1
|
Lee Y, Choe D, Palsson BO, Cho B. Machine-Learning Analysis of Streptomyces coelicolor Transcriptomes Reveals a Transcription Regulatory Network Encompassing Biosynthetic Gene Clusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403912. [PMID: 39264300 PMCID: PMC11538686 DOI: 10.1002/advs.202403912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/26/2024] [Indexed: 09/13/2024]
Abstract
Streptomyces produces diverse secondary metabolites of biopharmaceutical importance, yet the rate of biosynthesis of these metabolites is often hampered by complex transcriptional regulation. Therefore, a fundamental understanding of transcriptional regulation in Streptomyces is key to fully harness its genetic potential. Here, independent component analysis (ICA) of 454 high-quality gene expression profiles of the model species Streptomyces coelicolor is performed, of which 249 profiles are newly generated for S. coelicolor cultivated on 20 different carbon sources and 64 engineered strains with overexpressed sigma factors. ICA of the transcriptome dataset reveals 117 independently modulated groups of genes (iModulons), which account for 81.6% of the variance in the dataset. The genes in each iModulon are involved in specific cellular responses, which are often transcriptionally controlled by specific regulators. Also, iModulons accurately predict 25 secondary metabolite biosynthetic gene clusters encoded in the genome. This systemic analysis leads to reveal the functions of previously uncharacterized genes, putative regulons for 40 transcriptional regulators, including 30 sigma factors, and regulation of secondary metabolism via phosphate- and iron-dependent mechanisms in S. coelicolor. ICA of large transcriptomic datasets thus enlightens a new and fundamental understanding of transcriptional regulation of secondary metabolite synthesis along with interconnected metabolic processes in Streptomyces.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Donghui Choe
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Bernhard O. Palsson
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKemitorvet, KongensLyngby2800Denmark
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- Graduate School of Engineering BiologyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
2
|
Zhang QX, Xiong ZW, Li SY, Yin Y, Xing CL, Wen DY, Xu J, Liu Q. Regulatory roles of RpoS in the biosynthesis of antibiotics 2,4-diacetyphloroglucinol and pyoluteorin of Pseudomonas protegens FD6. Front Microbiol 2022; 13:993732. [PMID: 36583049 PMCID: PMC9793710 DOI: 10.3389/fmicb.2022.993732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rhizosphere microbe Pseudomonas protegens FD6 possesses beneficial traits such as the production of antibiotics like pyoluteorin (Plt) and 2,4-diacetylphloroglucinol (2,4-DAPG). The alternative RpoS (σ38 factor), as a master regulator, activates or inhibits the transcription of stationary phase genes in several biocontrol organisms. Here, we investigated the complicated function and regulatory mechanism of RpoS in the biosynthesis of 2,4-DAPG and Plt in strain FD6. Phenotypic assays suggested that ΔrpoS was impaired in biofilm formation, swimming motility, swarming motility, and resistance to stress, such as heat, H2O2 and 12% ethanol. The RpoS mutation significantly increased both 2,4-DAPG and Plt production and altered the transcription and translation of the biosynthetic genes phlA and pltL, indicating that RpoS inhibited antibiotic production by FD6 at both the transcriptional and translational levels. RpoS negatively controlled 2,4-DAPG biosynthesis and transcription of the 2,4-DAPG operon phlACBD by directly interacting with the promoter sequences of phlG and phlA. In addition, RpoS significantly inhibited Plt production and the expression of its operon pltLABCDEFG by directly binding to the promoter regions of pltR, pltL and pltF. Further analyzes demonstrated that a putative R147 mutation in the RpoS binding domain abolished its inhibitory activity on the expression of pltL and phlA. Overall, our results reveal the pleiotropic regulatory function of RpoS in P. protegens FD6 and provide the basis for improving antibiotic biosynthesis by genetic engineering in biocontrol organisms.
