1
|
Yuan J, Deng X, Xie X, Chen L, Wei C, Feng C, Qiu G. Blind spots of universal primers and specific FISH probes for functional microbe and community characterization in EBPR systems. ISME COMMUNICATIONS 2024; 4:ycae011. [PMID: 38524765 PMCID: PMC10958769 DOI: 10.1093/ismeco/ycae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.
Collapse
Affiliation(s)
- Jing Yuan
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Diaz R, Hong S, Goel R. Effect of different types of volatile fatty acids on the performance and bacterial population in a batch reactor performing biological nutrient removal. BIORESOURCE TECHNOLOGY 2023; 388:129675. [PMID: 37625655 DOI: 10.1016/j.biortech.2023.129675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Different ratios of four volatile fatty acids (VFAs) were used as the primary feed to a laboratory scale biological nutrient reactor during four operational stages. The reactor performed efficiently over 500 days of operation with over 90% dissolved phosphorus and over 98% ammonium-nitrogen (NH4+-N) removal. Through in the first experimental phase, acetate and propionate were present in a significant proportion as carbon sources, the relative abundance of Candidatus Accumulibacter, a potential polyphosphate accumulating organism, increased from 10% to 57% and the Defluviicoccus genus, a known glycogen accumulating organism (GAO), decreased from 41% to 5%. Further tests indicated the presence of denitrifying phosphorus accumulating organisms (DPAO) belonging to Clade IIC, that could use nitrite as the electron acceptor during P-uptake. In general, VFAs favored the increase of the genus Defluviicoccus and Candidatus Accumulibacter. High relative abundance of Defluviicoccus did not affect the stability and the performance of the BNR process.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
4
|
Di Capua F, de Sario S, Ferraro A, Petrella A, Race M, Pirozzi F, Fratino U, Spasiano D. Phosphorous removal and recovery from urban wastewater: Current practices and new directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153750. [PMID: 35149060 DOI: 10.1016/j.scitotenv.2022.153750] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Phosphate rocks are an irreplaceable resource to produce fertilizers, but their availability will not be enough to meet the increasing demands of agriculture for food production. At the same time, the accumulation of phosphorous discharged by municipal wastewater treatment plants (WWTPs) is one of the main causes of eutrophication. In a perspective of circular economy, WWTPs play a key role in phosphorous management. Indeed, phosphorus removal and recovery from WWTPs can both reduce the occurrence of eutrophication and contribute to meeting the demand for phosphorus-based fertilizers. Phosphorous removal and recovery are interconnected phases in WWTP with the former generally involved in the mainstream treatment, while the latter on the side streams. Indeed, by reducing phosphorus concentration in the WWTP side streams, a further improvement of the overall phosphorus removal from the WWTP influent can be obtained. Many studies and patents have been recently focused on treatments and processes aimed at the removal and recovery of phosphorous from wastewater and sewage sludge. Notably, new advances on biological and material sciences are constantly put at the service of conventional or unconventional wastewater treatments to increase the phosphorous removal efficiency and/or reduce the treatment costs. Similarly, many studies have been devoted to the development of processes aimed at the recovery of phosphorus from wastewaters and sludge to produce fertilizers, and a wide range of recovery percentages is reported as a function of the different technologies applied (from 10-25% up to 70-90% of the phosphorous in the WWTP influent). In view of forthcoming and inevitable regulations on phosphorous removal and recovery from WWTP streams, this review summarizes the main recent advances in this field to provide the scientific and technical community with an updated and useful tool for choosing the best strategy to adopt during the design or upgrading of WWTPs.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Simona de Sario
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Alberto Ferraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy.
| | - Andrea Petrella
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, Cassino, 03043, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, Naples, 80125, Italy
| | - Umberto Fratino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Danilo Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
5
|
Qiu G, Law Y, Zuniga-Montanez R, Deng X, Lu Y, Roy S, Thi SS, Hoon HY, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Global warming readiness: Feasibility of enhanced biological phosphorus removal at 35 °C. WATER RESEARCH 2022; 216:118301. [PMID: 35364353 DOI: 10.1016/j.watres.2022.118301] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Recent research has shown enhanced biological phosphorus removal (EBPR) from municipal wastewater at warmer temperatures around 30 °C to be achievable in both laboratory-scale reactors and full-scale treatment plants. In the context of a changing climate, the feasibility of EBPR at even higher temperatures is of interest. We operated two lab-scale EBPR sequencing batch reactors for > 300 days at 30 °C and 35 °C, respectively, and followed the dynamics of the communities of polyphosphate accumulating organisms (PAOs) and competing glycogen accumulating organisms (GAOs) using a combination of 16S rRNA gene metabarcoding, quantitative PCR and fluorescence in situ hybridization analyses. Stable and nearly complete phosphorus (P) removal was achieved at 30 °C; similarly, long term P removal was stable at 35 °C with effluent PO43-_P concentrations < 0.5 mg/L on half of all monitored days. Diverse and abundant Candidatus Accumulibacter amplicon sequence variants were closely related to those found in temperate environments, suggesting that EBPR at this temperature does not require a highly specialized PAO community. A slow-feeding strategy effectively limited the carbon uptake rates of GAOs, allowing PAOs to outcompete GAOs at both temperatures. Candidatus Competibacter was the main GAO, along with cluster III Defluviicoccus members. These organisms withstood the slow-feeding regime, suggesting that their bioenergetic characteristics of carbon uptake differ from those of their tetrad-forming relatives. Comparative cycle studies revealed higher carbon and P cycling activity of Ca. Accumulibacter when the temperature was increased from 30 °C to 35 °C, implying that the lowered P removal performance at 35 °C was not a direct effect of temperature, but a result of higher metabolic rates of carbon (and/or P) utilization of PAOs and GAOs, the resultant carbon deficiency, and escalated community competition. An increase in the TOC-to-PO43--P ratio (from 25:1 to 40:1) effectively eased the carbon deficiency and benefited PAOs. In general, a slow-feeding strategy and sufficiently high carbon input benefited a high and stable EBPR at 35 °C, representing basic conditions suitable for full-scale treatment plants experiencing higher water temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yang Lu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Samarpita Roy
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, United States; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
6
|
Chen L, Chen H, Hu Z, Tian Y, Wang C, Xie P, Deng X, Zhang Y, Tang X, Lin X, Li B, Wei C, Qiu G. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. WATER RESEARCH 2022; 216:118258. [PMID: 35320769 DOI: 10.1016/j.watres.2022.118258] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peiran Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
7
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Kolakovic S, Salgado R, Freitas EB, Bronze MR, Sekulic MT, Carvalho G, Reis MAM, Oehmen A. Diclofenac biotransformation in the enhanced biological phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151232. [PMID: 34715209 DOI: 10.1016/j.scitotenv.2021.151232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac is a pharmaceutical active compound frequently detected in wastewater and water bodies, and often reported to be persistent and difficult to biodegrade. While many previous studies have focussed on assessing diclofenac biodegradation in nitrification and denitrification processes, this study focusses on diclofenac biodegradation in the enhanced biological phosphorus removal (EBPR) process, where the efficiency of this process for diclofenac biodegradation as well as the metabolites generated are not well understood. An enrichment of Accumulibacter polyphosphate accumulating organisms (PAOs) was operated in an SBR for over 300 d, and acclimatized to 20 μg/L of diclofenac, which is in a similar range to that observed in domestic wastewater influents. The diclofenac biotransformation was monitored in four periods of stable operation and linked to the microbial community and metabolic behaviour in each period. Nitrification was observed in two of the four periods despite the addition of a nitrification inhibitor, and these periods were positively correlated with increased diclofenac biodegradation. Interestingly, in two periods with excellent phosphorus removal (>99%) and no nitrification, different levels of diclofenac biotransformation were observed. Period 2, enriched in Accumulibacter Type II achieved more significant diclofenac biotransformation (3.4 μg/gX), while period 4, enriched in Accumulibacter Type I achieved lower diclofenac biotransformation (0.4 μg/gX). In total, 23 transformation products were identified, with lower toxicity than the parent compound, enabling the elucidation of multiple metabolic pathways for diclofenac biotransformation. This study showed that PAOs can contribute to diclofenac biotransformation, yielding less toxic transformation products, and can complement the biodegradation carried out by other organisms in activated sludge, particularly nitrifiers.
