1
|
Yacoub E, Kos D, Jelinski M. Virulence Is More than Adhesion and Invasion Ability, an In Vitro Cell Infection Assay of Bovine Mycoplasma spp. Microorganisms 2025; 13:632. [PMID: 40142524 PMCID: PMC11944293 DOI: 10.3390/microorganisms13030632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Mycoplasma bovis is the most common mycoplasma associated with cattle diseases worldwide. However, other seemingly less virulent Mycoplasma spp. such as M. bovigenitalium and M. bovirhinis have also been associated with mycoplasmosis. The study objective was to compare the adhesion and cellular invasion characteristics of these bovine Mycoplasma spp. using Madin-Darby Bovine Kidney (MDBK) epithelial cells. MDBK cells were separately infected with 12 M. bovis strains and one strain each of M. bovigenitalium and M. bovirhinis. Following infection, a gentamicin protection assay was performed and the cells lysed at 6 and 54 h post-infection. The MDBK cell lysates were cultured for Mycoplasma spp. and qPCR was used to estimate the average number of Mycoplasma bacterial cells that infected each MDBK cell (Myc/Cell ratio). Confocal and electron microscopy studies using M. bovis mNeonGreen strain were also performed. All 14 Mycoplasma strains multiplied within the MDBK cells, a finding confirmed by microscopy studies of the M. bovis mNeonGreen strain. Unexpectedly, the M. bovis strains, obtained from diseased and asymptomatic cattle and bison, had lower Myc/Cell ratios than M. bovirhinis and M. bovigenitalium strains. These findings suggest that the ability for mycoplasmas to invade and replicate within host cells does not account for the differences in virulence between species.
Collapse
Affiliation(s)
- Elhem Yacoub
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Daniel Kos
- Institute for Microbial Systems and Society, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| |
Collapse
|
2
|
Dudley EP, Scott MA, Kittana H, Thompson AC, Valeris-Chacin R. The Pathogenomics of the Respiratory Mycoplasma bovis Strains Circulating in Cattle Around the Texas Panhandle, USA. Pathogens 2025; 14:167. [PMID: 40005542 PMCID: PMC11858780 DOI: 10.3390/pathogens14020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Bovine respiratory disease (BRD) is a major economic and animal welfare issue in the beef industry. Mycoplasma bovis is one of the main causal organisms, particularly in chronic cases. Due to the difficulty of isolating M. bovis from clinical isolates, there is a lack of information on the genetic diversity of this pathogen in the Texas panhandle region of the United States. Therefore, our objective was to provide genome-level characterization of M. bovis isolated from the lung lesions of beef and dairy cattle in the Texas panhandle. Fifty-four isolates displaying mycoplasma-like growth were recovered from bovine lung lesions by the Texas Veterinary Medical Diagnostic Laboratory in 2021 and 2022. Of these isolates, 32 were determined to be M. bovis via species-specific qPCR using the uvrC gene. Long-read whole-genome sequencing was used to identify key virulence factors, antimicrobial resistance genes, and to assess the genetic diversity of these isolates. Fisher's exact tests were used to identify associations between isolate characteristics and host metadata, including the state of origin, type of operation, animal age, and animal sex. Our results indicate that there is considerable genetic diversity among the M. bovis isolates, despite their shared geography in the Texas panhandle, though significant clustering based on host metadata was observed. Analysis of the pangenome showed that the M. bovis isolates in this study also harbor a diverse array of virulence genes, but no antimicrobial resistance genes were identified in this study.
Collapse
Affiliation(s)
- Ethan P. Dudley
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA; (E.P.D.); (M.A.S.)
| | - Matthew A. Scott
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA; (E.P.D.); (M.A.S.)
| | - Hatem Kittana
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Alexis C. Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX 79015, USA;
| | - Robert Valeris-Chacin
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA; (E.P.D.); (M.A.S.)
| |
Collapse
|
3
|
Nishi K, Gondaira S, Hirano Y, Ohashi M, Sato A, Matsuda K, Iwasaki T, Kanda T, Uemura R, Higuchi H. Biofilm characterisation of Mycoplasma bovis co-cultured with Trueperella pyogenes. Vet Res 2025; 56:22. [PMID: 39885598 PMCID: PMC11783866 DOI: 10.1186/s13567-025-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025] Open
Abstract
Mycoplasma pneumonia, caused by Mycoplasma bovis (Mycoplasmopsis bovis; M. bovis), is linked with severe inflammatory reactions in the lungs and can be challenging to treat with antibiotics. Biofilms play a significant role in bacterial persistence and contribute to the development of chronic lesions. A recent study has shown that polymicrobial interactions between species are an important factor in biofilm formation, yet the precise mechanism of biofilm formation in M. bovis remains unknown. By assuming multiple pathogen infections in the bovine respiratory disease complex (BRDC), this study examined the characterisation of the polymicrobial relationship between M. bovis and Trueperella pyogenes (T. pyogenes) during biofilm formation. Autopsies were performed on four Holstein calves (two chronic Mycoplasma pneumonia calves and two control calves). Bacterium-like aggregation structures (> 10 μm), which were assumed to be biofilms of M. bovis in vivo, were observed adhering to the cilia in calves with Mycoplasma pneumonia. M. bovis released an extracellular matrix to connect with neighbouring bacteria and form a mature biofilm on the plate. Biofilm formation in the co-culture of M. bovis and T. pyogenes (strain T1: 1 × 105 and 1 × 106 CFU/well) significantly increased (p < 0.05 and p < 0.01; 64.1% and 64.8% increase) compared to that in a single culture of these bacteria. Furthermore, some large aggregates (> 40 μm), composed of M. bovis and T. pyogenes, were observed. The morphological characteristics of this biofilm were similar to those observed in vivo compared to a single culture. In conclusion, the polymicrobial interaction between M. bovis and T. pyogenes induces biofilm formation, which is associated with increased resistance to antimicrobial agents, and this exacerbates the progression of chronic Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Koji Nishi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Monbetsu Veterinary Clinic, Hokkaido Agricultural Mutual Aid Association, Monbetsu, Hokkaido, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Yuki Hirano
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Masahide Ohashi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Ayano Sato
- Large Animal Clinical Science, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kazuya Matsuda
- Department of Veterinary Pathology, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Takuya Kanda
- Food Safety Laboratory, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Ryoko Uemura
- Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| |
Collapse
|
4
|
Jacobson BT, DeWit-Dibbert J, Selong ET, Quirk M, Throolin M, Corona C, Sonar S, Zanca L, Schwarz ER, Bimczok D. Innovative Methodology for Antimicrobial Susceptibility Determination in Mycoplasma Biofilms. Microorganisms 2024; 12:2650. [PMID: 39770853 PMCID: PMC11728330 DOI: 10.3390/microorganisms12122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Mycoplasma spp. are facultative pathogens that contribute to the pathogenesis of multiple bovine diseases, including the bovine respiratory disease complex, and have been shown to form biofilms. Biofilm formation is associated with increased antibiotic resistance in many organisms, but accurate determination of antimicrobial susceptibility in biofilms is challenging. In Mycoplasma spp., antimicrobial susceptibility is routinely determined using metabolic pH-dependent color change. However, biofilm formation can lead to reduced metabolism, making interpretation of metabolic readouts difficult. Therefore, we developed and optimized a new flow cytometry-based method for antimicrobial susceptibility testing in biofilm-forming Mycoplasma, termed the live/dead antimicrobial susceptibility test (LD-AST). The LD-AST measures the proportion of live bacteria upon exposure to antibiotics, works robustly with both planktonic and biofilm cultures, and enables the determination of the minimum bactericidal concentration (MBC) for a given antibiotic. We used two strains of Mycoplasma bovis (Donetta PG45 and Madison) and two clinical Mycoplasma bovoculi isolates (MVDL1 and MVDL2) to determine the impact of biofilm growth on antimicrobial susceptibility for gentamicin, enrofloxacin, or tetracycline. All Mycoplasma strains were susceptible to all antibiotics when cultured as planktonic cells, with MBCs in the expected range. However, three out of four strains (Donetta PG45, MVDL1, and MVDL2) were completely resistant to all three antibiotics when newly adhered biofilms were analyzed, whereas M. bovis Madison gave variable results. For mature biofilms that were cultured for 4-5 days before antibiotic exposure, results also were variable, with some strains showing an increased resistance with certain antibiotics and a decreased resistance with others. Overall, these results are consistent with earlier reports that biofilms can exhibit increased antimicrobial resistance.
Collapse
Affiliation(s)
- B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA; (B.T.J.); (J.D.-D.); (M.Q.); (S.S.); (L.Z.)
| | - Jessica DeWit-Dibbert
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA; (B.T.J.); (J.D.-D.); (M.Q.); (S.S.); (L.Z.)
| | - Eli T. Selong
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718, USA;
| | - McKenna Quirk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA; (B.T.J.); (J.D.-D.); (M.Q.); (S.S.); (L.Z.)
| | - Michael Throolin
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59718, USA (C.C.)
| | - Chris Corona
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59718, USA (C.C.)
| | - Sobha Sonar
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA; (B.T.J.); (J.D.-D.); (M.Q.); (S.S.); (L.Z.)
| | - LaShae Zanca
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA; (B.T.J.); (J.D.-D.); (M.Q.); (S.S.); (L.Z.)
| | - Erika R. Schwarz
- Montana Veterinary Diagnostic Laboratory, Montana Department of Livestock, Bozeman, MT 59718, USA;
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA; (B.T.J.); (J.D.-D.); (M.Q.); (S.S.); (L.Z.)
| |
Collapse
|
5
|
Guo ZQ, Gu SY, Tian ZH, Du BY. A comprehensive review of Mycoplasma pneumoniae infection in chronic lung diseases: recent advances in understanding asthma, COPD, and bronchiectasis. Front Med (Lausanne) 2024; 11:1437731. [PMID: 39386750 PMCID: PMC11461384 DOI: 10.3389/fmed.2024.1437731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
This review summarizes the research progress over the past 30 years on the relationship between Mycoplasma pneumoniae infection and chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and bronchiectasis. Mycoplasma pneumoniae is a common cause of community-acquired pneumonia, particularly in children and young adults. Key findings from recent studies indicate that M. pneumoniae infection is associated with a higher risk of asthma exacerbations and may contribute to the development of bronchiectasis in susceptible individuals. Additionally, emerging evidence suggests that M. pneumoniae-induced immune dysregulation plays a crucial role in the pathogenesis of chronic lung diseases. This review aims to summarize the current understanding of the potential links between M. pneumoniae pneumonia and various chronic respiratory conditions, including asthma, chronic obstructive pulmonary disease (COPD), and bronchiectasis. We discuss the epidemiological data, pathogenic mechanisms, clinical manifestations, and long-term consequences of M. pneumoniae-related respiratory illnesses. Additionally, we highlight the challenges in diagnosis and treatment, as well as future research directions in this field.