Collapse
Affiliation(s)
- Qing Xia Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China,*Correspondence: Qing Xia Zhang,
| | - Zheng Wen Xiong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shen Yu Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yue Yin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cheng Lin Xing
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - De Yu Wen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China
| | - Qin Liu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China,Qin Liu,
| |
Collapse
|
3
|
Liu H, Knox CA, Jakkula LUMR, Wang Y, Peddireddi L, Ganta RR. Evaluating EcxR for Its Possible Role in Ehrlichia chaffeensis Gene Regulation. Int J Mol Sci 2022; 23:12719. [PMID: 36361509 PMCID: PMC9657007 DOI: 10.3390/ijms232112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 04/14/2024] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted intraphagosomal bacterium, is the causative agent of human monocytic ehrlichiosis. The pathogen also infects several other vertebrate hosts. E. chaffeensis has a biphasic developmental cycle during its growth in vertebrate monocytes/macrophages and invertebrate tick cells. Host- and vector-specific differences in the gene expression from many genes of E. chaffeensis are well documented. It is unclear how the organism regulates gene expression during its developmental cycle and for its adaptation to vertebrate and tick host cell environments. We previously mapped promoters of several E. chaffeensis genes which are recognized by its only two sigma factors: σ32 and σ70. In the current study, we investigated in assessing five predicted E. chaffeensis transcription regulators; EcxR, CtrA, MerR, HU and Tr1 for their possible roles in regulating the pathogen gene expression. Promoter segments of three genes each transcribed with the RNA polymerase containing σ70 (HU, P28-Omp14 and P28-Omp19) and σ32 (ClpB, DnaK and GroES/L) were evaluated by employing multiple independent molecular methods. We report that EcxR binds to all six promoters tested. Promoter-specific binding of EcxR to several gene promoters results in varying levels of gene expression enhancement. This is the first detailed molecular characterization of transcription regulators where we identified EcxR as a gene regulator having multiple promoter-specific interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Das J, Kumar R, Yadav SK, Jha G. The alternative sigma factors, rpoN1 and rpoN2 are required for mycophagous activity of Burkholderia gladioli strain NGJ1. Environ Microbiol 2021; 24:2781-2796. [PMID: 34766435 DOI: 10.1111/1462-2920.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
5
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
6
|
Liu H, Ganta RR. Sequence Determinants Spanning -10 Motif and Spacer Region Implicated in Unique Ehrlichia chaffeensis Sigma 32-Dependent Promoter Activity of dnaK Gene. Front Microbiol 2019; 10:1772. [PMID: 31428069 PMCID: PMC6687850 DOI: 10.3389/fmicb.2019.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium that causes human monocytic ehrlichiosis. Studying Ehrlichia gene regulation is challenge, as this and related rickettsiales lack natural plasmids and mutagenesis experiments are of a limited scope. E. chaffeensis contains only two sigma factors, σ32 and σ70. We previously developed Escherichia coli surrogate system to study transcriptional regulation from RNA polymerase (RNAP) containing Ehrlichia σ32 or σ70. We reported that RNAP binding motifs of E. chaffeensis genes recognized by σ32 or σ70 share extensive homology and that transcription may be initiated by either one of the sigma factors, although transcriptional efficiencies differ. In the current study, we investigated mapping the E. chaffeensis dnaK gene promoter using the pathogen σ32 expressed in E. coli lacking its native σ32. The E. coli surrogate system and our previously described in vitro transcription system aided in defining the unique −10 motif and spacer sequence of the dnaK promoter. We also mapped σ32 amino acids/domains engaged in its promoter regulation in E. chaffeensis. The data reported in this study demonstrate that the −10 and −35 motifs and spacer sequence located between the two motifs of dnaK promoter are critical for the RNAP function. Further, we mapped the importance of all six nucleotide positions of the −10 motif and identified critical determinants within it. In addition, we reported that the lack of C-rich sequence upstream to the −10 motif is unique in driving the pathogen-specific transcription by its σ32 from dnaK gene promoter. This is the first study in defining an E. chaffeensis σ32-dependent promoter and it offers insights about how this and other related rickettsial pathogens regulate stress response genes.
Collapse
Affiliation(s)
- Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
7
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
8
|
Van Houdt R, Monsieurs P, Mijnendonckx K, Provoost A, Janssen A, Mergeay M, Leys N. Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 2012; 13:111. [PMID: 22443515 PMCID: PMC3384475 DOI: 10.1186/1471-2164-13-111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different Cupriavidus metallidurans strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with C. metallidurans type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30. RESULTS Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different C. metallidurans strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn4371-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of C. metallidurans CH34. CONCLUSIONS Metal resistance determinants are shared by all C. metallidurans strains and their occurrence is apparently irrespective of the strain's isolation type and place. Cupriavidus metallidurans strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others.