Collapse
Affiliation(s)
- Srdana Kolakovic
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia
| | - Ricardo Salgado
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; ESTS-IPS-CINEA, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal
| | - Elisabete B Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria R Bronze
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Maja Turk Sekulic
- University of Novi Sad, Faculty of Technical Sciences, 21000 Novi Sad, Serbia
| | - Gilda Carvalho
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maria A M Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
9
|
Close K, Marques R, Carvalho VCF, Freitas EB, Reis MAM, Carvalho G, Oehmen A. The storage compounds associated with Tetrasphaera PAO metabolism and the relationship between diversity and P removal. WATER RESEARCH 2021; 204:117621. [PMID: 34500182 DOI: 10.1016/j.watres.2021.117621] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In enhanced biological phosphorus removal (EBPR), Tetrasphaera can potentially be an abundant and important polyphosphate accumulating organism (PAO), however ongoing questions remain concerning its storage compounds, phosphorus (P) removal capabilities and metabolic behaviour. This study investigated each of these points in an enriched Tetrasphaera culture (95% biovolume). The enriched Tetrasphaera culture fermented amino acids, while also converting and storing diverse amino acids as aspartic and glutamic acid within cells. Subsequent intracellular consumption of these two amino acids during the aerobic phase supports their importance in the metabolism of Tetrasphaera. Polyhydroxyalkanoate (PHA) cycling was also observed in this study, in contrast to some previous studies on Tetrasphaera. While exhibiting anaerobic phosphorus release and aerobic uptake, the highly enriched Tetrasphaera culture was unable to completely remove phosphorus in sequencing batch reactors (SBR) cycles, with an average removal efficiency of 72.3 ± 7.8%. This is unlike a previous study containing both Tetrasphaera (70%) and Accumulibacter (22%), which regularly performed complete phosphorus removal under otherwise similar operational conditions, at efficiencies of > 99%. Notably, the phylodiversity of organisms belonging to Tetrasphaera was substantially different in the present work, consisting mainly of organisms within Clade 2, likely impacting PHA cycling. These results suggest that the contribution of Tetrasphaera towards P removal is highly dependent on the composition of its Clades within this microbial group and an observed higher abundance of Tetrasphaera in WWTPs does not necessarily imply overall higher P removal. This study improves our understanding of the role of Tetrasphaera within EBPR systems and key factors impacting its metabolism.
Collapse
Affiliation(s)
- Kylie Close
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ricardo Marques
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Virginia C F Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elisabete B Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gilda Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
10
|
Dome A, Chang CY, Aunnop W, Chayakorn P. Microbial community composition in different carbon source types of biofilm A/O-MBR systems with complete sludge retention. ENVIRONMENTAL TECHNOLOGY 2021; 42:2950-2967. [PMID: 31973676 DOI: 10.1080/09593330.2020.1720301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
In this study, the three biofilm-anoxic-oxic-MBR systems were operated in parallel using different carbon source feed types. The three systems were operated with complete sludge retention to compare microbial community composition and system efficiency. High average removal of ammonia and COD was obtained in the three reactors. However, total nitrogen and total phosphorus removal efficiency were significantly higher in the VFAs feed systems when compared with the glucose feed system. The highest and most stable BNR efficiency was observed when acetate was used as a carbon source. The qPCR analysis revealed that ammonium oxidizing bacteria, denitrifiers and total bacteria were all highest in the acetate feed system followed by the propionate feed system. Moreover, among all carbon source types, the PUS-biofilm could maintain a higher degree of abundance of total bacteria than the sludge biomass. Meanwhile, ammonium oxidizing bacteria and denitrifiers were enriched in the sludge biomass rather than in the PUS-biofilm. The results of illumina sequencing revealed that acetate followed by propionate were favourable to the growth of microorganisms that were associated with the BNR process, which was the main reason for the high efficiency of nutrient removal in the acetate and propionate feed systems.
Collapse
Affiliation(s)
- Adoonsook Dome
- Department of Environment Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Chia-Yuan Chang
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wongrueng Aunnop
- Department of Environment Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pumas Chayakorn
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Chu G, Yu D, Wang X, Wang Q, He T, Zhao J. Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source. BIORESOURCE TECHNOLOGY 2021; 320:124405. [PMID: 33220540 DOI: 10.1016/j.biortech.2020.124405] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Although the combination of endogenous partial denitrification (EPD) and Anammox (EPD-AMX) were developed for deep-level nitrogen removal, the effects of different carbon source were not clear. In this study, the EPD performance was investigated comparatively with acetate (EPDA) and glucose (EPDG). Results revealed that through regulating chemical oxygen demand to phosphate ratio, Candidatus_Competibacter was highly enriched in EPDA (54.2%) and EPDG (51.3%), resulting high intracellular carbon storage efficiencies (90.2% and 85.3%, respectively). More stable nitrite accumulation was observed in EPDG than EPDA. But, higher specific nitrite generated rate (rNO2, 8.25 > 7.04 mgN·gVSS-1·h-1) and nitrate-to-nitrite transformation rate (NTR, 87.9% > 85.2%) were achieved in EPDA than those in EPDG. The functional bacterium was also shifted to Defluviicoccus in both EPDA (30.6%) and EPDG (25.8%). Moreover, with whether acetate or glucose, the EPD-AMX processes could achieve the same level of total nitrogen removal efficiencies (88.7% and 91.3%, respectively) via anammox mainly (87.8% and 89.4%, respectively).
Collapse
Affiliation(s)
- Guangyu Chu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Qiuying Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Tonghui He
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
12
|
Wang L, Shen N, Oehmen A, Zhou Y. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). ENVIRONMENTAL RESEARCH 2020; 188:109729. [PMID: 32521304 DOI: 10.1016/j.envres.2020.109729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of different carbon sources on enriched Accumulibacter PAO cultures at high temperature (30 °C) and compared the carbon transformation with low temperature (20 °C) cases reported in literature, revealing several key metabolic differences. While PAOs seemed to prefer propionate anaerobically as compared to other VFAs at high temperature, high aerobic glycogen replenishment was realized with propionate as the anaerobic carbon source, a trait not previously observed at low temperatures. Therefore, it was found that propionate is not correlated with high P removal by Accumulibacter PAO at high temperatures. A combined substrate of acetate, propionate and perhaps butyrate seemed to be a better carbon source combination, since the total VFA uptake rate increased by up to 46%, and this increased the aerobic P-removal efficiency by up to 38.4% and reduced the glycogen recovery by more than 63% compared to the use of only propionate as substrate. This study improves our understanding of how to stimulate successful EBPR operation in warm climates by augmenting the P removal performance of PAOs.