Collapse
Affiliation(s)
- Zai-qiang Guo
- Department of Science and Education, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine, Beijing, China
| | - Shun-yi Gu
- Department of Internal Medicine, Beijing Tongzhou District Integrated Traditional Chinese and Modern Medicine, Beijing, China
| | - Zhi-hua Tian
- Department of Science and Education, Beijing Daxing District Hospital of Integrated Traditional Chinese and Modern Medicine, Beijing, China
| | - Bo-ying Du
- Pediatrics, Shijiazhuang Second Hospital, Shijiazhuang, China
| |
Collapse
|
6
|
Jiang B, Zhang Y, Li G, Quan Y, Shu J, Feng H, He Y. Research Progress on Immune Evasion of Mycoplasma hyopneumoniae. Microorganisms 2024; 12:1439. [PMID: 39065207 PMCID: PMC11279058 DOI: 10.3390/microorganisms12071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
As the main pathogen associated with enzootic pneumonia (EP), Mycoplasma hyopneumoniae (Mhp) is globally prevalent and inflicts huge financial losses on the worldwide swine industry each year. However, the pathogenicity of Mhp has not been fully explained to date. Mhp invasion usually leads to long-term chronic infection and persistent lung colonization, suggesting that Mhp has developed effective immune evasion strategies. In this review, we offer more detailed information than was previously available about its immune evasion mechanisms through a systematic summary of the extant findings. Genetic mutation and post-translational protein processing confer Mhp the ability to alter its surface antigens. With the help of adhesins, Mhp can achieve cell invasion. And Mhp can modulate the host immune system through the induction of inflammation, incomplete autophagy, apoptosis, and the suppression of immune cell or immune effector activity. Furthermore, we offer the latest views on how we may treat Mhp infections and develop novel vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (B.J.); (Y.Z.); (G.L.); (Y.Q.); (J.S.); (H.F.)
| |
Collapse
|
7
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
8
|
Andrés-Lasheras S, Zaheer R, Jelinski M, McAllister TA. Role of biofilms in antimicrobial resistance of the bacterial bovine respiratory disease complex. Front Vet Sci 2024; 11:1353551. [PMID: 38933702 PMCID: PMC11199855 DOI: 10.3389/fvets.2024.1353551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
An increase in chronic, non-responsive bovine respiratory disease (BRD) infections in North American feedlot cattle is observed each fall, a time when cattle are administered multiple antimicrobial treatments for BRD. A number of factors are responsible for BRD antimicrobial treatment failure, with formation of biofilms possibly being one. It is widely accepted that biofilms play a role in chronic infections in humans and it has been hypothesized that they are the default lifestyle of most bacteria. However, research on bacterial biofilms associated with livestock is scarce and significant knowledge gaps exist in our understanding of their role in AMR of the bacterial BRD complex. The four main bacterial species of the BRD complex, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis are able to form biofilms in vitro and there is evidence that at least H. somni retains this ability in vivo. However, there is a need to elucidate whether their biofilm-forming ability contributes to pathogenicity and antimicrobial treatment failure of BRD. Overall, a better understanding of the possible role of BRD bacterial biofilms in clinical disease and AMR could assist in the prevention and management of respiratory infections in feedlot cattle. We review and discuss the current knowledge of BRD bacteria biofilm biology, study methodologies, and their possible relationship to AMR.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
9
|
Catania S, Bottinelli M, Fincato A, Tondo A, Matucci A, Nai G, Righetti V, Abbate F, Ramírez AS, Gobbo F, Merenda M. Pathogenic avian mycoplasmas show phenotypic differences in their biofilm forming ability compared to non-pathogenic species in vitro. Biofilm 2024; 7:100190. [PMID: 38515541 PMCID: PMC10955283 DOI: 10.1016/j.bioflm.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasmas are known as the minimalist microorganisms in the microbes' world. Their minimalist nature makes them highly sensitive to the environmental conditions and limits their ability to survive for extended periods outside their animal host. Nevertheless, there are documented instances of mycoplasma transmission over significant distances and this phenomenon may be linked to relatively unexplored abilities of mycoplasmas, such as their capacity to synthesize biofilm-the predominant mode of bacterial growth in nature. The authors decided to establish a method aimed at inducing the clustering of mycoplasma planktonic cells within a biofilm in vitro and subsequently assess the capacity of certain avian mycoplasmas to synthesize a biofilm. A total of 299 avian mycoplasma isolates were included in the study, encompassing both pathogenic (Mycoplasma gallisepticum, M. synoviae, M. meleagridis, M. iowae) and non-pathogenic species (M. gallinaceum, M. gallinarum, M. iners and M. pullorum). The authors successfully demonstrated the feasibility of inducing avian mycoplasmas to synthetize in vitro a biofilm, which can be visually quantified. The only species that did not produce any biofilm was M. iowae. In general, the pathogenic mycoplasmas produced greater quantities of biofilm compared to the non-pathogenic ones. Furthermore, it was observed that the ability to produce biofilm appeared to vary, both qualitatively and quantitatively, not only among different species but also among isolates of a single species. Future studies will be necessary to determine whether biofilm production plays a pivotal epidemiological role for the pathogenic avian mycoplasmas.
Collapse
Affiliation(s)
- Salvatore Catania
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Marco Bottinelli
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Alice Fincato
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Annalucia Tondo
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Andrea Matucci
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Giorgia Nai
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Verdiana Righetti
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Francesco Abbate
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168, Messina, ME, Italy
| | - Ana S. Ramírez
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Federica Gobbo
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| | - Marianna Merenda
- Unità Micoplasmi, WOAH Reference Laboratory for Avian Mycoplasmosis (M. Gallisepticum, M. Synoviae), Istituto Zooprofilattico Sperimentale delle Venezie, 37060, Buttapietra, (VR), Italy
| |
Collapse
|
10
|
Pobeguts OV, Galaymina MA, Sikamov KV, Urazaeva DR, Avshalumov AS, Mikhailycheva MV, Babenko VV, Smirnov IP, Gorbachev AY. Unraveling the adaptive strategies of Mycoplasma hominis through proteogenomic profiling of clinical isolates. Front Cell Infect Microbiol 2024; 14:1398706. [PMID: 38756231 PMCID: PMC11096450 DOI: 10.3389/fcimb.2024.1398706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.
Collapse
Affiliation(s)
- Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal State Budgetary Institution Lopukhin Federal Research and Clinical Center of Physical-chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gelgie AE, Desai SE, Gelalcha BD, Kerro Dego O. Mycoplasma bovis mastitis in dairy cattle. Front Vet Sci 2024; 11:1322267. [PMID: 38515536 PMCID: PMC10956102 DOI: 10.3389/fvets.2024.1322267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Mycoplasma bovis has recently been identified increasingly in dairy cows causing huge economic losses to the dairy industry. M. bovis is a causative agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis media, and many other clinical symptoms in cattle. However, some infected cows are asymptomatic or may not shed the pathogen for weeks to years. This characteristic of M. bovis, along with the lack of adequate testing and identification methods in many parts of the world until recently, has allowed the M. bovis to be largely undetected despite its increased prevalence in dairy farms. Due to growing levels of antimicrobial resistance among wild-type M. bovis isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically resistant to beta-lactam antibiotics that are widely used in dairy farms, there is no effective treatment for M. bovis mastitis. Similarly, there is no commercially available effective vaccine for M. bovis mastitis. The major constraint to developing effective intervention tools is limited knowledge of the virulence factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack of quick and reliable diagnostic methods with high specificity and sensitivity for M. bovis. This review is a summary of the current state of knowledge of the virulence factors, pathogenesis, clinical manifestations, diagnosis, and control of M. bovis mastitis in dairy cows.
Collapse
Affiliation(s)
- Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Sarah E. Desai
- College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
12
|
Démoulins T, Yimthin T, Lindtke D, Eggerschwiler L, Siegenthaler R, Labroussaa F, Jores J. Temperature impacts the bovine ex vivo immune response towards Mycoplasmopsis bovis. Vet Res 2024; 55:18. [PMID: 38351086 PMCID: PMC10863263 DOI: 10.1186/s13567-024-01272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Although cattle are the mammalian species with most global biomass associated with a huge impact on our planet, their immune system remains poorly understood. Notably, the bovine immune system has peculiarities such as an overrepresentation of γδ T cells that requires particular attention, specifically in an infectious context. In line of 3R principles, we developed an ex vivo platform to dissect host-pathogen interactions. The experimental design was based on two independent complementary readouts: firstly, a novel 12-14 color multiparameter flow cytometry assay measuring maturation (modulation of cell surface marker expression) and activation (intracellular cytokine detection) of monocytes, conventional and plasmacytoid dendritic cells, natural killer cells, γδ T cells, B and T cells; secondly, a multiplex immunoassay monitoring bovine chemokine and cytokine secretion levels. The experiments were conducted on fresh primary bovine blood cells exposed to Mycoplasmopsis bovis (M. bovis), a major bovine respiratory pathogen. Besides reaffirming the tight cooperation of the different primary blood cells, we also identified novel key players such as strong IFN-γ secreting NK cells, whose role was so far largely overlooked. Additionally, we compared the host-pathogen interactions at different temperatures, including commonly used 37 °C, ruminant body temperature (38-38.5 °C) and fever (≥ 39.5 °C). Strikingly, working under ruminant physiological temperature influenced the capacity of most immune cell subsets to respond to M. bovis compared to 37 °C. Under fever-like temperature conditions the immune response was impaired compared to physiological temperature. Our experimental approach, phenotypically delineating the bovine immune system provided a thorough vision of the immune response towards M. bovis and the influence of temperature towards that immune response.