Collapse
Affiliation(s)
- Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Kristel Mijnendonckx
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Ann Provoost
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Ann Janssen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| |
Collapse
|
9
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
10
|
Karlsson FH, Ussery DW, Nielsen J, Nookaew I. A closer look at bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. MICROBIAL ECOLOGY 2011; 61:473-85. [PMID: 21222211 DOI: 10.1007/s00248-010-9796-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/14/2010] [Indexed: 05/20/2023]
Abstract
The human gut is extremely densely inhabited by bacteria mainly from two phyla, Bacteroidetes and Firmicutes, and there is a great interest in analyzing whole-genome sequences for these species because of their relation to human health and disease. Here, we do whole-genome comparison of 105 Bacteroidetes/Chlorobi genomes to elucidate their phylogenetic relationship and to gain insight into what is separating the gut living Bacteroides and Parabacteroides genera from other Bacteroidetes/Chlorobi species. A comprehensive analysis shows that Bacteroides species have a higher number of extracytoplasmic function σ factors (ECF σ factors) and two component systems for extracellular signal transduction compared to other Bacteroidetes/Chlorobi species. A whole-genome phylogenetic analysis shows a very little difference between the Parabacteroides and Bacteroides genera. Further analysis shows that Bacteroides and Parabacteroides species share a large common core of 1,085 protein families. Genome atlases illustrate that there are few and only small unique areas on the chromosomes of four Bacteroides/Parabacteroides genomes. Functional classification to clusters of othologus groups show that Bacteroides species are enriched in carbohydrate transport and metabolism proteins. Classification of proteins in KEGG metabolic pathways gives a detailed view of the genome's metabolic capabilities that can be linked to its habitat. Bacteroides pectinophilus and Bacteroides capillosus do not cluster together with other Bacteroides species, based on analysis of 16S rRNA sequence, whole-genome protein families and functional content, 16S rRNA sequences of the two species suggest that they belong to the Firmicutes phylum. We have presented a more detailed and precise description of the phylogenetic relationships of members of the Bacteroidetes/Chlorobi phylum by whole genome comparison. Gut living Bacteroides have an enriched set of glycan, vitamin, and cofactor enzymes important for diet digestion.
Collapse
Affiliation(s)
- Fredrik H Karlsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
11
|
Abstract
Alternative σ-factors of bacteria bind core RNA polymerase to program the specific promoter selectivity of the holoenzyme. Signal-responsive changes in the availability of different σ-factors redistribute the RNA polymerase among the distinct promoter classes in the genome for appropriate adaptive, developmental and survival responses. The σ(54) -factor is structurally and functionally distinct from all other σ-factors. Consequently, binding of σ(54) to RNA polymerase confers unique features on the cognate holoenzyme, which requires activation by an unusual class of mechano-transcriptional activators, whose activities are highly regulated in response to environmental cues. This review summarizes the current understanding of the mechanisms of transcriptional activation by σ(54) -RNA polymerase and highlights the impact of global regulatory factors on transcriptional efficiency from σ(54) -dependent promoters. These global factors include the DNA-bending proteins IHF and CRP, the nucleotide alarmone ppGpp, and the RNA polymerase-targeting protein DksA.
Collapse
|
12
|
Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 2009; 75:6864-75. [PMID: 19717629 DOI: 10.1128/aem.01495-09] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae (phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the "motor" and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the genome identified genes related to sprB that may encode alternative adhesins used for movement over different surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins, and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138 glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments. Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.
Collapse
|
13
|
Sukhi SS, Shashidhar R, Kumar SA, Bandekar JR. Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase. FEMS Microbiol Lett 2009; 297:49-53. [PMID: 19490129 DOI: 10.1111/j.1574-6968.2009.01652.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Deinococcus species exhibit an extraordinary ability to withstand ionizing radiation (IR). Most of the studies on radiation resistance have been carried out with exponential phase cells. The studies on radiation resistance of Deinococcus radiodurans R1 with respect to different phases of growth showed that late stationary phase cells of D. radiodurans R1 were fourfold more sensitive to IR and heat as compared with exponential or early stationary phase cells. The increased sensitivity of D. radiodurans R1 to IR in the late stationary phase was not due to a decrease in the intracellular Mn/Fe ratio or an increase in the level of oxidative protein damage. The resistance to IR was restored when late stationary phase cells were incubated for 15 min in fresh medium before irradiation, indicating that replenishment of exhausted nutrients restored the metabolic capability of the cells to repair DNA damage. These observations suggest that stress tolerance mechanisms in D. radiodurans R1 differ from established paradigms.
