1
|
Gheorghe-Barbu I, Czobor Barbu I, Dragomir RI, Marinaș IC, Stan MS, Pericleanu R, Dumbravă AȘ, Rotaru LI, Paraschiv S, Bănică LM, Pecete I, Oțelea D, Cristea VC, Popa MI, Țânțu MM, Surleac M. Emerging Resistance and Virulence Patterns in Salmonella enterica: Insights into Silver Nanoparticles as an Antimicrobial Strategy. Antibiotics (Basel) 2025; 14:46. [PMID: 39858332 PMCID: PMC11762817 DOI: 10.3390/antibiotics14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize antibiotic resistance (AR) and virulence markers in Salmonella spp. isolated from Romanian outpatients' stool samples. METHODS In 2019, community-acquired Salmonella strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates. Molecular analysis targeted resistance genes for β-lactams (e.g., blaTEM and blaSHV); tetracyclines (e.g., tet(A)); sulphonamides; and quinolones, as well as virulence genes (e.g., invA, spvC, pldA, and held). Whole-genome sequencing (WGS) was performed on 19 selected isolates. A silver nanoparticles (AgNPsol) alternative to conventional antibiotics was tested for effectiveness against multidrug-resistant (MDR) isolates. RESULTS From the total of 309 Salmonella isolates (65.05% from children under 4 years of age) belonging to four subtypes and four serovars, 27.86% showed resistance to at least one antibiotic, most frequently to tetracycline, ampicillin, and piperacillin. The strains frequently expressed haemolysin (67%), aesculinase (65%), and gelatinase (62%). Resistance to trimethoprim-sulfamethoxazole was encoded by the sul1 gene in 44.83% of the strains and to tetracyclines by the tet(A) gene (59.52%). The ESBL genes blaTEM, blaSHV, and blaCTX-M were detected by PCR in 16.18%, 2.91%, and 0.65% of the strains, respectively. Additionally, 98.63% of the strains carried the invA marker, with notable positive associations between blaSHV, qnrB, and sul1 with spvC. CONCLUSIONS The present findings revealed significant patterns in Salmonella isolates, subtypes, serovars, AR, and virulence, emphasising the need for continuous surveillance of Salmonella infections. Additionally, the potential of AgNPs as an alternative treatment option was demonstrated, particularly for paediatric S. enterica infections.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ilda Czobor Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Rareș-Ionuț Dragomir
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ioana Cristina Marinaș
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Miruna Silvia Stan
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu Pericleanu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Andreea Ștefania Dumbravă
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Liviu-Iulian Rotaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Simona Paraschiv
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Leontina Mirela Bănică
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Ionuț Pecete
- Synevo Central Lab Romania, 021408 Bucharest, Romania;
| | - Dan Oțelea
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Violeta Corina Cristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Mircea Ioan Popa
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Marilena Monica Țânțu
- National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania;
- Department of Medical Assistance and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University of Pitești, 110040 Pitesti, Romania
| | - Marius Surleac
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| |
Collapse
|
2
|
Song M, Chen S, Lin W, Zhu K. Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery. Prog Lipid Res 2024; 96:101307. [PMID: 39566858 DOI: 10.1016/j.plipres.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Bacterial infections in humans and animals caused by multidrug-resistant (MDR) pathogens pose a serious threat to public health. New antibacterial targets are extremely urgent to solve the dilemma of cross-resistance. Phospholipids are critical components in bacterial envelopes and involve diverse crucial processes to maintain homeostasis and modulate metabolism. Targeting phospholipids and their synthesis pathways has been largely overlooked because conventional membrane-targeted substances are non-specific with cytotoxicity. In this review, we first introduce the structure and physiological function of phospholipids in bacteria. Subsequently, we describe the chemical diversity of novel ligands targeting phospholipids, structure-activity relationships (SAR), modes of action (MOA), and pharmacological effects. Finally, we prospect the advantage of bacterial phospholipids as promising antibacterial targets. In conclusion, these findings will shed light on discovering and developing new antibacterial drugs to combat MDR bacteria-associated infections.