Collapse
Affiliation(s)
- Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
13
|
Onnis-Hayden A, Srinivasan V, Tooker NB, Li G, Wang D, Barnard JL, Bott C, Dombrowski P, Schauer P, Menniti A, Shaw A, Stinson B, Stevens G, Dunlap P, Takács I, McQuarrie J, Phillips H, Lambrecht A, Analla H, Russell A, Gu AZ. Survey of full-scale sidestream enhanced biological phosphorus removal (S2EBPR) systems and comparison with conventional EBPRs in North America: Process stability, kinetics, and microbial populations. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:403-417. [PMID: 31402530 DOI: 10.1002/wer.1198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 05/25/2023]
Abstract
Sidestream EBPR (S2EBPR) is an emerging alternative process to address common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. A systematic evaluation and comparison of the process performance and microbial community structure was conducted between conventional and S2EBPR facilities in North America. The statistical analysis suggested higher performance stability in S2EBPR than conventional EBPR, although possible bias associated with other plant-specific factors might have affected the comparison. Variations in stoichiometric values related to EBPR activity and discrepancies between the observed values and current model predictions suggested a varying degree of metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. Microbial community analysis using various techniques suggested comparable known candidate PAO relative abundances in S2EBPR and conventional EBPR systems, whereas the relative abundance of known candidate GAOs seemed to be consistently lower in S2EBPR facilities than conventional EBPR facilities. 16S rRNA gene sequencing analysis revealed differences in the community phylogenetic fingerprints between S2EBPR and conventional facilities and indicated statistically higher microbial diversity index values in S2EBPR facilities than those in conventional EBPRs. PRACTITIONER POINTS: Sidestream EBPR (S2EBPR) can be implemented with varying and flexible configurations, and they offer advantages over conventional configurations for addressing the common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. Survey of S2EBPR plants in North America suggested statistically more stable phosphorus removal performance in S2EBPR plants than conventional EBPRs, although possible bias might affect the comparison due to other plant-specific factors. The EBPR kinetics and stoichiometry of the S2EBPR facilities seemed to vary and are associated with metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. The abundance of known candidate PAOs in S2EBPR plants was similar to those in conventional EBPRs, and the abundance of known candidate GAOs was generally lower in S2EBPR than conventional EBPR facilities. Further finer-resolution analysis of PAOs and GAOs, as well as identification of other unknown PAOs and GAOs, is needed. Microbial diversity is higher in S2EBPR facilities compared with conventional ones, implying that S2EBPR microbial communities could show better resilience to perturbations due to potential functional redundancy.
Collapse
Affiliation(s)
| | - Varun Srinivasan
- Northeastern University, Boston, Massachusetts
- Cornell University, Ithaca, New York
| | - Nicholas B Tooker
- Northeastern University, Boston, Massachusetts
- University of Massachusetts Amherst, Amherst, Massachusetts
| | - Guangyu Li
- Northeastern University, Boston, Massachusetts
| | - Dongqi Wang
- Northeastern University, Boston, Massachusetts
- Xi'an University of Technology, Xi'an, China
| | | | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, Virginia
| | | | | | | | | | | | | | | | | | - Jim McQuarrie
- Denver Metro Wastewater Reclamation District, Denver, Colorado
| | | | - Angela Lambrecht
- Regional District of Central Okanagan, West Kelowna, British Columbia, Canada
| | | | | | - April Z Gu
- Northeastern University, Boston, Massachusetts
- Cornell University, Ithaca, New York
| |
Collapse
|
14
|
Adoonsook D, Chia-Yuan C, Wongrueng A, Pumas C. A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS One 2019; 14:e0214976. [PMID: 31756182 PMCID: PMC6913871 DOI: 10.1371/journal.pone.0214976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, two anoxic-oxic membrane bioreactor (A/O-MBR) systems, i.e. conventional and biofilm anoxic-oxic-membrane bioreactors (C-A/O-MBR and BF-A/O-MBR, respectively), were operated in parallel under conditions of complete sludge retention for the purposes of comparing system performance and microbial community composition. Moreover, with the microbial communities, comparisons were made between the adhesive stage and the suspended stage. High average removal of COD, NH4+-N and TN was achieved in both systems. However, TP removal efficiency was remarkably higher in BF-A/O-MBR when compared with C-A/O-MBR. TP mass balance analysis suggested that under complete sludge retention, polyurethane sponges that were added into the anoxic tank played a key role in both phosphorus release and accumulation. The qPCR analysis showed that sponge biomass could maintain a higher level of abundance of total bacteria than the suspended sludge. Meanwhile, AOB and denitrifiers were enriched in the suspended sludge but not in the sponge biomass. Results of illumina sequencing reveal that the compacted sponge in BF-A/O-MBR could promote the growth of bacteria involved in nutrient removal and reduce the amount of filamentous and bacterial growth that is related to membrane fouling in the suspended sludge.
Collapse
Affiliation(s)
- Dome Adoonsook
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand
| | - Chang Chia-Yuan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand.,Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Rubio-Rincón FJ, Weissbrodt DG, Lopez-Vazquez CM, Welles L, Abbas B, Albertsen M, Nielsen PH, van Loosdrecht MCM, Brdjanovic D. "Candidatus Accumulibacter delftensis": A clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. WATER RESEARCH 2019; 161:136-151. [PMID: 31189123 DOI: 10.1016/j.watres.2019.03.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Populations of "Candidatus Accumulibacter", a known polyphosphate-accumulating organism, within clade IC have been proposed to perform anoxic P-uptake activity in enhanced biological phosphorus removal (EBPR) systems using nitrate as electron acceptor. However, no consensus has been reached on the ability of "Ca. Accumulibacter" members of clade IC to reduce nitrate to nitrite. Discrepancies might relate to the diverse operational conditions which could trigger the expression of the Nap and/or Nar enzyme and/or to the accuracy in clade classification. This study aimed to assess whether and how certain operational conditions could lead to the enrichment and enhance the denitrification capacity of "Ca. Accumulibacter" within clade IC. To study the potential induction of the denitrifying enzyme, an EBPR culture was enriched under anaerobic-anoxic-oxic (A2O) conditions that, based on fluorescence in situ hybridization and ppk gene sequencing, was composed of around 97% (on a biovolume basis) of affiliates of "Ca. Accumulibacter" clade IC. The influence of the medium composition, sludge retention time (SRT), polyphosphate content of the biomass (poly-P), nitrate dosing approach, and minimal aerobic SRT on potential nitrate reduction were studied. Despite the different studied conditions applied, only a negligible anoxic P-uptake rate was observed, equivalent to maximum 13% of the aerobic P-uptake rate. An increase in the anoxic SRT at the expenses of the aerobic SRT resulted in deterioration of P-removal with limited aerobic P-uptake and insufficient acetate uptake in the anaerobic phase. A near-complete genome (completeness = 100%, contamination = 0.187%) was extracted from the metagenome of the EBPR biomass for the here-proposed "Ca. Accumulibacter delftensis" clade IC. According to full-genome-based phylogenetic analysis, this lineage was distant from the canonical "Ca. Accumulibacter phosphatis", with closest neighbor "Ca. Accumulibacter sp. UW-LDO-IC" within clade IC. This was cross-validated with taxonomic classification of the ppk1 gene sequences. The genome-centric metagenomic analysis highlighted the presence of genes for assimilatory nitrate reductase (nas) and periplasmic nitrate reductase (nap) but no gene for respiratory nitrate reductases (nar). This suggests that "Ca. Accumulibacter delftensis" clade IC was not capable to generate the required energy (ATP) from nitrate under strict anaerobic-anoxic conditions to support an anoxic EBPR metabolism. Definitely, this study stresses the incongruence in denitrification abilities of "Ca. Accumulibacter" clades and reflects the true intra-clade diversity, which requires a thorough investigation within this lineage.
