India)
| | | | | | | | | | | | | |
Collapse
|
30
|
Parwati I, van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. THE LANCET. INFECTIOUS DISEASES 2010; 10:103-11. [PMID: 20113979 DOI: 10.1016/s1473-3099(09)70330-5] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The wide geographic distribution of one clade of Mycobacterium tuberculosis, the Beijing genotype family, and its genetic homogeneity, suggests that strains belonging to this grouping might have a selective advantage over other M tuberculosis strains. This hypothesis was addressed by reviewing molecular-epidemiological, experimental, and clinical studies. Beijing strains represent about 50% of strains in east Asia and at least 13% of strains worldwide. Their emergence might be linked to escape from BCG vaccination, and to multidrug resistance, which is associated with the Beijing genotype in many areas. Different animal models have shown Beijing strains to be more virulent, and to cause more histopathological changes, higher outgrowth, and increased mortality. At a molecular level, Beijing strains have specific properties in terms of protein and lipid structures and their interaction with the human immune system. Finally, the Beijing genotype has been linked to polymorphisms in immune genes, suggesting the possibility of human-mycobacterial co-evolution. The emergence of the Beijing genotype family might represent an evolutionary response of M tuberculosis to vaccination or antibiotic treatment, with an important negative impact on tuberculosis control. More research is needed to further unravel the mechanisms underlying the emergence of M tuberculosis Beijing genotype strains, and examine the implications for future control strategies.
Collapse
Affiliation(s)
- Ida Parwati
- Department of Clinical Pathology, Medical Faculty, Padjadjaran University, Dr Hasan Sadikin Hospital, Bandung, Indonesia.
| | | | | |
Collapse
|
31
|
Coscolla M, Gagneux S. Does M. tuberculosis genomic diversity explain disease diversity? DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2010; 7:e43-e59. [PMID: 21076640 PMCID: PMC2976975 DOI: 10.1016/j.ddmec.2010.09.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The outcome of tuberculosis infection and disease is highly variable. This variation has been attributed primarily to host and environmental factors, but better understanding of the global genomic diversity in the M. tuberculosis complex (MTBC) suggests that bacterial factors could also be involved. Review of nearly 100 published reports shows that MTBC strains differ in their virulence and immunogenicity in experimental models, but whether this phenotypic variation plays a role in human disease remains unclear. Given the complex interactions between the host, the pathogen and the environment, linking MTBC genotypic diversity to experimental and clinical phenotypes requires an integrated systems epidemiology approach embedded in a robust evolutionary framework.
Collapse
Affiliation(s)
- Mireilla Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- MRC National Institute for Medical Research, London, UK
| |
Collapse
|
32
|
Mycobacterium bovis at the animal–human interface: A problem, or not? Vet Microbiol 2010; 140:371-81. [DOI: 10.1016/j.vetmic.2009.08.029] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/21/2009] [Accepted: 08/27/2009] [Indexed: 11/30/2022]
|
33
|
Global effects of inactivation of the pyruvate kinase gene in the Mycobacterium tuberculosis complex. J Bacteriol 2009; 191:7545-53. [PMID: 19820096 DOI: 10.1128/jb.00619-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To better understand the global effects of "natural" lesions in genes involved in the pyruvate metabolism in Mycobacterium bovis, null mutations were made in the Mycobacterium tuberculosis H37Rv ald and pykA genes to mimic the M. bovis situation. Like M. bovis, the M. tuberculosis DeltapykA mutant yielded dysgonic colonies on solid medium lacking pyruvate, whereas colony morphology was eugonic on pyruvate-containing medium. Global effects of the loss of the pykA gene, possibly underlying colony morphology, were investigated by using proteomics on cultures grown in the same conditions. The levels of Icd2 increased and those of Icl and PckA decreased in the DeltapykA knockout. Proteomics suggested that the synthesis of enzymes involved in fatty acid and lipid biosynthesis were decreased, whereas those involved in beta-oxidation were increased in the M. tuberculosis DeltapykA mutant, as confirmed by direct assays for these activities. Thus, the loss of pykA from M. tuberculosis results in fatty acids being used principally for energy production, in contrast to the situation in the host when carbon from fatty acids is conserved through the glyoxylate cycle and gluconeogenesis; when an active pykA gene was introduced into M. bovis, the opposite effects occurred. Proteins involved in oxidative stress-AhpC, KatG, and SodA-showed increased synthesis in the DeltapykA mutant, and iron-regulated proteins were also affected. Ald levels were decreased in the DeltapykA knockout, explaining why an M. tuberculosis DeltapykA Deltaald double mutant showed little additional phenotypic effect. Overall, these data show that the loss of the pykA gene has powerful, global effects on proteins associated with central metabolism.