Collapse
Affiliation(s)
- Thomas Démoulins
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.
| | - Thatcha Yimthin
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Dorothea Lindtke
- Animal GenoPhenomics Group, Agroscope, 1725, Posieux, Switzerland
| | | | | | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, 3001, Bern, Switzerland
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
13
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Ma X, Wang L, Yang F, Li J, Guo L, Guo Y, He S. Drug sensitivity and genome-wide analysis of two strains of Mycoplasma gallisepticum with different biofilm intensity. Front Microbiol 2023; 14:1196747. [PMID: 37621399 PMCID: PMC10445764 DOI: 10.3389/fmicb.2023.1196747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the major causative agents of chronic respiratory diseases in poultry. The biofilms of MG are highly correlated to its chronic infection. However data on genes involved in biofilm formation ability are still scarse. MG strains with distinct biofilm intensity were screened by crystal violet staining morphotyped and characterized for the drug sensitivity. Two MG strains NX-01 and NX-02 showed contrasted ability to biofilm formation. The biofilm formation ability of NX-01 strain was significantly higher than that of NX-02 strain (p < 0.01). The drug sensitivity test showed that the stronger the ability of MG stain to form biofilms, the weaker its sensitivity to 17 antibiotic drugs. Moreover, putative key genes related to biofilm formation were screened by genome-wide analysis. A total of 13 genes and proteins related to biofilm formation, including ManB, oppA, oppD, PDH, eno, RelA, msbA, deoA, gapA, rpoS, Adhesin P1 precursor, S-adenosine methionine synthetase, and methionyl tRNA synthetase were identified. There were five major discrepancies between the two isolated MG strains and the five NCBI-published MG strains. These findings provide potential targets for inhibiting the formation of biofilm of MG, and lay a foundation for treating chronic infection.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Li Wang
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Fei Yang
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jidong Li
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lei Guo
- Ningxia Xiaoming Agriculture and Animal Husbandry Co., Ltd., Yinchuan, China
| | - Yanan Guo
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shenghu He
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
15
|
Gioia G, Severgnini M, Cremonesi P, Castiglioni B, Freeman J, Sipka A, Santisteban C, Wieland M, Gallardo VA, Scott JG, Moroni P, Addis MF. Genomic Characterization of Mycoplasma arginini Isolated from a Housefly on a Dairy Farm and Comparison with Isolates from Bovine Milk and Lung Tissue. Microbiol Spectr 2023; 11:e0301022. [PMID: 37199649 PMCID: PMC10269790 DOI: 10.1128/spectrum.03010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Mycoplasma mastitis can be highly contagious, unresponsive to treatment, and cause severe economic problems in affected herds. Notable routes of Mycoplasma spp. transmissions are contaminated milking equipment and animal contact through respiratory secretions. Only a few studies report the environment as a possible source of infection. Our group studied the presence of pathogens in houseflies (Musca domestica) in a New York State dairy in the United States. Among others, a Mycoplasma spp. was found in the gut of a housefly captured in the sick pen and identified as M. arginini. Here, we characterized its genome and investigated its relatedness with eight isolates from milk, one isolate from lung tissue collected in the same dairy, and five other dairies in New York State. We applied whole-genome sequencing and phylogenetic analysis based on the sequences of the 16S rRNA gene and 76 conserved proteins. We also assessed an in silico virulence profile by considering a panel of 94 putative virulence genes. As a result of the genome analysis, the housefly M. arginini isolate was highly similar to the milk isolates; interestingly, the similarity was highest with M. arginini isolated from milk on the same dairy farm where the housefly was captured. The housefly and milk M. arginini isolates possessed 54 of the 94 pathogenicity genes considered. Our data support the hypothesis that houseflies are carriers of Mycoplasma spp. and can be considered within the possible roots of environmental transmission of infection in dairy cows. Nevertheless, M. arginini pathogenicity will need to be investigated with dedicated studies. IMPORTANCE It is critical to control the spread of bovine mastitis caused by Mycoplasma spp., as this disease can be highly contagious and have a severe economic impact on affected dairies. A better understanding of possible transmission routes is crucial for infection control and prevention. Based on our data, the composite milk isolates are genetically similar to the housefly isolate. This provides evidence that the same Mycoplasma species found in milk and associated with mastitis can also be isolated from houseflies captured in the dairy environment.
Collapse
Affiliation(s)
- G. Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - P. Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - B. Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - J. Freeman
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - A. Sipka
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - C. Santisteban
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - M. Wieland
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
| | - V. Alanis Gallardo
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - J. G. Scott
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - P. Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, New York, USA
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| | - M. F. Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MiLab, University of Milan, Lodi, Italy
| |
Collapse
|
16
|
Mycoplasma ovipneumoniae: A Most Variable Pathogen. Pathogens 2022; 11:pathogens11121477. [PMID: 36558811 PMCID: PMC9781387 DOI: 10.3390/pathogens11121477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae, a well-established respiratory pathogen of sheep and goats, has gained increased importance recently because of its detection in wild ruminants including members of the Cervidae family. Despite its frequent isolation from apparently healthy animals, it is responsible for outbreaks of severe respiratory disease which are often linked to infections with multiple heterologous strains. Furthermore, M. ovipneumoniae is characterized by an unusually wide host range, a high degree of phenotypic, biochemical, and genomic heterogeneity, and variable and limited growth in mycoplasma media. A number of mechanisms have been proposed for its pathogenicity, including the production of hydrogen peroxide, reactive oxygen species production, and toxins. It shows wide metabolic activity in vitro, being able to utilize substrates such as glucose, pyruvate, and isopropanol; these patterns can be used to differentiate strains. Treatment of infections in the field is complicated by large variations in the susceptibility of strains to antimicrobials, with many showing high minimum inhibitory concentrations. The lack of commercially available vaccines is probably due to the high cost of developing vaccines for diseases in small ruminants not presently seen as high priority. Multiple strains found in affected sheep and goats may also hamper the development of effective vaccines. This review summarizes the current knowledge and identifies gaps in research on M. ovipneumoniae, including its epidemiology in sheep and goats, pathology and clinical presentation, infection in wild ruminants, virulence factors, metabolism, comparative genomics, genotypic variability, phenotypic variability, evolutionary mechanisms, isolation and culture, detection and identification, antimicrobial susceptibility, variations in antimicrobial susceptibility profiles, vaccines, and control.
Collapse
|
17
|
Qin L, Liu L, Wu Y, Chen Y, Wu Y, Luo H, Xi Y, Xiu F, Hu J, Chen L, Wu N, He J, Zeng Y, Zhu C, You X. Mycoplasma pneumoniae downregulates RECK to promote matrix metalloproteinase-9 secretion by bronchial epithelial cells. Virulence 2022; 13:1270-1284. [PMID: 35892136 PMCID: PMC9336473 DOI: 10.1080/21505594.2022.2101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Airway epithelial cells function as both a physical barrier against harmful substances and pathogenic microorganisms and as an important participant in the innate immune system. Matrix metalloproteinase-9 (MMP-9) plays a crucial role in modulating inflammatory responses during respiratory infections. However, the signalling cascade that induces MMP-9 secretion from epithelial cells infected with Mycoplasma pneumoniae remains poorly understood. In this study, we investigated the mechanism of MMP-9 secretion in airway epithelial cells infected with M. pneumoniae. Our data clearly showed that M. pneumoniae induced the secretion of MMP-9 from bronchial epithelial cells and upregulated its enzymatic activity in a time- and dose-dependent manner. Using specific inhibitors and chromatin co-precipitation experiments, we confirmed that the expression of MMP-9 is reliant on the activation of the Toll-like receptor 2 (TLR2) and TLR6-dependent mitogen-activated protein kinase/nuclear factor- κB/activator protein-1 (MAPK/NF-κB/AP-1) pathways. Additionally, epigenetic modifications such as histone acetylation and the nuclear transcription factor Sp1 also regulate MMP-9 expression. M. pneumoniae infection also decreased the expression of the tumour suppressor reversion-inducing cysteine-rich protein with Kazal motifs (RECK) by inducing Sp1 phosphorylation. Overexpression of RECK significantly impaired the M. pneumoniae-triggered increase in MMP-9 enzymatic activity, although the level of MMP-9 protein remained constant. The study demonstrated that M. pneumoniae-triggered MMP-9 expression is modulated by TLR2 and 6, the MAPK/NF-κB/AP-1 signalling cascade, and histone acetylation, and M. pneumoniae downregulated the expression of RECK, thereby increasing MMP-9 activity to modulate the inflammatory response, which could play a role in airway remodelling.