Collapse
Affiliation(s)
- Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Wasmund K, Singleton C, Dahl Dueholm MK, Wagner M, Nielsen PH. The predicted secreted proteome of activated sludge microorganisms indicates distinct nutrient niches. mSystems 2024; 9:e0030124. [PMID: 39254351 PMCID: PMC11495043 DOI: 10.1128/msystems.00301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
In wastewater treatment plants (WWTPs), complex microbial communities process diverse chemical compounds from sewage. Secreted proteins are critical because many are the first to interact with or degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted secreted proteomes of WWTP microbiota from more than 1,000 high-quality metagenome-assembled genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal. Focus was placed on examining secreted catabolic exoenzymes that target major classes of macromolecules. We demonstrate that Bacteroidota has a high potential to digest complex polysaccharides, but also proteins and nucleic acids. Poorly understood activated sludge members of Acidobacteriota and Gemmatimonadota also have high capacities for extracellular polysaccharide digestion. Secreted nucleases are encoded by 61% of MAGs indicating an importance for extracellular DNA and/or RNA digestion in WWTPs. Secreted lipases were the least common macromolecule-targeting enzymes predicted, encoded mainly by Gammaproteobacteria and Myxococcota. In contrast, diverse taxa encode extracellular peptidases, indicating that proteins are widely used nutrients. Diverse secreted multi-heme cytochromes suggest capabilities for extracellular electron transfer by various taxa, including some Bacteroidota that encode undescribed cytochromes with >100 heme-binding motifs. Myxococcota have exceptionally large secreted protein complements, probably related to predatory lifestyles and/or complex cell cycles. Many Gammaproteobacteria MAGs (mostly former Betaproteobacteria) encode few or no secreted hydrolases, but many periplasmic substrate-binding proteins and ABC- and TRAP-transporters, suggesting they are mostly sustained by small molecules. Together, this study provides a comprehensive overview of how WWTPs microorganisms interact with the environment, providing new insights into their functioning and niche partitioning.IMPORTANCEWastewater treatment plants (WWTPs) are critical biotechnological systems that clean wastewater, allowing the water to reenter the environment and limit eutrophication and pollution. They are also increasingly important for the recovery of resources. They function primarily by the activity of microorganisms, which act as a "living sponge," taking up and transforming nutrients, organic material, and pollutants. Despite much research, many microorganisms in WWTPs are uncultivated and poorly characterized, limiting our understanding of their functioning. Here, we analyzed a large collection of high-quality metagenome-assembled genomes from WWTPs for encoded secreted enzymes and proteins, with special emphasis on those used to degrade organic material. This analysis showed highly distinct secreted proteome profiles among different major phylogenetic groups of microorganisms, thereby providing new insights into how different groups function and co-exist in activated sludge. This knowledge will contribute to a better understanding of how to efficiently manage and exploit WWTP microbiomes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Sit WY, Cheng ML, Chen TJ, Chen CJ, Chen BN, Huang DJ, Chen PL, Chen YC, Lo CJ, Wu DC, Hsieh WC, Chang CT, Chen RH, Wang WC. Helicobacter pylori PldA modulates TNFR1-mediated p38 signaling pathways to regulate macrophage responses for its survival. Gut Microbes 2024; 16:2409924. [PMID: 39369445 PMCID: PMC11457642 DOI: 10.1080/19490976.2024.2409924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Helicobacter pylori, a dominant member of the gastric microbiota was associated with various gastrointestinal diseases and presents a significant challenge due to increasing antibiotic resistance. This study identifies H. pylori's phospholipase A (PldA) as a critical factor in modulating host macrophage responses, facilitating H. pylori 's evasion of the immune system and persistence. PldA alters membrane lipids through reversible acylation and deacylation, affecting their structure and function. We found that PldA incorporates lysophosphatidylethanolamine into macrophage membranes, disrupting their bilayer structure and impairing TNFR1-mediated p38-MK2 signaling. This disruption results in reduced macrophage autophagy and elevated RIP1-dependent apoptosis, thereby enhancing H. pylori survival, a mechanism also observed in multidrug-resistant strains. Pharmacological inhibition of PldA significantly decreases H. pylori viability and increases macrophage survival. In vivo studies corroborate PldA's essential role in H. pylori persistence and immune cell recruitment. Our findings position PldA as a pivotal element in H. pylori pathogenesis through TNFR1-mediated membrane modulation, offering a promising therapeutic target to counteract bacterial resistance.
Collapse
Affiliation(s)
- Wei Yang Sit
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Tsan-Jan Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Jo Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bo-Nian Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ding-Jun Huang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pei-Lien Chen
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yun-Ching Chen
- Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan, ROC
| | - Chi-Jen Lo
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Wan-Chen Hsieh
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chung-Ting Chang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
5
|
Kamankesh M, Yadegar A, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Miri AH, Rad-Malekshahi M, Hamblin MR, Wacker MG. Future Nanotechnology-Based Strategies for Improved Management of Helicobacter pylori Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302532. [PMID: 37697021 DOI: 10.1002/smll.202302532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Indexed: 09/13/2023]
Abstract
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.