Collapse
|
34
|
González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F, Espitia C. Mycobacterium tuberculosis Glycoproteomics Based on ConA-Lectin Affinity Capture of Mannosylated Proteins. J Proteome Res 2009; 8:721-33. [DOI: 10.1021/pr800756a] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margarita González-Zamorano
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Guillermo Mendoza-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Wendy Xolalpa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Fabiana Bigi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| |
Collapse
|
35
|
Prevention of the post-chemotherapy relapse of tuberculous infection by combined immunotherapy. Tuberculosis (Edinb) 2009; 89:91-4. [DOI: 10.1016/j.tube.2008.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/31/2008] [Accepted: 09/05/2008] [Indexed: 01/19/2023]
|
36
|
Two-dimensional gel electrophoresis-based proteomics of mycobacteria. Methods Mol Biol 2009. [PMID: 20560054 DOI: 10.1007/978-1-59745-207-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry (MS) is the classic proteomics approach used to monitor the dynamics of protein abundance and posttranslational modifications in biological systems. In this chapter, we provide detailed protocols for 2-DE-based proteomics of mycobacteria. Adequate standard operating procedures for mycobacterial culture, subcellular fractionation, and selective enrichment of proteins are indispensable prerequisites for targeted proteome analyses. Therefore, we also provide approved protocols for selective and efficient extraction of cytosolic, secreted, and hydrophobic plasma membrane proteins of mycobacteria, as well as for isolation of mycobacteria from infected macrophages.
Collapse
|
37
|
Cohen T, Colijn C, Murray M. Modeling the effects of strain diversity and mechanisms of strain competition on the potential performance of new tuberculosis vaccines. Proc Natl Acad Sci U S A 2008; 105:16302-7. [PMID: 18849476 PMCID: PMC2570977 DOI: 10.1073/pnas.0808746105] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Indexed: 01/17/2023] Open
Abstract
While bacillus Calmette-Guérin vaccination plays an important role in reducing the morbidity of tuberculosis (TB) infection during childhood, new tuberculosis vaccines are necessary to disrupt the transmission of disease and improve global control of this pathogen. Growing evidence of the presence of meaningful Mycobacterium tuberculosis strain diversity, coupled with the possibility that new vaccines may differentially protect against infection or disease with circulating M. tuberculosis strains, suggest that these vaccines may have complicated effects on disease dynamics. We use a mathematical model to explore the potential effects of strain diversity on the performance of vaccines and find that vaccines offer great promise for improving tuberculosis control, but the expected benefits of mass vaccination will be eroded if strain replacement with M. tuberculosis variants that are not effectively targeted by vaccines occurs. Determining the likelihood of strain replacement will require additional knowledge of the strain specificities of current vaccine candidates, and an improved understanding of the mechanisms of strain interaction, which are responsible for maintaining the diversity of M. tuberculosis within communities.
Collapse
Affiliation(s)
- Ted Cohen
- Division of Global Health Equity, Brigham and Women's Hospital, Boston MA 02115, USA.
| | | | | |
Collapse
|
38
|
Brimacombe M, Hazbon M, Motiwala AS, Alland D. Antibiotic resistance and single-nucleotide polymorphism cluster grouping type in a multinational sample of resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2007; 51:4157-9. [PMID: 17846140 PMCID: PMC2151444 DOI: 10.1128/aac.00619-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs.