Collapse
Affiliation(s)
- Lianmei Qin
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueping Wu
- Department of Blood Transfusion, Shenzhen Children's Hospital, Shenzhen, China
| | - Yiwen Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yixuan Xi
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jun Hu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liesong Chen
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Ning Wu
- Department of Clinical Laboratory, Hengyang No.1 People's Hospital, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
18
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
19
|
Bacterial and Fungal Co-Occurrence in the Nudibranch, Pteraeolidia semperi. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121988. [PMID: 36556353 PMCID: PMC9786341 DOI: 10.3390/life12121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Despite the increasing recognition and importance surrounding bacterial and fungal interactions, and their critical contributions to ecosystem functioning and host fitness, studies examining their co-occurrence remain in their infancy. Similarly, studies have yet to characterise the bacterial and fungal communities associated with nudibranchs or their core microbial members. Doing this can advance our understanding of how the microbiome helps a host adapt and persist in its environment. In this study, we characterised the bacterial and fungal communities associated with 46 Pteraeolidia semperi nudibranch individuals collected from four offshore islands in Singapore. We found no distinct spatial structuring of microbial community, richness, or diversity across sampling locations. The bacterial genera Mycoplasma and Endozoicomonas were found across all samples and islands. The fungal genus Leucoagaricus was found with the highest occurrence, but was not found everywhere, and this is the first record of its reported presence in marine environments. The co-occurrence network suggests that bacterial and fungal interactions are limited, but we identified the bacterial family Colwelliaceae as a potential keystone taxon with its disproportionately high number of edges. Furthermore, Colwelliaceae clusters together with other bacterial families such as Pseudoalteromonadaceae and Alteromonadaceae, all of which have possible roles in the digestion of food.
Collapse
|
20
|
Bekő K, Nagy EZ, Grózner D, Kreizinger Z, Gyuranecz M. Biofilm formation and its impact on environmental survival and antibiotic resistance of Mycoplasma anserisalpingitidis strains. Acta Vet Hung 2022; 70:184-191. [PMID: 36178765 DOI: 10.1556/004.2022.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
Several Mycoplasma species can form biofilm, facilitating their survival in the environment, and shielding them from therapeutic agents. The aim of this study was to examine the biofilm-forming ability and its potential effects on environmental survival and antibiotic resistance in Mycoplasma anserisalpingitidis, the clinically and economically most important waterfowl Mycoplasma species. The biofilm-forming ability of 32 M. anserisalpingitidis strains was examined by crystal violet assay. Biofilms and planktonic cultures of the selected strains were exposed to a temperature of 50 °C (20 and 30 min), to desiccation at room temperature (16 and 24 h), or to various concentrations of eight different antibiotics. Crystal violet staining revealed great diversity in the biofilm-forming ability of the 32 tested M. anserisalpingitidis strains, with positive staining in more than half of them. Biofilms were found to be more resistant to heat and desiccation than planktonic cultures, while no correlation was shown between biofilm formation and antibiotic susceptibility. Our results indicate that M. anserisalpingitidis biofilms may contribute to the persistence of the organisms in the environment, which should be taken into account for proper management. Antibiotic susceptibility was not affected by biofilm formation; however, it is important to note that correlations were examined only in vitro.
Collapse
Affiliation(s)
- Katinka Bekő
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Eszter Zsófia Nagy
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Dénes Grózner
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Zsuzsa Kreizinger
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| | - Miklós Gyuranecz
- Veterinary Medical Research Institute, Hungária körút 21, H-1143 Budapest, Hungary
| |
Collapse
|
21
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
22
|
Evsyutina DV, Semashko TA, Galyamina MA, Kovalchuk SI, Ziganshin RH, Ladygina VG, Fisunov GY, Pobeguts OV. Molecular Basis of the Slow Growth of Mycoplasma hominis on Different Energy Sources. Front Cell Infect Microbiol 2022; 12:918557. [PMID: 35873139 PMCID: PMC9301678 DOI: 10.3389/fcimb.2022.918557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Mycoplasma hominis is an opportunistic urogenital pathogen in vertebrates. It is a non-glycolytic species that produces energy via arginine degradation. Among genital mycoplasmas, M. hominis is the most commonly reported to play a role in systemic infections and can persist in the host for a long time. However, it is unclear how M. hominis proceeds under arginine limitation. The recent metabolic reconstruction of M. hominis has demonstrated its ability to catabolize deoxyribose phosphate to produce ATP. In this study, we cultivated M. hominis on two different energy sources (arginine and thymidine) and demonstrated the differences in growth rate, antibiotic sensitivity, and biofilm formation. Using label-free quantitative proteomics, we compared the proteome of M. hominis under these conditions. A total of 466 proteins were identified from M. hominis, representing approximately 85% of the predicted proteome, while the levels of 94 proteins changed significantly. As expected, we observed changes in the levels of metabolic enzymes. The energy source strongly affects the synthesis of enzymes related to RNA modifications and ribosome assembly. The translocation of lipoproteins and other membrane-associated proteins was also impaired. Our study, the first global characterization of the proteomic switching of M. hominis in arginine-deficiency media, illustrates energy source-dependent control of pathogenicity factors and can help to determine the mechanisms underlying the interaction between the growth rate and fitness of genome-reduced bacteria.
Collapse
Affiliation(s)
- Daria V. Evsyutina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
- *Correspondence: Daria V. Evsyutina,
| | - Tatiana A. Semashko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
| | - Maria A. Galyamina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Miklukho-Maklaya 16/10, Moscow, Russia
| | - Valentina G. Ladygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| | - Gleb Y. Fisunov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
- Department of Systems and Synthetic Biology, Scientific Research Institute for Systems Biology and Medicine Nauchniy proezd 18, Moscow, Russia
| | - Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency Malaya Pirogovskaya 1a, Moscow, Russia
| |
Collapse
|
23
|
SOURCE AND SEASONALITY OF EPIZOOTIC MYCOPLASMOSIS IN FREE-RANGING PRONGHORN (ANTILOCAPRA AMERICANA). J Wildl Dis 2022; 58:524-536. [PMID: 35704476 DOI: 10.7589/jwd-d-21-00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
Mycoplasma bovis is an economically important bacterial pathogen of cattle (Bos taurus) and bison (Bison bison) that most commonly causes pneumonia, polyarthritis, and mastitis. It is prevalent in cattle and ranched bison; however, infections in other species are rare. In early 2019, we identified M. bovis in free-ranging pronghorn (Antilocapra americana) in northeastern Wyoming. Here, we report on additional pronghorn mortalities caused by M. bovis, in the same approximately 120-km2 geographic region 1 yr later. Genetic analysis by multilocus sequence typing revealed that the mortalities were caused by the same M. bovis sequence type, which is unique among all sequence types documented thus far in North America. To explore whether pronghorn maintain chronic infections and begin assessing M. bovis status in other sympatric species, we used PCR testing of nasal swabs to opportunistically survey select free-ranging ungulates. We found no evidence of subclinical infections in 13 pronghorn sampled from the outbreak area (upper 95% binomial confidence limit [bCL], ∼24.7%) or among 217 additional pronghorn (upper 95% bCL, ∼1.7%) sampled from eight additional counties in Wyoming and 10 in Montana. All mule deer (Odocoileus hemionus; n=231; upper 95% bCL, ∼1.6%) sampled from 11 counties in Wyoming also were PCR negative. To assess the potential for environmental transmission, we examined persistence of M. bovis in various substrates and conditions. Controlled experiments revealed that M. bovis can remain viable for 6 h in shaded water and 2 h in direct sunlight. Our results indicate that environmental transmission of M. bovis from livestock to pronghorn is possible and that seasonality of infection could be due to shared resources during late winter. Further investigations to better understand transmission dynamics, to assess population level impacts to pronghorn, and to determine disease risks among pronghorn and other ungulate taxa appear warranted.
Collapse
|
24
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
26
|
Johnson T, Jones K, Jacobson BT, Schearer J, Adams N, Thornton I, Mosdal C, Jones S, Jutila M, Rynda-Apple A, Besser T, Bimczok D. Experimental infection of specific-pathogen-free domestic lambs with Mycoplasma ovipneumoniae causes asymptomatic colonization of the upper airways that is resistant to antibiotic treatment. Vet Microbiol 2022; 265:109334. [PMID: 35033769 PMCID: PMC9109813 DOI: 10.1016/j.vetmic.2022.109334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/03/2023]
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a respiratory pathogen associated with mild to moderate respiratory disease in domestic lambs and severe pneumonia outbreaks in wild ruminants such as bighorn sheep. However, whether M. ovipneumoniae by itself causes clinical respiratory disease in domestic sheep in the absence of secondary bacterial pathogens is still unclear. The goal of our study was to better understand the role of M. ovipneumoniae as a respiratory pathogen in domestic sheep and to explore potential antibiotic treatment approaches. Therefore, we inoculated four 4-month-old, specific-pathogen-free lambs with fresh nasal wash fluids from M. ovipneumoniae-infected sheep. The lambs were monitored for M. ovipneumoniae colonization, M. ovipneumoniae-specific antibodies, clinical signs, and cellular and molecular correlates of lung inflammation for eight weeks. All lambs then were treated with gamithromycin and observed for an additional four weeks. M. ovipneumoniae inoculation resulted in stable colonization of the upper respiratory tract in all M. ovipneumoniae-inoculated, but in none of the four mock-infected control lambs. All M. ovipneumoniae-infected lambs developed a robust antibody response to M. ovipneumoniae within 2 weeks. However, we did not observe significant signs of respiratory disease, evidence of lung damage or inflammation in any of the infected lambs. Interestingly, treatment with gamithromycin, which blocked growth of the M. ovipneumoniae in vitro, failed to reduce M. ovipneumoniae colonization. These observations indicate that, in the absence of co-infections, M. ovipneumoniae caused asymptomatic colonization of the upper respiratory tract that was resistant to clearance by the host immune response and by gamithromycin treatment.