Collapse
Affiliation(s)
- F J Rubio-Rincón
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - D G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - C M Lopez-Vazquez
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - L Welles
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - B Abbas
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - M Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - P H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - D Brdjanovic
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
16
|
Carvalho V, Freitas E, Fradinho J, Reis M, Oehmen A. The effect of seed sludge on the selection of a photo-EBPR system. N Biotechnol 2019; 49:112-119. [DOI: 10.1016/j.nbt.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
|
17
|
Rubio-Rincón FJ, Welles L, Lopez-Vazquez CM, Abbas B, van Loosdrecht MCM, Brdjanovic D. Effect of Lactate on the Microbial Community and Process Performance of an EBPR System. Front Microbiol 2019; 10:125. [PMID: 30833933 PMCID: PMC6387944 DOI: 10.3389/fmicb.2019.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 02/02/2023] Open
Abstract
Candidatus Accumulibacter phosphatis is in general presented as the dominant organism responsible for the biological removal of phosphorus in activated sludge wastewater treatment plants. Lab-scale enhanced biological phosphorus removal (EBPR) studies, usually use acetate as carbon source. However, the complexity of the carbon sources present in wastewater could allow other potential poly-phosphate accumulating organism (PAOs), such as putative fermentative PAOs (e.g., Tetrasphaera), to proliferate in coexistence or competition with Ca. Accumulibacter. This research assessed the effects of lactate on microbial selection and process performance of an EBPR lab-scale study. The addition of lactate resulted in the coexistence of Ca. Accumulibacter and Tetrasphaera in a single EBPR reactor. An increase in anaerobic glycogen consumption from 1.17 to 2.96 C-mol/L and anaerobic PHV formation from 0.44 to 0.87 PHV/PHA C-mol/C-mol corresponded to the increase in the influent lactate concentration. The dominant metabolism shifted from a polyphosphate-accumulating metabolism (PAM) to a glycogen accumulating metabolism (GAM) without EBPR activity. However, despite the GAM, traditional glycogen accumulating organisms (GAOs; Candidatus Competibacter phosphatis and Defluvicoccus) were not detected. Instead, the 16s RNA amplicon analysis showed that the genera Tetrasphaera was the dominant organism, while a quantification based on FISH-biovolume indicated that Ca. Accumulibacter remained the dominant organism, indicating certain discrepancies between these microbial analytical methods. Despite the discrepancies between these microbial analytical methods, neither Ca. Accumulibacter nor Tetrasphaera performed biological phosphorus removal by utilizing lactate as carbon source.
Collapse
Affiliation(s)
- Francisco J. Rubio-Rincón
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Delft, Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Laurens Welles
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Delft, Netherlands
| | - Carlos M. Lopez-Vazquez
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Delft, Netherlands
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | - Damir Brdjanovic
- Sanitary Engineering Chair Group, Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Delft, Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
18
|
Onetto CA, Grbin PR, McIlroy SJ, Eales KL. Genomic insights into the metabolism of ‘CandidatusDefluviicoccus seviourii’, a member ofDefluviicoccuscluster III abundant in industrial activated sludge. FEMS Microbiol Ecol 2018; 95:5210054. [DOI: 10.1093/femsec/fiy231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cristobal A Onetto
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| | - Paul R Grbin
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| | - Simon J McIlroy
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Brisbane, Australia
| | - Kathryn L Eales
- Department of Wine & Food Science, University of Adelaide, Adelaide 5064, Australia
| |
Collapse
|
19
|
Li Y, Cope HA, Rahman SM, Li G, Nielsen PH, Elfick A, Gu AZ. Toward Better Understanding of EBPR Systems via Linking Raman-Based Phenotypic Profiling with Phylogenetic Diversity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8596-8606. [PMID: 29943965 DOI: 10.1021/acs.est.8b01388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study reports a proof-of concept study to demonstrate the novel approach of phenotyping microbial communities in enhanced biological phosphorus removal (EBPR) systems using single cell Raman microspectroscopy and link it with phylogentic structures. We use hierarchical clustering analysis (HCA) of single-cell Raman spectral fingerprints and intracellular polymer signatures to separate and classify the functionally relevant populations in EBPR systems, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), as well as other microbial populations. We then investigated the link between Raman-based community phenotyping and 16S rRNA gene-based phylogenetic characterization of four lab-scale EBPR systems with varying solid retention time (SRT) to gain insights into possible genotype-function relationships. Combined and simultaneous phylogenetic and phenotypic evaluation of EBPR ecosystems revealed SRT-dependent phylogenetic and phenotypic characteristics of the PAOs and GAOs, and their association with EBPR performance. The phenotypic diversity and plasticity of PAO populations, which otherwise could not be obtained with phylogenetic analysis alone, showed complex but potentially crucial association with EBPR process stability.
Collapse
Affiliation(s)
- Yueyun Li
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Helen A Cope
- School of Engineering, Institute for Bioengineering , The University of Edinburgh , Edinburgh , U.K
| | - Sheikh M Rahman
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Guangyu Li
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience , Aalborg University , Aalborg , Denmark
| | - Alistair Elfick
- School of Engineering, Institute for Bioengineering , The University of Edinburgh , Edinburgh , U.K
| | - April Z Gu
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
20
|
ElNaker NA, Yousef AF, Hasan SW. Effect of hydraulic retention time on microbial community structure in wastewater treatment electro-bioreactors. Microbiologyopen 2018; 7:e00590. [PMID: 29573369 PMCID: PMC6079174 DOI: 10.1002/mbo3.590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
The impact of hydraulic retention time (HRT) on the performance and microbial community structure of control and electro-bioreactors was investigated. Control bioreactors and electro-bioreactors were operated at HRT ranging between 6 and 75 hr. The total bacterial counts in addition to the removal efficiency of NH4+ -N, sCOD, and PO43- -P was assessed in all the reactors tested. In addition, Illumina sequencing was performed to determine the microbial communities that developed in these reactors under each HRT condition. Phylogenetic analysis showed that Proteobacteria and Bacteroidetes were the dominant phyla in those reactors. In addition, Nitrospira sp. and Pseudomonas sp. were found to be present in electro-bioreactors with higher relative abundance than in control bioreactors. The results presented here are the first to determine what different microbial communities in wastewater electro-bioreactors due to the application of an electric current under different HRTs.
Collapse
Affiliation(s)
- Nancy A ElNaker
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Carvalho VCF, Freitas EB, Silva PJ, Fradinho JC, Reis MAM, Oehmen A. The impact of operational strategies on the performance of a photo-EBPR system. WATER RESEARCH 2018; 129:190-198. [PMID: 29149674 DOI: 10.1016/j.watres.2017.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 09/21/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
A novel Phototrophic - Enhanced Biological Phosphorus Removal (Photo-EBPR) system, consisting of a consortium of photosynthetic organisms and polyphosphate accumulating organisms (PAOs), was studied in this work. A sequencing batch reactor was fed with a mixture of acetate and propionate (75%-25%) and subjected to dark/light cycles in order to select a photo-EBPR system containing PAOs and photosynthetic organisms, the latter likely providers of oxygen to the system. The results from the selection period (stage 1) showed that the photo-EBPR culture was capable of performing P release in the dark and P uptake in the presence of light, under limited oxygen concentrations. During the optimization period, the aeration period, which was initially provided at the end of the light phase, was gradually reduced until a non-aerated system was achieved, while the light intensity was increased. After optimization of the operational conditions, the selected consortium of photosynthetic organisms/PAOs showed high capacity of P removal in the light phase in the absence of air or other electron acceptor. A net P removal of 34 ± 3 mg-P/L was achieved, with a volumetric P removal rate of 15 ± 2 mg-P/L.h, and 79 ± 8% of P removal from the system. Also, in limiting oxygen conditions, the P uptake rate was independent of the PHA consumption, which demonstrates that the organisms obtained energy for P removal from light. These results indicated that a photo-EBPR system can be a potential solution for P removal with low COD/P ratios and in the absence of air, prospecting the use of natural sunlight as illumination, which would reduce the costs of EBPR operation regarding aeration.