Collapse
Affiliation(s)
- Shibani S Sukhi
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | | | |
Collapse
|
14
|
Grall N, Livny J, Waldor M, Barel M, Charbit A, Meibom KL. Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. MICROBIOLOGY-SGM 2009; 155:2560-2572. [PMID: 19443547 DOI: 10.1099/mic.0.029058-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Francisella tularensis is a highly infectious pathogen that infects animals and humans to cause the disease tularemia. The primary targets of this bacterium are macrophages, in which it replicates in the cytoplasm after escaping the initial phagosomal compartment. The ability to replicate within macrophages relies on the tightly regulated expression of a series of genes. One of the most commonly used means of coordinating the regulation of multiple genes in bacteria consists of the association of dedicated alternative sigma factors with the core of the RNA polymerase (RNAP). In silico analysis of the F. tularensis LVS genome led us to identify, in addition to the genes encoding the RNAP core (comprising the alpha1, alpha2, beta, beta' and omega subunits), one gene (designated rpoD) encoding the major sigma factor sigma(70), and a unique gene (FTL_0851) encoding a putative alternative sigma factor homologue of the sigma(32) heat-shock family (designated rpoH). Hence, F. tularensis represents one of the minority of bacterial species that possess only one or no alternative sigma factor in addition to the main factor sigma(70). In the present work, we show that FTL_0851 encodes a genuine sigma(32) factor. Transcriptomic analyses of the F. tularensis LVS heat-stress response allowed the identification of a series of orthologues of known heat-shock genes (including those for Hsp40, GroEL, GroES, DnaK, DnaJ, GrpE, ClpB and ClpP) and a number of genes implicated in Francisella virulence. A bioinformatic analysis was used to identify genes preceded by a putative sigma(32)-binding site, revealing both similarities to and differences from RpoH-mediated gene expression in Escherichia coli. Our results suggest that RpoH is an essential protein of F. tularensis, and positively regulates a subset of genes involved in the heat-shock response.
Collapse
Affiliation(s)
- Nathalie Grall
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| | - Jonathan Livny
- Channing Laboratories, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Matthew Waldor
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.,Channing Laboratories, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Monique Barel
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| | - Alain Charbit
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| | - Karin L Meibom
- INSERM, U570, Unit of Pathogenesis of Systemic Infections, F-75015 Paris, France.,Université Paris Descartes, Faculté de Médecine Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
15
|
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:107-46. [PMID: 18173394 DOI: 10.1111/j.1574-6976.2007.00091.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sina Jordan
- Department of General Microbiology, Georg-August-University, Grisebachstrasse 8, Göttingen, Germany
| | | | | |
Collapse
|
16
|
Lavín JL, Kiil K, Resano O, Ussery DW, Oguiza JA. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae. BMC Genomics 2007; 8:397. [PMID: 17971244 PMCID: PMC2222644 DOI: 10.1186/1471-2164-8-397] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/31/2007] [Indexed: 11/26/2022] Open
Abstract
Background Pseudomonas syringae is a widespread bacterial plant pathogen, and strains of P. syringae may be assigned to different pathovars based on host specificity among different plant species. The genomes of P. syringae pv. syringae (Psy) B728a, pv. tomato (Pto) DC3000 and pv. phaseolicola (Pph) 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS), which typically consists of a sensor histidine kinase (HK) and a response regulator (RR). P. syringae requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions. Results Based on the genomic data, pattern searches with Hidden Markov Model (HMM) profiles have been used to identify putative HKs and RRs. The genomes of Psy B728a, Pto DC3000 and Pph 1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed important differences in TCS proteins among the three P. syringae pathovars. Conclusion In this article we present a thorough analysis of the identification and distribution of TCS proteins among the sequenced genomes of P. syringae. We have identified differences in TCS proteins among the three P. syringae pathovars that may contribute to their diverse host ranges and association with plant hosts. The identification and analysis of the repertoire of TCS proteins in the genomes of P. syringae pathovars constitute a basis for future functional genomic studies of the signal transduction pathways in this important bacterial phytopathogen.