Collapse
Affiliation(s)
- Thea Johnson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - B Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Julia Schearer
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Noah Adams
- Chemical and Biological Engineering Department, Montana State University, USA
| | - Isaak Thornton
- Department of Mechanical and Industrial Engineering, Montana State University, USA
| | - Cassie Mosdal
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Steven Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA
| | - Thomas Besser
- Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99164-7040, USA
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA.
| |
Collapse
|
27
|
Tam AKY, Harding B, Green JEF, Balasuriya S, Binder BJ. Thin-film lubrication model for biofilm expansion under strong adhesion. Phys Rev E 2022; 105:014408. [PMID: 35193209 DOI: 10.1103/physreve.105.014408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Understanding microbial biofilm growth is important to public health because biofilms are a leading cause of persistent clinical infections. In this paper, we develop a thin-film model for microbial biofilm growth on a solid substratum to which it adheres strongly. We model biofilms as two-phase viscous fluid mixtures of living cells and extracellular fluid. The model explicitly tracks the movement, depletion, and uptake of nutrients and incorporates cell proliferation via a nutrient-dependent source term. Notably, our thin-film reduction is two dimensional and includes the vertical dependence of cell volume fraction. Numerical solutions show that this vertical dependence is weak for biologically feasible parameters, reinforcing results from previous models in which this dependence was neglected. We exploit this weak dependence by writing and solving a simplified one-dimensional model that is computationally more efficient than the full model. We use both the one- and two-dimensional models to predict how model parameters affect expansion speed and biofilm thickness. This analysis reveals that expansion speed depends on cell proliferation, nutrient availability, cell-cell adhesion on the upper surface, and slip on the biofilm-substratum interface. Our numerical solutions provide a means to qualitatively distinguish between the extensional flow and lubrication regimes, and quantitative predictions that can be tested in future experiments.
Collapse
Affiliation(s)
- Alexander K Y Tam
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Queensland 4000, Australia
- School of Mathematics and Physics, The University of Queensland, St. Lucia Queensland 4072, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Brendan Harding
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - J Edward F Green
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Sanjeeva Balasuriya
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Benjamin J Binder
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
28
|
Gelgie AE, Korsa MG, Kerro Dego O. Mycoplasma bovis Mastitis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100123. [PMID: 35909617 PMCID: PMC9325741 DOI: 10.1016/j.crmicr.2022.100123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma bovis mastitis (MBM) is highly contagious and causes significant economic losses through reduction in milk quantity and quality, culling and treatment costs. Adhesion and invasion are among the most important virulence mechanisms to establish infection in the mammary gland. M. bovis can elicit both humoral and cellular immune responses during mammary gland infection. There is no effective commercial vaccine against MBM to date and early detection and isolation/culling remains vital control measure for MBM in dairy farms.
Bovine mycoplasmoses, which is mostly caused by Mycoplasma bovis, is a significant problem in the dairy and beef industry. Mycoplasmal mastitis has a global occurrence with notable effects in the United States and Europe. The pathogen was first detected in a mastitis case in California, United States, and regarded as major contagious mastitis. It is highly contagious and resistant to antibiotics and lack cell wall rendering certain group of antibiotics ineffective. Outbreaks mostly originate from introduction of diseased dairy cows to a farm and poor hygienic practices that help to maintain cow to cow transmission. Rapid detection scheme is needed to be in place in dairy farms to devise preventive measures and stop future outbreaks. However; early detection is hampered by the fastidious growth of M. bovis and the need for specialized equipment and reagents in laboratory settings. Intramammary Mycoplasma bovis infections cause elevation in milk somatic cell count which is one of the important factors to determine milk quality for grading and hence dictates milk price. There are multiple attributes of M. bovis regarded as virulence factors such as adhesion to and invasion into host cells, avoidance of phagocytosis, resistance to killing by the alternative complement system, biofilm formation, and hydrogen peroxide production. Nevertheless, there are still undetermined virulence factors that hamper the development of sustainable control tools such as effective vaccine. To date, most vaccine trials have failed, and there is no commercial M. bovis mastitis vaccine. Mycoplasma bovis has been shown to modulate both humoral and cellular immune response during bovine mastitis. In the future, research seeking new immunogenic and protective vaccine targets are highly recommended to control this important dairy cattle disease worldwide.
Collapse
|
29
|
Maya-Rodríguez LM, Carrillo-Casas EM, Rojas-Trejo V, Trigo-Tavera F, Miranda-Morales RE. Prevalence of three Mycoplasma sp. by multiplex PCR in cattle with and without respiratory disease in central Mexico. Trop Anim Health Prod 2022; 54:394. [PMID: 36417039 PMCID: PMC9685072 DOI: 10.1007/s11250-022-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to identify Mycoplasma bovis, Myc. dispar, and Myc. bovirhinis, which are involved in bovine respiratory disease through a multiplex PCR as an alternative to culture's features that hamper Mycoplasma isolation. Nasal swabs were taken from 335 cattle with and without respiratory disease background (RDB) from dairy herds in the central region of Mexico. Each sample was divided in two; the first part was processed for the direct DNA extraction of the nasal swab and the second for Mycoplasma isolation, culture, and then the multiplex PCR was performed. In the nasal swabs, Myc. bovis was identified in 21.1%; Myc. dispar, in 11.8%; and Myc. bovirhinis, in 10.8% in cattle with RDB. Isolates were identified as Myc. bovis, 20.1%; Myc. dispar, 11.8%; and Myc. bovirhinis, 6.1%. There is a strong correlation between the presence of Mycoplasma identified by PCR and the clinical history of the disease (ρ < 0.0000). In animals without RDB, Myc. bovirhinis was the only species detected in 6.1% of the samples processed directly for multiplex PCR, and in 2% of the isolates. There is an excellent correlation (kappa 0.803) between the isolation and the 16S PCR and a high correlation (kappa 0.75) between the isolation and the multiplex PCR. Therefore, we conclude that the PCR multiplex test is highly sensitive and may be used for the diagnosis and surveillance of the three species in biological samples and mycoplasma isolates.
Collapse
Affiliation(s)
- L. M. Maya-Rodríguez
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - E. M. Carrillo-Casas
- grid.414754.70000 0004 6020 7521Hospital General “Dr. Manuel Gea González”, Depto. de Biología Molecular e Histocompatibilidad, Dirección de Investigación, Calz. de Tlalpan 4800, Secc XVI, 14080 Tlalpan CDMX, CP Mexico
| | - V. Rojas-Trejo
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - F. Trigo-Tavera
- grid.9486.30000 0001 2159 0001Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Patología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - R. E. Miranda-Morales
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| |
Collapse
|
30
|
Evaluation of Nanopore Sequencing as a Diagnostic Tool for the Rapid Identification of Mycoplasma bovis from Individual and Pooled Respiratory Tract Samples. J Clin Microbiol 2021; 59:e0111021. [PMID: 34550807 DOI: 10.1128/jcm.01110-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid identification of Mycoplasma bovis infections in cattle is a key factor to guide antimicrobial therapy and biosecurity measures. Recently, Nanopore sequencing became an affordable diagnostic tool for both clinically relevant viruses and bacteria, but the diagnostic accuracy for M. bovis identification is undocumented. Therefore, in this study Nanopore sequencing was compared to rapid identification of M. bovis with matrix-assisted laser desorption ionization-time of flight mass spectrometry (RIMM) and a triplex real-time PCR assay in a Bayesian latent class model (BLCM) for M. bovis in bronchoalveolar lavage fluid (BALf) samples obtained from calves. In practice, pooling of samples is often used to save money, but the influence on diagnostic accuracy has not been described for M. bovis. Therefore, a convenience sample of 17 pooled samples containing 5 individual BALf samples per farm was analyzed as well. The results for the pooled samples were compared with those for the individual samples to determine sensitivity and specificity. The BLCM showed good sensitivity (77.3% [95% credible interval, 57.8 to 92.8%]) and high specificity (97.4% [91.5 to 99.7%]) for Nanopore sequencing, compared to RIMM (sensitivity, 93.0% [76.8 to 99.5%]; specificity, 91.3% [82.5 to 97.0%]) and real-time PCR (sensitivity, 94.6% [89.7 to 97.7%]; specificity, 86.0% [76.1 to 93.6%]). Sensitivity and specificity of pooled analysis for M. bovis were 85.7% (95% confidence interval, 59.8 to 111.6%) and 90.0% (71.4 to 108.6%%), respectively, for Nanopore sequencing and 100% (100% to 100%) and 88.9% (68.4 to 109.4%) for RIMM. In conclusion, Nanopore sequencing is a rapid, reliable tool for the identification of M. bovis. To reduce costs and increase the chance of M. bovis identification, pooling of 5 samples for Nanopore sequencing and RIMM is possible.
Collapse
|
31
|
Fanelli A, Cirilli M, Lucente MS, Zarea AAK, Buonavoglia D, Tempesta M, Greco G. Fatal Calf Pneumonia Outbreaks in Italian Dairy Herds Involving Mycoplasma bovis and Other Agents of BRD Complex. Front Vet Sci 2021; 8:742785. [PMID: 34568480 PMCID: PMC8462733 DOI: 10.3389/fvets.2021.742785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma bovis is increasingly recognized worldwide as an important cause of disease with major welfare and production impairments on cattle rearing. Although it was detected in veal calves and beef cattle, little is known on the infection impact and on its temporal morbidity pattern in Italian dairy herds. Thus, this study aimed to investigate the involvement of M. bovis on fatal calf pneumonia outbreaks that occurred during 2009–2019 in 64 Italian dairy farms. Furthermore, a deeper diagnostic workup of concurrent infection with other viral and bacterial respiratory pathogens was assessed. Out of the investigated fatal pneumonia cases, M. bovis was frequently detected (animal prevalence, 16.16%; 95%CI, 11.82–21.33; herd prevalence, 26.56; 95%CI, 16.29–39.08) either as the single agent of the disease in more than half of the positive samples (20/37) or in concurrent infections with Histophilus somni (9/37, 24.3%), Mannheimia haemolytica (6/37, 16.621%), Trueperella pyogenes (1/37, 2.70%), Pasteurella multocida (1/37, 2.70%), bovine respiratory syncytial virus (5/37, 13.51%), and bovine viral diarrhea virus (2/37, 5.55%). Based on time-series analysis, M. bovis was recorded in the area since 2009 with outbreaks displaying a clear morbidity seasonal pattern with peaks in April (43.21%) and in September (13.51%). This might be due to the stressing conditions during spring and late summer periods. Results of this study highlight that M. bovis infection warrants consideration, and control measures are needed given its involvement in lethal pneumonia outbreaks in dairy herds from an extended area.