Collapse
Affiliation(s)
- V C F Carvalho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - E B Freitas
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - P J Silva
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - J C Fradinho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - M A M Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - A Oehmen
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
22
|
Onetto CA, Eales KL, Guagliardo P, Kilburn MR, Gambetta JM, Grbin PR. Managing the excessive proliferation of glycogen accumulating organisms in industrial activated sludge by nitrogen supplementation: A FISH-NanoSIMS approach. Syst Appl Microbiol 2017; 40:500-507. [DOI: 10.1016/j.syapm.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022]
|
23
|
Nittami T, Mukai M, Uematsu K, Yoon LW, Schroeder S, Chua ASM, Fukuda J, Fujita M, Seviour RJ. Effects of different carbon sources on enhanced biological phosphorus removal and “Candidatus Accumulibacter” community composition under continuous aerobic condition. Appl Microbiol Biotechnol 2017; 101:8607-8619. [DOI: 10.1007/s00253-017-8571-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
24
|
Marques R, Santos J, Nguyen H, Carvalho G, Noronha JP, Nielsen PH, Reis MAM, Oehmen A. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. WATER RESEARCH 2017; 122:159-171. [PMID: 28599161 DOI: 10.1016/j.watres.2017.04.072] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
Tetrasphaera and Candidatus Accumulibacter are two abundant polyphosphate accumulating organisms in full-scale enhanced biological phosphorus removal (EBPR) systems. However, little is known about the metabolic behaviour and ecological niche that each organism exhibits in mixed communities. In this study, an enriched culture of Tetrasphaera and Ca. Accumulibacter was obtained using casein hydrolysate as sole carbon source. This culture was able to achieve a high phosphorus removal efficiency (>99%), storing polyphosphate while consuming amino acids anaerobically. Microautoradiography and fluorescence in situ hybridisation confirmed that more than 90% Tetrasphaera cells were responsible for amino acid consumption while Ca. Accumulibacter likely survived on fermentation products. Tetrasphaera performed the majority of the P removal (approximately 80%) in this culture, and batch tests showed that the metabolism of some carbon sources could actually lead to anaerobic orthophosphate (Pi) uptake (9.0 ± 2.1 mg-P/L) through energy generated by fermentation of glucose and amino acids. This anaerobic Pi uptake may lead to lower net Pi release to C uptake ratios and reduce the Pi needed to be removed aerobically in WWTPs. Intracellular metabolites such as amino acids, sugars, volatile fatty acids and small amines were observed as potential storage products, which may serve as energy sources in the aerobic phase. Evidence of the urea cycle was found, which could be involved in reducing the intracellular nitrogen content. This study improves our understanding of how phosphorus is removed in EBPR systems and can enable novel process optimisation strategies.
Collapse
Affiliation(s)
- Ricardo Marques
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Jorge Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hien Nguyen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Gilda Carvalho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - J P Noronha
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
25
|
Pronk M, Neu TR, van Loosdrecht MCM, Lin YM. The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by Defluviicoccus sp. WATER RESEARCH 2017; 122:148-158. [PMID: 28599160 DOI: 10.1016/j.watres.2017.05.068] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
A new acid soluble extracellular polymeric substance (acid soluble EPS) was extracted from an acetate fed aerobic granular sludge reactor operated at 35 °C. Acid soluble EPS dominated granules exhibited a remarkable and distinctive tangled tubular morphology. These granules are dominated by Defluviicoccus Cluster II organisms. Acetic acid instead of the usually required alkaline extraction medium was needed to dissolve the granules and solubilise the polymeric matrix. The extracted acid soluble EPS was analysed and identified using various instrumental analysis including 1H and 13C Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy and Raman spectroscopy. In addition, the glycoconjugates were characterized by fluorescence lectin-binding analysis. The acid soluble EPS is α-(1 → 4) linked polysaccharide, containing both glucose and galactose as monomers. There are OCH3 groups connected to the glucose monomer. Transmission and scanning electron microscopy (TEM, SEM) as well as confocal laser scanning microscopy (CLSM) showed that the acid soluble EPS was present as a tightly bound capsular EPS around bacterial cells ordered into a sarcinae-like growth pattern. The special granule morphology is decided by the acid soluble EPS produced by Defluviicoccus Cluster II organisms. This work shows that no single one method can be used to extract all possible extracellular polymeric substances. Results obtained here can support the elucidation of biofilm formation and structure in future research.
Collapse
Affiliation(s)
- M Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - T R Neu
- Microbiology of Interfaces, Department River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3A, 39114, Magdeburg, Germany.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Y M Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
26
|
Nurmiyanto A, Kodera H, Kindaichi T, Ozaki N, Aoi Y, Ohashi A. Dominant Candidatus Accumulibacter phosphatis Enriched in Response to Phosphate Concentrations in EBPR Process. Microbes Environ 2017; 32:260-267. [PMID: 28890468 PMCID: PMC5606696 DOI: 10.1264/jsme2.me17020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Candidatus Accumulibacter phosphatis (Accumulibacter), which plays an important role in enhanced biological phosphorus removal in wastewater treatment plants, is phylogenetically classified into two major types (Types I and II). Phosphate concentrations affect the Accumulibacter community of the biomass enriched in treatment plants. Therefore, in the present study, Accumulibacter enrichments were conducted using a down-flow hanging sponge reactor under five conditions and a wide range of controlled phosphate concentrations in order to investigate how phosphate governs the community. We found that excessive phosphate levels inhibited Accumulibacter activity, that this inhibitory effect was greater for Type II. In addition, the affinity of Type II for phosphate was higher than that of Type I. Type IIA-B dominated at a phosphate concentration less than 5 mg P L-1, while Type IA was dominant at 50 and 500 mg P L-1. These patterns of enrichment may be explained by an inhibition kinetics model.