Collapse
Affiliation(s)
- José L Lavín
- Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain.
| | | | | | | | | |
Collapse
|
17
|
Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED. Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 2007; 189:5108-18. [PMID: 17483221 PMCID: PMC1951883 DOI: 10.1128/jb.00401-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the -33 consensus element, -7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal -33/-7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis sigma(ABfr) consensus -33/-7 promoter elements but lacked similarity to the E. coli sigma(70) promoter elements. The length of the spacer separating the -33 and -7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
18
|
Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 2007; 73:3536-46. [PMID: 17400776 PMCID: PMC1932680 DOI: 10.1128/aem.00225-07] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of the aerobic cellulolytic soil bacterium Cytophaga hutchinsonii, which belongs to the phylum Bacteroidetes, is presented. The genome consists of a single, circular, 4.43-Mb chromosome containing 3,790 open reading frames, 1,986 of which have been assigned a tentative function. Two of the most striking characteristics of C. hutchinsonii are its rapid gliding motility over surfaces and its contact-dependent digestion of crystalline cellulose. The mechanism of C. hutchinsonii motility is not known, but its genome contains homologs for each of the gld genes that are required for gliding of the distantly related bacteroidete Flavobacterium johnsoniae. Cytophaga-Flavobacterium gliding appears to be novel and does not involve well-studied motility organelles such as flagella or type IV pili. Many genes thought to encode proteins involved in cellulose utilization were identified. These include candidate endo-beta-1,4-glucanases and beta-glucosidases. Surprisingly, obvious homologs of known cellobiohydrolases were not detected. Since such enzymes are needed for efficient cellulose digestion by well-studied cellulolytic bacteria, C. hutchinsonii either has novel cellobiohydrolases or has an unusual method of cellulose utilization. Genes encoding proteins with cohesin domains, which are characteristic of cellulosomes, were absent, but many proteins predicted to be involved in polysaccharide utilization had putative D5 domains, which are thought to be involved in anchoring proteins to the cell surface.
Collapse
Affiliation(s)
- Gary Xie
- Los Alamos National Laboratory, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, Sobral BS, Azad AF. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2007; 2:e266. [PMID: 17342200 PMCID: PMC1800911 DOI: 10.1371/journal.pone.0000266] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/08/2007] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.
Collapse
Affiliation(s)
- Joseph J. Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda S. Beier
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Ammerman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua M. Shallom
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anjan Purkayastha
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bruno S. Sobral
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Loper JE, Kobayashi DY, Paulsen IT. The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. PHYTOPATHOLOGY 2007; 97:233-8. [PMID: 18944380 DOI: 10.1094/phyto-97-2-0233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.
Collapse
|
21
|
Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 2006; 30:926-41. [PMID: 17064287 DOI: 10.1111/j.1574-6976.2006.00040.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis is a remarkable pathogen capable of adapting and surviving in various harsh conditions. Correct gene expression regulation is essential for the success of this process. The reversible association of different sigma factors is a common mechanism for reprogramming bacterial RNA polymerase and modulating the transcription of numerous genes. Thirteen putative sigma factors are encoded in the M. tuberculosis genome, several being important for virulence. Here, we analyse the latest information available on mycobacterial sigma factors and discuss their roles in the physiology and virulence of M. tuberculosis.
Collapse
Affiliation(s)
- Sébastien Rodrigue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | |
Collapse
|
22
|
Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 2006; 6:165-85. [PMID: 16773396 DOI: 10.1007/s10142-006-0027-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/24/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information.
Collapse
Affiliation(s)
- Tim T Binnewies
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kiil K, Ferchaud JB, David C, Binnewies TT, Wu H, Sicheritz-Pontén T, Willenbrock H, Ussery DW. Genome update: distribution of two-component transduction systems in 250 bacterial genomes. MICROBIOLOGY-SGM 2005; 151:3447-3452. [PMID: 16272367 DOI: 10.1099/mic.0.28423-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kristoffer Kiil
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Jean Baptiste Ferchaud
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Christophe David
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Tim T Binnewies
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Heng Wu
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Thomas Sicheritz-Pontén
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Hanni Willenbrock
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - David W Ussery
- Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, The Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|