Collapse
Affiliation(s)
- Angela Fanelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Margie Cirilli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Aya Attia Koraney Zarea
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy.,Department of Microbiology and Immunology, National Research Centre, Cairo, Egypt
| | | | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
32
|
Awadh AA, Kelly AF, Forster-Wilkins G, Wertheim D, Giddens R, Gould SW, Fielder MD. Visualisation and biovolume quantification in the characterisation of biofilm formation in Mycoplasma fermentans. Sci Rep 2021; 11:11259. [PMID: 34045521 PMCID: PMC8160185 DOI: 10.1038/s41598-021-90455-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/28/2021] [Indexed: 11/09/2022] Open
Abstract
The ability of mycoplasmas to persist on surfaces has been widely acknowledged, despite their fastidious nature. However, the organism's capability to form a recognisable biofilm structure has been identified more recently. In the current study Mycoplasma fermentans was found to adhere to the glass surface forming highly differentiated biofilm structures. The volumes of biofilm microcolonies were quantified and observed to be greater at late growth stage than those at early growth stage. The channel diameters within biofilms were measured with Scanning Electron Microscopy images and found to be consistent with the size observed in Confocal Laser Scanning Microscope images. The combination of imaging methods with 3D visualisation provides key findings that aid understanding of the mycoplasma biofilm formation and true biofilm architecture. The observations reported here provide better understanding of the persistence of these minimalist pathogens in nature and clinical settings.
Collapse
Affiliation(s)
- Ammar A Awadh
- School of Life Science Pharmacy, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK
| | - Alison F Kelly
- School of Life Science Pharmacy, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK
| | - Gary Forster-Wilkins
- School of Life Science Pharmacy, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK
| | - David Wertheim
- School of Computer Science and Mathematics, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK
| | - Richard Giddens
- School of Life Science Pharmacy, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK
| | - Simon W Gould
- School of Life Science Pharmacy, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK
| | - Mark D Fielder
- School of Life Science Pharmacy, Chemistry Faculty of Science, Engineering and Computing, Kingston University London, Kingston, UK.
| |
Collapse
|
33
|
Dudek K, Szacawa E, Nicholas RAJ. Recent Developments in Vaccines for Bovine Mycoplasmoses Caused by Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides. Vaccines (Basel) 2021; 9:549. [PMID: 34073966 PMCID: PMC8225212 DOI: 10.3390/vaccines9060549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Two of the most important diseases of cattle are caused by mycoplasmas. Mycoplasma bovis is a world-wide bovine pathogen that can cause pneumonia, mastitis and arthritis. It has now spread to most, if not all, cattle-rearing countries. Due to its increasing resistance to antimicrobial therapy, vaccination is the principal focus of the control of infection, but effective vaccines are currently lacking. Despite being eradicated from most parts of the world, Mycoplasma mycoides subsp. mycoides, the cause of contagious bovine pleuropneumonia (CBPP), continues to plague sub-Saharan Africa, affecting at least 25 countries. Numerous new experimental vaccines have been developed over the last 20 years to improve on protection afforded by the T1/44, a live vaccine in continuous use in Africa for over 60 years, but none so far have succeeded; indeed, many have exacerbated the disease. Tools for diagnosis and control are adequate for eradication but what is necessary are resources to improve vaccine coverage to levels last seen in the 1970s, when CBPP was restricted to a few countries in Africa. This paper summarizes the results of the main studies in the field of experimental mycoplasma vaccines, reviews data on commercially available bacterin vaccines and addresses issues relating to the search for new candidates for effective vaccines to reduce economic losses in the cattle industry caused by these two mycoplasmas.
Collapse
Affiliation(s)
- Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24100 Pulawy, Poland;
| | - Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 24100 Pulawy, Poland;
| | | |
Collapse
|
34
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
35
|
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep 2021; 11:5650. [PMID: 33707544 PMCID: PMC7952918 DOI: 10.1038/s41598-021-84326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasmas are fastidious microorganisms, typically characterised by their restricted metabolism and minimalist genome. Although there is reported evidence that some mycoplasmas can develop biofilms little is known about any differences in metabolism in these organisms between the growth states. A systematic metabolomics approach may help clarify differences associated between planktonic and biofilm associated mycoplasmas. In the current study, the metabolomics of two different mycoplasmas of clinical importance (Mycoplasma pneumoniae and Mycoplasma fermentans) were examined using a novel approach involving nuclear magnetic resonance spectroscopy and principle component analysis. Characterisation of metabolic changes was facilitated through the generation of high-density metabolite data and diffusion-ordered spectroscopy that provided the size and structural information of the molecules under examination. This enabled the discrimination between biofilms and planktonic states for the metabolomic profiles of both organisms. This work identified clear biofilm/planktonic differences in metabolite composition for both clinical mycoplasmas and the outcomes serve to establish a baseline understanding of the changes in metabolism observed in these pathogens in their different growth states. This may offer insight into how these organisms are capable of exploiting and persisting in different niches and so facilitate their survival in the clinical setting.
Collapse
Affiliation(s)
- Ammar A. Awadh
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Adam Le Gresley
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Gary Forster-Wilkins
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Alison F. Kelly
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Mark D. Fielder
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| |
Collapse
|
36
|
Askar H, Chen S, Hao H, Yan X, Ma L, Liu Y, Chu Y. Immune Evasion of Mycoplasma bovis. Pathogens 2021; 10:pathogens10030297. [PMID: 33806506 PMCID: PMC7998117 DOI: 10.3390/pathogens10030297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis (M. bovis) causes various chronic inflammatory diseases, including mastitis and bronchopneumonia, in dairy and feed cattle. It has been found to suppress the host immune response during infection, leading to the development of chronic conditions. Both in vitro and in vivo studies have confirmed that M. bovis can induce proinflammatory cytokines and chemokines in the host. This consists of an inflammatory response in the host that causes pathological immune damage, which is essential for the pathogenic mechanism of M. bovis. Additionally, M. bovis can escape host immune system elimination and, thus, cause chronic infection. This is accomplished by preventing phagocytosis and inhibiting key responses, including the neutrophil respiratory burst and the development of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) that lead to the creation of an extracellular bactericidal network, in addition to inhibiting monocyte and alveolar macrophage apoptosis and inducing monocytes to produce anti-inflammatory factors, thus inducing the apoptosis of peripheral blood mononuclear cells (PBMCs), inhibiting their proliferative response and resulting in their invasion. Together, these conditions lead to long-term M. bovis infection. In terms of the pathogenic mechanism, M. bovis may invade specific T-cell subsets and induce host generation of exhausted T-cells, which helps it to escape immune clearance. Moreover, the M. bovis antigen exhibits high-frequency variation in size and expression period, which allows it to avoid activation of the host humoral immune response. This review includes some recent advances in studying the immune response to M. bovis. These may help to further understand the host immune response against M. bovis and to develop potential therapeutic approaches to control M. bovis infection.
Collapse
Affiliation(s)
- Hussam Askar
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
- Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Shengli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Huafang Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Xinmin Yan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
- Correspondence: ; Tel.: +86-0931-8342-676
| |
Collapse
|
37
|
Ito K, Akai K, Nishiumi F, Nakura Y, Ning Wu H, Kurata T, Onodera A, Kawai Y, Kajiyama S, Yanagihara I. Ability of Ureaplasma parvum to invade mouse sperm, fertilize eggs through infected sperm, and impair mouse sperm function and embryo development. F&S SCIENCE 2021; 2:13-23. [PMID: 35559760 DOI: 10.1016/j.xfss.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To examine the effect of Ureaplasma parvum (U. parvum) infection on mouse sperm motility, structure, and fertilizing ability and on embryo development. DESIGN In vitro model of the effects of U. parvum serovar 3 infection on mouse sperm. SETTING Basic research laboratory. INTERVENTION(S) None. ANIMALS Mice. MAIN OUTCOME MEASURE(S) Mouse sperm motility was examined using the swim-up method, and their motility parameters were analyzed using the sperm motility analysis system. Localization and invasion of U. parvum were observed with fluorescence, confocal, and scanning electron microscopy. After in vitro fertilization with U. parvum-infected sperm, the quality of the fertilized egg and embryo development were assessed. RESULT(S) U. parvum was attached and internalized into mouse sperms and localized mainly at the sperm head and midpiece. U. parvum-infected mouse sperms exhibited decreased motility in a dose- and duration-dependent manner. Electron micrographs revealed that U. parvum infection induced the aggregation and morphological destruction of mouse sperm. Infected mouse sperm transported U. parvum into the fertilized egg with reduced fertilization rates, and infected embryo development was impaired. CONCLUSION(S) U. parvum infection caused deterioration of the mouse sperm quality and its functions, which affected the fertilization rate and embryo development.
Collapse
Affiliation(s)
- Kazutoshi Ito
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kazuki Akai
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiko Nishiumi
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Heng Ning Wu
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Teru Kurata
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan; Division of Biotechnological Science, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Akira Onodera
- Department of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Shinichiro Kajiyama
- Division of Biotechnological Science, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan.
| |
Collapse
|
38
|
Glidden CK, Coon CAC, Beechler BR, McNulty C, Ezenwa VO, Jolles AE. Co-infection best predicts respiratory viral infection in a wild host. J Anim Ecol 2021; 90:602-614. [PMID: 33232513 DOI: 10.1111/1365-2656.13391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
The dynamics of directly transmitted pathogens in natural populations are likely to result from the combined effects of host traits, pathogen biology, and interactions among pathogens within a host. Discovering how these factors work in concert to shape variation in pathogen dynamics in natural host-multi-pathogen systems is fundamental to understanding population health. Here, we describe temporal variation in incidence and then elucidate the effect of hosts trait, season and pathogen co-occurrence on host infection risk using one of the most comprehensive studies of co-infection in a wild population: a suite of seven directly transmitted viral and bacterial respiratory infections from a 4-year study of 200 free-ranging African buffalo Syncerus caffer. Incidence of upper respiratory infections was common throughout the study-five out of the seven pathogens appeared to be consistently circulating throughout our study population. One pathogen exhibited clear outbreak dynamics in our final study year and another was rarely detected. Co-infection was also common in this system: The strongest indicator of pathogen occurrence for respiratory viruses was in fact the presence of other viral respiratory infections. Host traits had minimal effects on odds of pathogen occurrence but did modify pathogen-pathogen associations. In contrast, only season predicted bacterial pathogen occurrence. Though a combination of environmental, behavioural, and physiological factors work together to shape disease dynamics, we found pathogen associations best determined infection risk. Our study demonstrates that, in the absence of very fine-scale data, the intricate changes among these factors are best represented by co-infection.