Collapse
Affiliation(s)
- Awaluddin Nurmiyanto
- Graduate School of Engineering, Hiroshima University.,Department of Environmental Engineering, Islamic University of Indonesia (UII)
| | - Hiroya Kodera
- Graduate School of Engineering, Hiroshima University
| | | | | | - Yoshiteru Aoi
- Graduated School of Advanced Sciences of Matter, Department of Molecular Biotechnology, Hiroshima University
| | | |
Collapse
|
27
|
Rubio-Rincón FJ, Lopez-Vazquez CM, Welles L, van Loosdrecht MCM, Brdjanovic D. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. WATER RESEARCH 2017; 120:156-164. [PMID: 28486166 DOI: 10.1016/j.watres.2017.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 05/19/2023]
Abstract
Although simultaneous P-removal and nitrate reduction has been observed in laboratory studies as well as full-scale plants, there are contradictory reports on the ability of PAO I to efficiently use nitrate as electron acceptor. Such discrepancy could be due to other microbial groups performing partial denitrification from nitrate to nitrite. The denitrification capacities of two different cultures, a highly enriched PAO I and a PAO I-GAO cultures were assessed through batch activity tests conducted before and after acclimatization to nitrate. Negligible anoxic phosphate uptake coupled with a reduction of nitrate was observed in the highly enriched PAO I culture. On the opposite, the PAO I-GAO culture showed a higher anoxic phosphate uptake activity. Both cultures exhibited good anoxic phosphate uptake activity with nitrite (8.7 ± 0.3 and 9.6 ± 1.8 mgPO4-P/gVSS.h in the PAO I and PAO I-GAO cultures, respectively). These findings suggest that other microbial populations, such as GAOs, were responsible to reduce nitrate to nitrite in this EBPR system, and that PAO I used the nitrite generated for anoxic phosphate uptake. Moreover, the simultaneous denitrification and phosphate removal process using nitrite as electron acceptor may be a more sustainable process as can: i) reduce the carbon consumption, ii) reduce oxygen demand of WWTP, and iii) due to a lower growth yield contribute to a lower sludge production.
Collapse
Affiliation(s)
- F J Rubio-Rincón
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - C M Lopez-Vazquez
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.
| | - L Welles
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - D Brdjanovic
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
28
|
Rubio-Rincón FJ, Welles L, Lopez-Vazquez CM, Nierychlo M, Abbas B, Geleijnse M, Nielsen PH, van Loosdrecht MCM, Brdjanovic D. Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis. WATER RESEARCH 2017; 116:53-64. [PMID: 28314208 DOI: 10.1016/j.watres.2017.03.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/05/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Thiothrix caldifontis was the dominant microorganism (with an estimated bio-volume of 65 ± 3%) in a lab-scale enhanced biological phosphorus removal (EBPR) system containing 100 mg of sulphide per litre in the influent. After a gradual exposure to the presence of sulphide, the EBPR system initially dominated by Candidatus Accumulibacter phosphatis Clade I (98 ± 3% bio-volume) (a known polyphosphate accumulating organism, PAO) became enriched with T. caldifontis. Throughout the different operating conditions studied, practically 100% phosphate removal was always achieved. The gradual increase of the sulphide content in the medium (added to the anaerobic stage of the alternating anaerobic-aerobic sequencing batch reactor) and the adjustment of the aerobic hydraulic retention time played a major role in the enrichment of T. caldifontis. T. caldifontis exhibited a mixotrophic metabolism by storing carbon anaerobically as poly-β-hydroxy-alkanoates (PHA) and generating the required energy through the hydrolysis of polyphosphate. PHA was used in the aerobic period as carbon and energy source for growth, polyphosphate, and glycogen formation. Apparently, extra energy was obtained by the initial accumulation of sulphide as an intracellular sulphur, followed by its gradual oxidation to sulphate. The culture enriched with T. caldifontis was able to store approximately 100 mg P/g VSS. This research suggests that T. caldifontis could behave like PAO with a mixotrophic metabolism for phosphorus removal using an intracellular sulphur pool as energy source. These findings can be of major interest for the biological removal of phosphorus from wastewaters with low organic carbon concentrations containing reduced S-compounds like those (pre-)treated in anaerobic systems or from anaerobic sewers.
Collapse
Affiliation(s)
- F J Rubio-Rincón
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - L Welles
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - C M Lopez-Vazquez
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.
| | - M Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg, Denmark.
| | - B Abbas
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - M Geleijnse
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - P H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg, Denmark.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - D Brdjanovic
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
29
|
Shen N, Chen Y, Zhou Y. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature. WATER RESEARCH 2017; 114:308-315. [PMID: 28259067 DOI: 10.1016/j.watres.2017.02.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/08/2016] [Accepted: 02/21/2017] [Indexed: 05/25/2023]
Abstract
Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors.
Collapse
Affiliation(s)
- Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
30
|
Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems. Front Microbiol 2017; 8:718. [PMID: 28496434 PMCID: PMC5406452 DOI: 10.3389/fmicb.2017.00718] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Collapse
Affiliation(s)
- Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
31
|
A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. N Biotechnol 2017; 35:42-53. [DOI: 10.1016/j.nbt.2016.11.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/16/2023]
|
32
|
Sulphide effects on the physiology of Candidatus Accumulibacter phosphatis type I. Appl Microbiol Biotechnol 2016; 101:1661-1672. [DOI: 10.1007/s00253-016-7946-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
33
|
Mao Y, Wang Z, Li L, Jiang X, Zhang X, Ren H, Zhang T. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal. PLoS One 2016; 11:e0161506. [PMID: 27547976 PMCID: PMC4993488 DOI: 10.1371/journal.pone.0161506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/05/2016] [Indexed: 01/26/2023] Open
Abstract
A sequencing batch reactor fed mainly by acetate was operated to perform enhanced biological phosphorus removal (EBPR). A short-term pH shock from 7.0 to 6.0 led to a complete loss of phosphate-removing capability and a drastic change of microbial communities. 16S rRNA gene pyrosequencing showed that large proportions of glycogen accumulating organisms (GAOs) (accounted for 16% of bacteria) bloomed, including Candidatus Competibacter phosphatis and Defluviicoccus-related tetrad-forming organism, causing deteriorated EBPR performance. The EBPR performance recovered with time and the dominant Candidatus Accumulibacter (Accumulibacter) clades shifted from Clade IIC to IIA while GAOs populations shrank significantly. The Accumulibacter population variation provided a good opportunity for genome binning using a bi-dimensional coverage method, and a genome of Accumulibacter Clade IIC was well retrieved with over 90% completeness. Comparative genomic analysis demonstrated that Accumulibacter clades had different abilities in nitrogen metabolism and carbon fixation, which shed light on enriching different Accumulibacter populations selectively.
Collapse
Affiliation(s)
- Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhiping Wang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liguan Li
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuxiang Zhang
- School of Environment, Nanjing University, Nanjing, China
| | - Hongqiang Ren
- School of Environment, Nanjing University, Nanjing, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- * E-mail:
| |
Collapse
|
34
|
Albertsen M, McIlroy SJ, Stokholm-Bjerregaard M, Karst SM, Nielsen PH. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Front Microbiol 2016; 7:1033. [PMID: 27458436 PMCID: PMC4930944 DOI: 10.3389/fmicb.2016.01033] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set.
Collapse
Affiliation(s)
- Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Simon J McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Mikkel Stokholm-Bjerregaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark; Krüger A/SAalborg, Denmark
| | - Søren M Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
| |
Collapse
|
35
|
Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions. Sci Rep 2016; 6:25719. [PMID: 27193869 PMCID: PMC4872125 DOI: 10.1038/srep25719] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/19/2016] [Indexed: 02/01/2023] Open
Abstract
Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.
Collapse
|
36
|
Franca RDG, Vieira A, Mata AMT, Carvalho GS, Pinheiro HM, Lourenço ND. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. WATER RESEARCH 2015; 85:327-336. [PMID: 26343991 DOI: 10.1016/j.watres.2015.08.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule stability. Fluorescence in situ hybridization (FISH) analysis confirmed the compact structure of the dye-fed granules, microbial activity being apparently maintained in the granule core, as opposed to the dye-free control. These findings support the potential application of the AGS technology for textile wastewater treatment.