Collapse
Affiliation(s)
- Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, PO Box 14155-6455, Tehran, 14144-6455, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Insituto de Salud Carlos III, Valencia, 46022, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore
| |
Collapse
|
6
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
8
|
Peng X, Yao S, Huang J, Zhao Y, Chen H, Chen L, Yu Z. Alterations in bacterial community dynamics from noncancerous to Gastric cancer. Front Microbiol 2023; 14:1138928. [PMID: 36970687 PMCID: PMC10034189 DOI: 10.3389/fmicb.2023.1138928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Gastric microbiome has been shown to contribute to gastric carcinogenesis, understanding how alterations in gastric microbiome is helpful to the prevention and treatment of gastric cancer (GC). However, few studies have focused on the change of microbiome during the gastric carcinogenesis. In this study, the microbiome of gastric juice samples from healthy control (HC), gastric precancerous lesions (GPL) and gastric cancer (GC) was investigated by 16S rRNA gene sequencing. Our results showed that the alpha diversity of patients with GC was significantly lower than other groups. Compared to other groups, some genera in GC group were shown to be up-regulated (e.g., Lautropia and Lactobacillus) and down-regulated (e.g., Peptostreptococcus and Parvimonas). More importantly, the emergence of Lactobacillus was closely related to the occurrence and development of GC. Moreover, the microbial interactions and networks in GPL exhibited higher connectivity, complexity and lower clustering property, while GC showed the opposite trend. Taken together, we suggest that changes in the gastric microbiome are associated with GC and perform a key function in maintaining the tumor microenvironment. Therefore, our findings will provide new ideas and references for the treatment of GC.
Collapse
Affiliation(s)
- Xuan Peng
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Siqi Yao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Medical Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yiming Zhao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Hao Chen
- Department of Medical Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- Liyu Chen,
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Zheng Yu,
| |
Collapse
|
9
|
Wallenwein CM, Ashtikar M, Hofhaus G, Haferland I, Thurn M, König A, Pinter A, Dressman J, Wacker MG. How wound environments trigger the release from Rifampicin-loaded liposomes. Int J Pharm 2023; 633:122606. [PMID: 36632921 DOI: 10.1016/j.ijpharm.2023.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic wounds often contain high levels of proinflammatory cytokines that prolong the wound-healing process. Patients suffering from these conditions are likely to benefit from topical rifampicin therapy. Although recent research indicates considerable anti-inflammatory properties of the antibiotic, currently, there are no commercial topical wound healing products available. To address this medical need, a liposomal drug delivery system was developed. A mechanistic investigation outlined major influences of wound environments that affect the release kinetics and, as a consequence, local bioavailability. METHODS Liposomes were prepared using the thin-film hydration method and subsequently freeze-dried at the pilot scale to improve their stability. We investigated the influence of oxidation, plasma proteins, and lipolysis on the in vitro release of rifampicin and its two main degradation products using the Dispersion Releaser technology. A novel simulated wound fluid provided a standardized environment to study critical influences on the release. It reflects the pathophysiological environment regarding pH, buffer capacity, and protein content. RESULTS During storage, the liposomes efficiently protect rifampicin from degradation. After the dispersion of the vesicles in simulated wound fluid, despite the significant albumin binding (>70%), proteins have no considerable effect on the release. Also, the presence of lipase at pathophysiologically elevated concentrations did not trigger the liberation of rifampicin. Surprisingly, the oxidative environment of the wound bed represents the strongest accelerating influence and triggers the release. CONCLUSION A stable topical delivery system of rifampicin has been developed. Once the formulation comes in contact with simulated wound fluid, drug oxidation accelerates the release. The influence of lipases that are assumed to trigger the liberation from liposomes depends on the drug-to-lipid ratio. Considering that inflamed tissues exhibit elevated levels of oxidative stress, the trigger mechanism identified for rifampicin contributes to targeted drug delivery.
Collapse
Affiliation(s)
- Chantal M Wallenwein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Mukul Ashtikar
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Götz Hofhaus
- Department of Dermatology, Venerology, and Allergology, University Hospital, 60596 Frankfurt am Main, Germany
| | - Isabel Haferland
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Manuela Thurn
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Anke König
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Pinter
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, 4 Science Drive 2, Singapore 117544, Singapore.
| |
Collapse
|
10
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Abdul Hamid NW, Nadarajah K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int J Mol Sci 2022; 23:ijms23168998. [PMID: 36012261 PMCID: PMC9409198 DOI: 10.3390/ijms23168998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The agriculture sector has been put under tremendous strain by the world’s growing population. The use of fertilizers and pesticides in conventional farming has had a negative impact on the environment and human health. Sustainable agriculture attempts to maintain productivity, while protecting the environment and feeding the global population. The importance of soil-dwelling microbial populations in overcoming these issues cannot be overstated. Various processes such as rhizospheric competence, antibiosis, release of enzymes, and induction of systemic resistance in host plants are all used by microbes to influence plant-microbe interactions. These processes are largely founded on chemical signalling. Producing, releasing, detecting, and responding to chemicals are all part of chemical signalling. Different microbes released distinct sorts of chemical signal molecules which interacts with the environment and hosts. Microbial chemicals affect symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm growth, to name a few. We present an in-depth overview of chemical signalling between bacteria-bacteria, bacteria-fungi, and plant-microbe and the diverse roles played by these compounds in plant microbe interactions. These compounds’ current and potential uses and significance in agriculture have been highlighted.