Collapse
Affiliation(s)
- Caroline K Glidden
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Courtney A C Coon
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Brianna R Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Chase McNulty
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Vanessa O Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.,College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
39
|
Stevick RJ, Post AF, Gómez-Chiarri M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim Microbiome 2021; 3:5. [PMID: 33499983 PMCID: PMC7934548 DOI: 10.1186/s42523-020-00066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00066-0.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Anton F Post
- Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
40
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
41
|
Werneburg GT, Farber N, Gotwald P, Shoskes DA. Culture-independent Next Generation Sequencing of Urine and Expressed Prostatic Secretions in Men With Chronic Pelvic Pain Syndrome. Urology 2020; 147:230-234. [PMID: 33098861 DOI: 10.1016/j.urology.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To compare standard cultures and next-generation sequencing (NGS) in men with chronic prostatitis/chronic pelvic pain syndrome (CPPS). CPPS shares clinical features with urinary tract infections, but bacteria are seldom found. NGS is more sensitive than standard cultures. MATERIALS AND METHODS Men diagnosed with CPPS (National Institute of Health Category III) underwent traditional cultures and NGS of their urine and expressed prostatic secretions (EPS). Characteristics between groups were compared statistically. RESULTS Thirty-one men with CPPS were included (mean age 44.5). All standard urine cultures were negative, and 3 EPS cultures were positive. Seventy-eight unique microbes were detected with NGS, including uropathogens in 10 of the men. There were no bacteria identified by NGS in EPS that were not also found in the urine. Men with positive NGS did not differ from those without in age, symptom severity or phenotype. Men with typical urinary tract infection symptoms (eg, dysuria, chills) were more likely to have uropathogens detected on NGS relative to men without such symptoms. Nine patients were prescribed antibiotics based on their NGS findings, but only 1 exhibited symptom improvement (11%). CONCLUSION NGS commonly identified bacteria in CPPS patients, but these did not localize to the prostate. NGS positivity did not correlate with symptom severity and antibiotic therapy was seldom effective. NGS detected uropathogens more frequently in those with clinical symptoms suggestive of urinary tract infection. Clinical trials are needed to examine the utility of NGS-guided antibiotics in this subpopulation.
Collapse
Affiliation(s)
- Glenn T Werneburg
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH.
| | - Nicholas Farber
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Paige Gotwald
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Daniel A Shoskes
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
42
|
Kumar R, Register K, Christopher-Hennings J, Moroni P, Gioia G, Garcia-Fernandez N, Nelson J, Jelinski MD, Lysnyansky I, Bayles D, Alt D, Scaria J. Population Genomic Analysis of Mycoplasma bovis Elucidates Geographical Variations and Genes associated with Host-Types. Microorganisms 2020; 8:microorganisms8101561. [PMID: 33050495 PMCID: PMC7650767 DOI: 10.3390/microorganisms8101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Among more than twenty species belonging to the class Mollecutes, Mycoplasma bovis is the most common cause of bovine mycoplasmosis in North America and Europe. Bovine mycoplasmosis causes significant economic loss in the cattle industry. The number of M. bovis positive herds recently has increased in North America and Europe. Since antibiotic treatment is ineffective and no efficient vaccine is available, M. bovis induced mycoplasmosis is primarily controlled by herd management measures such as the restriction of moving infected animals out of the herds and culling of infected or shedders of M. bovis. To better understand the population structure and genomic factors that may contribute to its transmission, we sequenced 147 M. bovis strains isolated from four different countries viz. USA (n = 121), Canada (n = 22), Israel (n = 3) and Lithuania (n = 1). All except two of the isolates (KRB1 and KRB8) were isolated from two host types i.e., bovine (n = 75) and bison (n = 70). We performed a large-scale comparative analysis of M. bovis genomes by integrating 103 publicly available genomes and our dataset (250 total genomes). Whole genome single nucleotide polymorphism (SNP) based phylogeny using M.agalactiae as an outgroup revealed that M. bovis population structure is composed of five different clades. USA isolates showed a high degree of genomic divergence in comparison to the Australian isolates. Based on host of origin, all the isolates in clade IV was of bovine origin, whereas majority of the isolates in clades III and V was of bison origin. Our comparative genome analysis also revealed that M. bovis has an open pangenome with a large breadth of unexplored diversity of genes. The function based analysis of autogenous vaccine candidates (n = 10) included in this study revealed that their functional diversity does not span the genomic diversity observed in all five clades identified in this study. Our study also found that M. bovis genome harbors a large number of IS elements and their number increases significantly (p = 7.8 × 10−6) as the genome size increases. Collectively, the genome data and the whole genome-based population analysis in this study may help to develop better understanding of M. bovis induced mycoplasmosis in cattle.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- P.G. Department of Zoology, Magadh University, Bodh Gaya, Bihar 824234, India
| | - Karen Register
- USDA/ARS/National Animal Disease Center, Ruminant Diseases & Immunology Research Unit, Ames, IA 50010, USA;
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Paolo Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
- Dipartimento di Medicina Veterinaria, Via dell’Università, Università degli Studi di Milano, 6, 26900 Lodi LO, Italy
| | - Gloria Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
| | - Nuria Garcia-Fernandez
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
| | - Julia Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Murray D. Jelinski
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Inna Lysnyansky
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel;
| | - Darrell Bayles
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - David Alt
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
43
|
Cisneros-Tamayo M, Kempf I, Coton J, Michel V, Bougeard S, de Boisséson C, Lucas P, Bäyon-Auboyer MH, Chiron G, Mindus C, Gautier-Bouchardon AV. Investigation on eggshell apex abnormality (EAA) syndrome in France: isolation of Mycoplasma synoviae is frequently associated with Mycoplasma pullorum. BMC Vet Res 2020; 16:271. [PMID: 32758240 PMCID: PMC7404918 DOI: 10.1186/s12917-020-02487-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycoplasma synoviae (MS) is known to cause Eggshell Apex Abnormality (EAA) syndrome characterized by an altered shell surface with increased translucency on the apex. However, no large-scale studies have been conducted to obtain prevalence data of EAA and MS isolates associated to this syndrome. This manuscript reports the results of two field studies performed in the French poultry industry (2015-2017): focusing mainly on investigation of presence and prevalence of EAA in different types of laying hen flocks (phase 1), and isolation of MS strains from EAA-infected flocks (phase 2). RESULTS The first survey included 77 farms of commercial layers in three French egg-production regions, hosting 40 flocks in alternative systems (ALT) and 56 in furnished cages (FC). Seven flocks (4 FC and 3 ALT) presented EAA clinical signs, giving a prevalence of 7.3% in this studied sample. A second independent field study was conducted to identify MS by in vitro cultivation and PCR in samples from 28 flocks with clinical signs of EAA. Different types of biological specimens were collected in EAA-affected flocks and submitted to the laboratory. M. synoviae was detected in 25/28 flocks, from both production systems (5/5 ALT and 20/23 FC). Detection of MS was significantly higher in tracheal swabs (59%) than in cloacal (10.5%), albumen (3.6%) and egg yolk (1.1%) swabs. It is worth to mention that attempts to clone MS from positive samples were often hampered by the presence of another Mycoplasma species, which showed fast growing behaviour in the selective media used in this study (Frey Medium 4 and Frey Medium 4 supplemented with erythromycin). The use of MALDI-TOF mass spectrometry in combination with next-generation sequencing (NGS) results allowed the identification of this fast growing mycoplasma as Mycoplasma pullorum, which was detected in 14 of the 25 (56%) MS-positive flocks. CONCLUSIONS These results confirmed the presence of the EAA syndrome in MS-positive flocks of layers in France, reared in different regions and in different production systems (ALT and FC). Studies need to be conducted to test whether M. pullorum may influence the expression of clinical signs of EAA in MS-infected layer farms.
Collapse
Affiliation(s)
- M Cisneros-Tamayo
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France.,Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - I Kempf
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France
| | - J Coton
- Epidemiology and Welfare in Poultry and Rabbits, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - V Michel
- Animal Welfare National Coordination, ANSES, Niort, France
| | - S Bougeard
- Epidemiology and Welfare in Pigs, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - C de Boisséson
- Viral Genetics and Biosafety unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - P Lucas
- Viral Genetics and Biosafety unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | | | | | | | - A V Gautier-Bouchardon
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan, France.
| |
Collapse
|
44
|
Persistence in Livestock Mycoplasmas—a Key Role in Infection and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00149-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Purpose of Review
Mycoplasma, economically important pathogens in livestock, often establishes immunologically complex persistent infections that drive their pathogenesis and complicate prophylaxis and therapy of the caused diseases. In this review, we summarize some of the recent findings concerning cellular and molecular persistence mechanisms related to the pathogenesis of mycoplasma infections in livestock.
Recent Findings
Data from recent studies prove several mechanisms including intracellular lifestyle, immune dysregulation, and autoimmunity as well as microcolony and biofilm formation and apoptosis of different host cell types as important persistence mechanisms in several clinically significant Mycoplasma species, i.e., M. bovis, M. gallisepticum, M. hyopneumoniae, and M. suis.