Collapse
Affiliation(s)
- Rita D G Franca
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Anabela Vieira
- Microbiology of Man-Made Environments Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| | - Ana M T Mata
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Gilda S Carvalho
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Helena M Pinheiro
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Nídia D Lourenço
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
37
|
Pronk M, Abbas B, Kleerebezem R, van Loosdrecht MCM. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate. Microb Biotechnol 2015; 8:853-64. [PMID: 26059251 PMCID: PMC4554473 DOI: 10.1111/1751-7915.12292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/05/2015] [Accepted: 04/12/2015] [Indexed: 11/30/2022] Open
Abstract
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes.
Collapse
Affiliation(s)
- M Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| | - B Abbas
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| | - R Kleerebezem
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of TechnologyDelft, The Netherlands
| |
Collapse
|
38
|
Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor. Sci Rep 2015; 5:12904. [PMID: 26257096 PMCID: PMC4530441 DOI: 10.1038/srep12904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/12/2015] [Indexed: 11/24/2022] Open
Abstract
Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.
Collapse
|
39
|
Chen HB, Wang DB, Li XM, Yang Q, Zeng GM. Enhancement of post-anoxic denitrification for biological nutrient removal: effect of different carbon sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5887-5894. [PMID: 25354439 DOI: 10.1007/s11356-014-3755-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Previous research has demonstrated that post-anoxic denitrification and biological nutrient removal could be achieved in the oxic/anoxic/extended-idle wastewater treatment regime. This study further investigated the effect of different carbon sources on post-anoxic denitrification and biological nutrient removal. Acetate, propionate (volatile fatty acids (VFAs)), glucose (carbohydrate), methanol, and ethanol (alcohol) were used as the sole carbon source, respectively. The experimental results showed that VFA substrates led to an improvement in nitrogen and phosphorus removal. The total nitrogen and phosphorus removal efficiency values driven by acetate achieved 93 and 99%, respectively. In contrast, glucose present in mixed liquor deteriorated total nitrogen and phosphorus removal efficiency values to 72 and 54%. In the reactors cultured with methanol and ethanol, 66 and 63% of the total nitrogen were removed, and phosphorus removal efficiency values were 78 and 71%, respectively. The mechanism studies revealed that different carbon sources affected the transformations of intracellular polyhydroxyalkanoates (PHAs) and glycogen. PHAs are the dominant storages for microorganisms cultured with VFA substrates. Though glycogen is not the favorable energy and carbon source for polyphosphate-accumulating organisms, it can be consumed by microorganisms related to biological nitrogen removal and is able to serve as the electron donor for post-anoxic denitrification.
Collapse
Affiliation(s)
- Hong-bo Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | |
Collapse
|
40
|
Reyes M, Borrás L, Seco A, Ferrer J. Identification and quantification of microbial populations in activated sludge and anaerobic digestion processes. ENVIRONMENTAL TECHNOLOGY 2015; 36:45-53. [PMID: 25409582 DOI: 10.1080/09593330.2014.934745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Eight different phenotypes were studied in an activated sludge process (AeR) and anaerobic digester (AnD) in a full-scale wastewater treatment plant by means of fluorescent in situ hybridization (FISH) and automated FISH quantification software. The phenotypes were ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, phosphate-accumulating organisms (PAO), glycogen-accumulating organisms (GAO), sulphate-reducing bacteria (SRB), methanotrophic bacteria and methanogenic archaea. Some findings were unexpected: (a) Presence of PAO, GAO and denitrifiers in the AeR possibly due to unexpected environmental conditions caused by oxygen deficiencies or its ability to survive aerobically; (b) presence of SRB in the AeR due to high sulphate content of wastewater intake and possibly also due to digested sludge being recycled back into the primary clarifier; (c) presence of methanogenic archaea in the AeR, which can be explained by the recirculation of digested sludge and its ability to survive periods of high oxygen levels; (d) presence of denitrifying bacteria in the AnD which cannot be fully explained because the nitrate level in the AnD was not measured. However, other authors reported the existence of denitrifiers in environments where nitrate or oxygen was not present suggesting that denitrifiers can survive in nitrate-free anaerobic environments by carrying out low-level fermentation; (e) the results of this paper are relevant because of the focus on the identification of nearly all the significant bacterial and archaeal groups of microorganisms with a known phenotype involved in the biological wastewater treatment.
Collapse
Affiliation(s)
- M Reyes
- a Instituto de Ingeniería del Agua y Medio Ambiente, Universidad Politécnica de Valencia , Valencia , Spain
| | | | | | | |
Collapse
|
41
|
Carvalheira M, Oehmen A, Carvalho G, Eusébio M, Reis MAM. The impact of aeration on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms. WATER RESEARCH 2014; 66:296-307. [PMID: 25222333 DOI: 10.1016/j.watres.2014.08.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/01/2014] [Accepted: 08/23/2014] [Indexed: 05/08/2023]
Abstract
In wastewater treatment plants (WWTPs), aeration is the major energetic cost, thus its minimisation will improve the cost-effectiveness of the process. This study shows that both the dissolved oxygen (DO) concentration and aerobic hydraulic retention time (HRT) affect the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). At low DO levels, Accumulibacter PAOs were shown to have an advantage over Competibacter GAOs, as PAOs had a higher oxygen affinity and thus largely maintained their aerobic activity at low DO levels, while GAO activity decreased. Bioreactor operation at low DO levels was found to increase the PAO fraction of the sludge. Furthermore, an increase in aerobic HRT (at a DO level of 2 mg O2/L), promoted the proliferation of GAOs over PAOs, decreasing the EBPR efficiency. Overall, this study shows that low aeration can be beneficial for EBPR performance through selecting for PAOs over GAOs, which should be incorporated into WWTP models in order to minimise energetic costs and improve WWTP sustainability.
Collapse
Affiliation(s)
- Mónica Carvalheira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Adrian Oehmen
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal.
| | - Mário Eusébio
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Maria A M Reis
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
42
|
Wang Z, Guo F, Mao Y, Xia Y, Zhang T. Metabolic characteristics of a glycogen-accumulating organism in Defluviicoccus cluster II revealed by comparative genomics. MICROBIAL ECOLOGY 2014; 68:716-728. [PMID: 24889288 DOI: 10.1007/s00248-014-0440-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Glycogen-accumulating organisms (GAOs) may compete with phosphate-accumulating organisms (PAOs) for short-chain fatty acids (VFAs) in anaerobic polyhydroxyalkanoates (PHA) synthesis, but no consequently aerobic polyphosphate accumulation in enhanced biological phosphorus removal (EBPR) process, thus deteriorating the EBPR process. They are detected frequently in the deteriorated EBPR process, but their metabolisms are still far from our comprehensions for there is seldom pure culture. In this study, a nearly complete draft genome of a GAOs in Defluviicoccus cluster II, GAO-HK, is recruited from the metagenome of activated sludge in a full-scale industrial anoxic/aerobic wastewater plant. Comparative genomics reveal similar metabolisms of PHA and glycogen in GAOs of GAO-HK, Defluviicoccus tetraformis TFO71 (TFO71) and Competibacter phosphatis clade IIA (CPIIA), and PAOs of Accumulibacter clade IIA UW-1 (UW-1) and Tetrasphaera elongata Lp2 (Lp2). Although there are similar gene cassettes related with polyphosphate metabolism in these GAOs and PAOs, especially for Defluviicoccus-relative bacteria and UW-1, ppk1 in GAOs are diverse from those in the identified PAOs, implying the difference of polyphosphate metabolism in GAOs and PAOs. Additionally, genes related to the dissimilatory denitrification are absent in TFO71 and GAO-HK, implying that additional nitrate or nitrite may favor PAOs over Defluviicoccus-relative GAOs. Therefore, PAOs suffering from competition of Defluviicoccus-relative GAOs might be rescued with the additional nitrate/nitrite, which is important to improve the stability of EBPR processes.