Collapse
Affiliation(s)
- M Brimacombe
- Department of Preventive Medicine and Community Health, New Jersey Medical School-UMDNJ, 185 S. Orange Ave., MSB F-647, Newark, NJ 07083, USA.
| | | | | | | |
Collapse
|
39
|
Tsenova L, Harbacheuski R, Sung N, Ellison E, Fallows D, Kaplan G. BCG vaccination confers poor protection against M. tuberculosis HN878-induced central nervous system disease. Vaccine 2007; 25:5126-32. [PMID: 17241704 PMCID: PMC1994581 DOI: 10.1016/j.vaccine.2006.11.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/26/2006] [Accepted: 11/02/2006] [Indexed: 12/14/2022]
Abstract
Using a rabbit model of tuberculous meningitis (TBM), we compared the protective efficacy of Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination against central nervous system infection with the virulent M. tuberculosis clinical isolate HN878 and the laboratory strain H37Rv. Although BCG clearly provided protection against infection with either challenge strain, protection against disease manifestations was significantly poorer in rabbits infected with HN878. BCG was less efficient in protecting against HN878 dissemination to the liver and spleen and against HN878-induced inflammation, loss of body weight, lung and brain pathology, and signs of disease. We suggest that the efficacy of newly developed vaccines should be tested in animal models not only against challenge with M. tuberculosis H37Rv but also with different clinical isolates including the highly virulent strains of the W-Beijing family.
Collapse
Affiliation(s)
- Liana Tsenova
- Laboratory of Mycobacterial Immunity and Pathogenesis, The Public Health Research Institute (PHRI), 225 Warren Street, Newark, NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abebe F, Bjune G. The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette-Guérin (BCG) vaccines: is there a link? Clin Exp Immunol 2006; 145:389-97. [PMID: 16907905 PMCID: PMC1809707 DOI: 10.1111/j.1365-2249.2006.03162.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The world is confronted with major tuberculosis (TB) outbreaks at a time when the protection of bacillus Calmette-Guérin (BCG) vaccine has become inconsistent and controversial. Major TB outbreaks are caused by a group of genetically similar strains of Mycobacterium tuberculosis (Mtb) strains, including the Beijing family genotypes. The Beijing family genotypes exhibit important pathogenic features such high virulence, multi-drug resistance and exogenous reinfection. These family strains have developed mechanisms that modulate/suppress immune responses by the host, such as inhibition of apoptosis of infected macrophages, diminished production of interleukin (IL)-2, interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha and elevated levels of IL-10 and IL-18. They demonstrate distinct expression of proteins, such as several species of alpha-crystallin (a known Mtb virulence factor), but decreased expression of some antigens such as heat shock protein of 65 kDa, phosphate transport subunit S and a 47-kDa protein. In addition, the Beijing family strains specifically produce a highly bioactive lipid (a polyketide synthase)-derived phenolic glycolipid. This altered expression of proteins/glycolipids may be important factors underlying the success of the Beijing family strains. The Beijing family strains are speculated to have originated from South-east Asia, where BCG vaccination has been used for more than 60 years. The hypothesis that mass BCG vaccination may have been a selective factor that favoured genotypic and phenotypic characteristic acquired by the Beijing family strains is discussed.
Collapse
Affiliation(s)
- F Abebe
- University of Oslo, International Community Health, Oslo, Norway.
| | | |
Collapse
|
41
|
Mattow J, Siejak F, Hagens K, Becher D, Albrecht D, Krah A, Schmidt F, Jungblut PR, Kaufmann SHE, Schaible UE. Proteins unique to intraphagosomally grownMycobacterium tuberculosis. Proteomics 2006; 6:2485-94. [PMID: 16548060 DOI: 10.1002/pmic.200500547] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pathogenic mycobacteria persist and replicate within phagosomes of host phagocytes by inhibiting phagosome maturation at an early endosome stage. The molecular basis for this behavior is not understood. To identify proteins of Mycobacterium tuberculosis unique to the intraphagosomal phase, mycobacteria were purified from phagosomes of infected murine bone marrow-derived macrophages and analyzed by high-resolution 2-DE and MS. Protein patterns of intraphagosomally grown M. tuberculosis were compared with those of broth-cultured mycobacteria. The analysis revealed 11 mycobacterial proteins exclusively detected in intraphagosomal mycobacteria. Some of these proteins are involved in metabolism and cell envelope synthesis, such as the lipid carrier protein Rv1627c, and the conserved hypothetical protein Rv1130 that shows homology to a virulence-associated protein of Legionella pneumophila. The relevance of these proteins as factors enabling intracellular survival of M. tuberculosis is being discussed.
Collapse
Affiliation(s)
- Jens Mattow
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|