Summary
Evasion of the immune system and the establishment of persistent infections are key features in the pathogenesis of livestock mycoplasmas. In-depth knowledge of the underlying mechanisms will provide the basis for the development of therapy and prophylaxis strategies against mycoplasma infections.
Collapse
|
45
|
Fischer L, Möller Palau-Ribes F, Enderlein D, Fischer D, Herbst W, Baudler L, Hafez HM, Lierz M. Description, occurrence and significance of Mycoplasma seminis sp. nov. isolated from semen of a gyrfalcon (Falco rusticolus). Vet Microbiol 2020; 247:108789. [PMID: 32768233 DOI: 10.1016/j.vetmic.2020.108789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
The Mycoplasma strain ARNO was isolated from the semen of a clinically healthy gyrfalcon (Falco rusticolus). Colonies of strain ARNO grew in fried-egg shape on Mycoplasma agar plates (SP4). The organism did not ferment glucose or hydrolyze arginine or urea; hence, organic acids are assumed as energy source. Growth was sterol-dependent and optimal growth temperature 42 °C, with a temperature range from 20 to 44 °C. Strain ARNO was not identified as a representative of any of the currently described Mycoplasma species by alignment of the 16S rRNA gene sequence and 16 S-23 S intergenic transcribed spacer region, or immunobinding assay. Hence, strain ARNO represents a novel Mycoplasma species for which the name Mycoplasma seminis sp. nov. is proposed (DSM 27653, NCTC 13927). After developing a species-specific PCR, the prevalence of M. seminis sp. nov. was determined in adult and juvenile falcons in a commercial breeding center for falcons. Semen samples (n = 171) were obtained from 113 male adults, due to repeated sampling of 39 birds. Female adults (n = 26) were sampled once, while 105 of the 152 juvenile birds were sampled twice via choanal swabs. Mycoplasma seminis sp. nov. was found in the semen of clinically healthy adult males (3.5 %) as well as in the respiratory tract of female (34.6 %) and juvenile birds (59.2 %). After comparison of semen samples with (2.9 %) and without M. seminis sp. nov. identification, no indications for a potential influence on the semen quality were demonstrated. Hence, M. seminis sp. nov. seems likely to be of commensal character in falcons.
Collapse
Affiliation(s)
- Luisa Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Giessen, Germany.
| | | | - Dirk Enderlein
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Giessen, Germany.
| | - Dominik Fischer
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Giessen, Germany.
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Giessen, Germany.
| | - Liane Baudler
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Giessen, Germany.
| | - Hafez Mohamed Hafez
- Institute of Poultry Diseases, Department of Veterinary Medicine at the Freie Universität Berlin, Germany.
| | - Michael Lierz
- Clinic for Birds, Reptiles, Amphibians and Fish, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
46
|
Abdelazeem WM, Zolnikov TR, Mohammed ZR, Saad A, Osman KM. Virulence, antimicrobial resistance and phylogenetic analysis of zoonotic walking pneumonia Mycoplasma arginini in the one-humped camel (Camelus dromedarius). Acta Trop 2020; 207:105500. [PMID: 32330451 PMCID: PMC7172927 DOI: 10.1016/j.actatropica.2020.105500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
In the scientific literature, a small amount of information is found concerning mycoplasmosis in camel species. A variety of pathogens could be causative agents for pneumonia, but walking pneumonia is mostly caused by Mycoplasma with slow development and mild symptoms. The aim of this study was to identify mycoplasmas from camels (Camelus dromedarius) and extending the arsenal of factors implicated in pathogenicity of M. arginini to shed light on the current knowledge gap. 460 lung samples (pneumonic; n=210 and apparently healthy; n=250) were randomly collected from the one-humped camels (C. domedarius) that have been imported from Sudan and slaughtered at Cairo Slaughterhouse. 48 out of 210 isolates (22.9%) recovered from the pneumonic lungs were recorded as M. arginini. Positive PCR results were obtained for all 48 isolates. On the other hand, infection with the organism was not detected in the apparently healthy lungs. Hemolysis and hydrogen sulphide (H2S) production, a compound that has previously not been identified as a virulence factor in M. arginini, was evident in 100% of the isolates. The 48 M. arginini isolates were weak in their ability to form biofilm on polystyrene surfaces. All isolates were 100% susceptible to florfenicol and streptomycin and 100% resistant to ciprofloxacin. Resistance to lincomycin, spiromycin, tylosin, doxacyclin and erythromycin was observed at different frequencies. 13 different combinations of antibiotics representing one to four classes were evident with the Macrolide erythromycin being the most represented. It also should be noted that the ciprofloxacin, doxacyclin, lincomycin, erythromycin combination was the most noted in 21/48 isolates. Surprisingly, none of the virulence genes (vsp, uvrC and gapA) and quinolone resistance genes (parC and gyrA) were detected by PCR.
Collapse
Affiliation(s)
| | | | | | - Alaa Saad
- Department of Poultry Diseases, Animal Health Research, Institute, Giza, Egypt
| | - Kamelia M Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| |
Collapse
|
47
|
Bassel LL, Tabatabaei S, Caswell JL. Host Tolerance to Infection with the Bacteria that Cause Bovine Respiratory Disease. Vet Clin North Am Food Anim Pract 2020; 36:349-359. [PMID: 32451029 DOI: 10.1016/j.cvfa.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calves vary considerably in their pathologic and clinical responses to infection of the lung with bacteria. The reasons may include resistance to infection because of pre-existing immunity, development of effective immune responses, or infection with a minimally virulent bacterial strain. However, studies of natural disease and of experimental infections indicate that some calves develop only mild lung lesions and minimal clinical signs despite substantial numbers of pathogenic bacteria in the lung. This may represent "tolerance" to pulmonary infection because these calves are able to control their inflammatory responses or protect the lung from damage, without necessarily eliminating bacterial infection. Conversely, risk factors might predispose to bovine respiratory disease by triggering a loss of tolerance that results in a harmful inflammatory and tissue-damaging response to infection.
Collapse
Affiliation(s)
- Laura L Bassel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Jeff L Caswell
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
48
|
Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1699-1713. [PMID: 32777908 PMCID: PMC7649072 DOI: 10.5713/ajas.20.0156] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
Bovine mastitis, an inflammation of the mammary gland, is the most common disease of dairy cattle causing economic losses due to reduced yield and poor quality of milk. The etiological agents include a variety of gram-positive and gram-negative bacteria, and can be either contagious (e.g., Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma spp.) or environmental (e.g., Escherichia coli, Enterococcus spp., coagulase-negative Staphylococcus, Streptococcus uberis). Improving sanitation such as enhanced milking hygiene, implementation of post-milking teat disinfection, maintenance of milking machines are general measures to prevent new cases of mastitis, but treatment of active mastitis infection is dependant mainly on antibiotics. However, the extensive use of antibiotics increased concerns about emergence of antibiotic-resistant pathogens and that led the dairy industries to reduce the use of antibiotics. Therefore, alternative therapies for prevention and treatment of bovine mastitis, particularly natural products from plants and animals, have been sought. This review provides an overview of bovine mastitis in the aspects of risk factors, control and treatments, and emerging therapeutic alternatives in the control of bovine mastitis.
Collapse
Affiliation(s)
- Wei Nee Cheng
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
49
|
Abstract
Mycoplasma bovis is an important component of the bovine respiratory disease complex and recent reports identified that other species are also affected by M bovis. Control of the disease caused by M bovis has been unsuccessful owing to many factors, including the capacity of M bovis to evade and modulate the immune system of the host; the lack of known virulence factors; the absence of a cell wall, which renders antibiotics targeting cell-wall synthesis unusable; and the failure of vaccines to control disease on the field. The current knowledge on virulence and pathogenesis is presented in this review.
Collapse
Affiliation(s)
- Jose Perez-Casal
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada.
| |
Collapse
|
50
|
Valentine-King MA, Cisneros K, James MO, Huigens RW, Brown MB. Efficacy data of halogenated phenazine and quinoline agents and an NH125 analogue to veterinary mycoplasmas. BMC Vet Res 2020; 16:107. [PMID: 32252763 PMCID: PMC7137434 DOI: 10.1186/s12917-020-02324-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/19/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mycoplasmas primarily cause respiratory or urogenital tract infections impacting avian, bovine, canine, caprine, murine, and reptilian hosts. In animal husbandry, mycoplasmas cause reduced feed-conversion, decreased egg production, arthritis, hypogalactia or agalactia, increased condemnations, culling, and mortality in some cases. Antibiotics reduce transmission and mitigate clinical signs; however, concerning levels of antibiotic resistance in Mycoplasma gallisepticum and M. capricolum isolates exist. To address these issues, we evaluated the minimum inhibitory concentrations (MICs) of halogenated phenazine and quinoline compounds, an N-arylated NH125 analogue, and triclosan against six representative veterinary mycoplasmas via microbroth or agar dilution methods. Thereafter, we evaluated the minimum bactericidal concentration (MBC) of efficacious drugs. RESULTS We identified several compounds with MICs ≤25 μM against M. pulmonis (n = 5), M. capricolum (n = 4), M. gallisepticum (n = 3), M. alligatoris (n = 3), M. agassizii (n = 2), and M. canis (n = 1). An N-arylated NH125 analogue, compound 21, served as the most efficacious, having a MIC ≤25 μM against all mycoplasmas tested, followed by two quinolines, nitroxoline (compound 12) and compound 20, which were effective against four and three mycoplasma type strains, respectively. Nitroxoline exhibited bactericidal activity among all susceptible mycoplasmas, and compound 21 exhibited bactericidal activity when the MBC was able to be determined. CONCLUSIONS These findings highlight a number of promising agents from novel drug classes with potential applications to treat veterinary mycoplasma infections and present the opportunity to evaluate preliminary pharmacokinetic indices using M. pulmonis in rodents as an animal model of human infection.
Collapse
Affiliation(s)
- Marissa A Valentine-King
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA.,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Katherine Cisneros
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Margaret O James
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Mary B Brown
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|