Collapse
Affiliation(s)
- Zhiping Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
43
|
Carvalheira M, Oehmen A, Carvalho G, Reis MAM. The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). WATER RESEARCH 2014; 64:149-159. [PMID: 25051162 DOI: 10.1016/j.watres.2014.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The type of carbon source present in the wastewater is one factor that affects the competition between polyphosphate accumulating organisms (PAO) and glycogen accumulating organisms (GAO) and therefore, the efficiency of the enhanced biological phosphorus removal (EBPR) process. This study investigated the impact of the carbon source composition on the anaerobic and aerobic kinetics of PAOs and the EBPR performance of an 85% PAO enrichment. When both acetate (HAc) and propionate (HPr) were present, propionate was depleted more quickly, with a constant uptake rate of 0.18 ± 0.02 C-mol/(C-mol biomass·h), while the acetate uptake rate decreased with an increase in propionate concentration, due to the substrate competition between acetate and propionate. The metabolic model for PAOs was modified to incorporate the anaerobic substrate competition effect. The aerobic rates for phosphorus (P) uptake, glycogen production and polyhydroxyalkanoates (PHA) degradation were within the same range for all tests, indicating that these rates are essentially independent of the acetate and propionate concentration, simplifying the calibration procedure for metabolic models. The metabolic model applied to describe the anaerobic and aerobic activity agreed well with the experimental data of HAc, HPr, P, PHA and biomass growth. The low glycogen consumption observed suggest that some reducing equivalents were generated anaerobically through the TCA cycle. The results of this work suggest that the propionate uptake kinetics by PAOs can provide them an advantage over GAOs in EBPR systems, even when the propionate fraction of the influent is relatively low.
Collapse
Affiliation(s)
- Mónica Carvalheira
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal
| | - Maria A M Reis
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
44
|
Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A. High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus "Accumulibacter phosphatis". WATER RESEARCH 2014; 64:102-112. [PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
Collapse
Affiliation(s)
- Ying Hui Ong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Japan
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tadashi Shoji
- Department of Socio-Cultural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Atsuko Michinaka
- Wastewater and Sludge Management Division, Water Quality Control Department, National Institute for Land and Infrastructure Management, Asahi 1, Tsukuba, Ibaraki 305-0804, Japan
| |
Collapse
|
45
|
Begum SA, Batista JR. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems. ENVIRONMENTAL TECHNOLOGY 2014; 35:2961-2972. [PMID: 25189844 DOI: 10.1080/09593330.2014.927531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs.
Collapse
Affiliation(s)
- Shamim A Begum
- a Department of Chemical Engineering , Tuskegee University , 522E Luther Foster Hall, Tuskegee , AL 36088 , USA
| | | |
Collapse
|
46
|
Weissbrodt DG, Maillard J, Brovelli A, Chabrelie A, May J, Holliger C. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays. Biotechnol Bioeng 2014; 111:2421-35. [PMID: 24975745 DOI: 10.1002/bit.25320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 11/09/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC.
Collapse
Affiliation(s)
- David G Weissbrodt
- Ecole Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Operation performance and microbial community dynamics of phosphorus removal sludge with different electron acceptors. ACTA ACUST UNITED AC 2014; 41:1099-108. [DOI: 10.1007/s10295-014-1444-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Abstract
Operation performances of phosphorus removal sludge with different electron acceptors in three parallel SBRs were firstly compared in the present study, and the effect of post-aeration on denitrifying phosphorus removal was also studied. Moreover, community dynamics of different phosphorus removal sludge was systematically investigated with high-throughput sequencing for the first time. TP removal rates for nitrate-, nitrite-, and oxygen-based phosphorus removal sludge were 84.8, 78.5, and 87.4 %, with an average effluent TP concentration of 0.758, 0.931, and 0.632 mg/l. The average specific phosphorus release and uptake rates were 20.3, 10.8, and 21.5, and 9.43, 8.68, and 10.8 mgP/(gVSS h), respectively. Moreover, electron utilization efficiency of denitrifying phosphorus removal sludge with nitrate as electron acceptor was higher than nitrite, with P/e− were 2.21 and 1.51 mol-P/mol-e−, respectively. With the assistance of post-aeration for nitrate-based denitrifying phosphorus removal sludge, settling ability could be improved, with SVI decreased from 120 to 80 and 72 ml/g when post-aeration time was 0, 10, and 30 min, respectively. Moreover, further phosphorus removal could be achieved during post-aeration with increased aeration time. However, the anoxic phosphorus uptake was deteriorated, which was likely a result of shifted microbial community structure. Post-aeration of approximately 10 min was proposed for denitrifying phosphorus removal. Nitrate- and nitrite-based denitrifying phosphorus removal sludge exhibited similar community structure. More phosphorus accumulating organisms were enriched under anaerobic–aerobic conditions, while anaerobic–anoxic conditions were favorable for suppressing glycogen-accumulating organisms. Significant differences in pathogenic bacterial community profiles revealed in the current study indicated the potential public health hazards of non-aeration activated sludge system.
Collapse
|
48
|
Weissbrodt DG, Shani N, Holliger C. Linking bacterial population dynamics and nutrient removal in the granular sludge biofilm ecosystem engineered for wastewater treatment. FEMS Microbiol Ecol 2014; 88:579-95. [DOI: 10.1111/1574-6941.12326] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 02/03/2023] Open
Affiliation(s)
- David G. Weissbrodt
- Laboratory for Environmental Biotechnology; School of Architecture, Civil and Environmental Engineering; Institute of Environmental Engineering; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Noam Shani
- Laboratory for Environmental Biotechnology; School of Architecture, Civil and Environmental Engineering; Institute of Environmental Engineering; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology; School of Architecture, Civil and Environmental Engineering; Institute of Environmental Engineering; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| |
Collapse
|
49
|
Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/802984] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyhydroxyalkanoates (PHA) producers have been reported to reside at various ecological niches which are naturally or accidently exposed to high organic matter or growth limited conditions such as dairy wastes, hydrocarbon contaminated sites, pulp and paper mill wastes, agricultural wastes, activated sludges of treatment plants, rhizosphere, and industrial effluents. Few among them also produce extracellular by-products like rhamnolipids, extracellular polymeric substances, and biohydrogen gas. These sorts of microbes are industrially important candidates for the reason that they can use waste materials of different origin as substrate with simultaneous production of valuable bioproducts including PHA. Implementation of integrated system to separate their by-products (intracellular and extracellular) can be economical in regard to production. In this review, we have discussed various microorganisms dwelling at different environmental conditions which stimulate them to accumulate carbon as polyhydroxyalkanoates granules and factors influencing its production and composition. A brief aspect on metabolites which are produced concomitantly with PHA has also been discussed. In conclusion, exploring of capabilities like of dual production by microbes and use of wastes as renewable substrate under optimized cultural conditions either in batch or continuous process can cause deduction in present cost of bioplastic production from stored PHA granules.
Collapse
|
50
|
Lanham AB, Oehmen A, Saunders AM, Carvalho G, Nielsen PH, Reis MAM. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal. WATER RESEARCH 2013; 47:7032-7041. [PMID: 24210547 DOI: 10.1016/j.watres.2013.08.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems.
Collapse
Affiliation(s)
- Ana B Lanham
- REQUIMTE/CQFB, Chemistry Department FCT-UNL, 2829-516 Caparica, Portugal.
| | | | | | | | | | | |
Collapse
|