Collapse
|
12
|
Otake-Kasamoto Y, Kayama H, Kishikawa T, Shinzaki S, Tashiro T, Amano T, Tani M, Yoshihara T, Li B, Tani H, Liu L, Hayashi A, Okuzaki D, Motooka D, Nakamura S, Okada Y, Iijima H, Takeda K, Takehara T. Lysophosphatidylserines derived from microbiota in Crohn’s disease elicit pathological Th1 response. J Exp Med 2022; 219:213240. [PMID: 35608941 PMCID: PMC9134096 DOI: 10.1084/jem.20211291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
Microbiota alteration and IFN-γ–producing CD4+ T cell overactivation are implicated in Crohn’s disease (CD) pathogenesis. However, it remains unclear how dysbiosis enhances Th1 responses, leading to intestinal inflammation. Here, we identified key metabolites derived from dysbiotic microbiota that induce enhanced Th1 responses and exaggerate colitis in mouse models. Patients with CD showed elevated lysophosphatidylserine (LysoPS) concentration in their feces, accompanied by a higher relative abundance of microbiota possessing a gene encoding the phospholipid-hydrolyzing enzyme phospholipase A. LysoPS induced metabolic reprogramming, thereby eliciting aberrant effector responses in both human and mouse IFN-γ–producing CD4+ T cells. Administration of LysoPS into two mouse colitis models promoted large intestinal inflammation. LysoPS-induced aggravation of colitis was impaired in mice lacking P2ry10 and P2ry10b, and their CD4+ T cells were hyporesponsive to LysoPS. Thus, our findings elaborate on the mechanism by which metabolites elevated in patients with CD harboring dysbiotic microbiota promote Th1-mediated intestinal pathology.
Collapse
Affiliation(s)
- Yuriko Otake-Kasamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology—Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taku Tashiro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Amano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mizuki Tani
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Bo Li
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruka Tani
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Li Liu
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akio Hayashi
- Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yukinori Okada
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, Kovacic F. Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa. eLife 2022; 11:e72824. [PMID: 35536643 PMCID: PMC9132575 DOI: 10.7554/elife.72824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.
Collapse
Affiliation(s)
- Florian Bleffert
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Joachim Granzin
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of TalcaTalcaChile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Meike Siebers
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
- Institute for Plant Genetics, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Björn Thiele
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), and Agrosphere (IBG-3), Forschungszentrum Jülich GmbHJülichGermany
| | - Laurence Rahme
- Department of Microbiology, and Immunobiology, Harvard Medical SchoolBostonUnited States
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Peter Dörmann
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
| | - Holger Gohlke
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Renu Batra-Safferling
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbHJülichGermany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
14
|
Ferreira EO, Lagacé-Wiens P, Klein J. Campylobacter concisus gastritis masquerading as Helicobacter pylori on gastric biopsy. Helicobacter 2022; 27:e12864. [PMID: 34820966 DOI: 10.1111/hel.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Campylobacter concisus is a Gram-negative rod closely related to Helicobacter pylori. We sought to identify gastric biopsies positive for C. concisus that had been misdiagnosed as H. pylori gastritis in our routine surgical pathology practice. MATERIALS AND METHODS We performed a retrospective review of gastric biopsies in our regional microbiology and pathology electronic records to identify cases that were submitted for H. pylori testing in which C. consicus was identified on culture and how many had concurrent biopsies sent to pathology for histologic assessment over a two-year period (2017-2018). Pathologic findings in the gastric biopsies were reviewed and immunohistochemical staining for H. pylori was performed. RESULTS 50 of 2191 gastric biopsy specimens submitted to microbiology in 2017-18 grew C. concisus (2.3%), compared to 168 in which H. pylori was identified (7.7%). Twenty-eight cases had concurrent histology. A total of four cases (three from 2017 and one from 2018) demonstrated organisms morphologically identical to H. pylori in the H&E sections, of which all were H. pylori immunoreactive. CONCLUSIONS Our case series is the first to demonstrate that C. concisus can mimic H. pylori gastritis in routine biopsy pathology.
Collapse
Affiliation(s)
- Elizabeth O Ferreira
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Philippe Lagacé-Wiens
- Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julianne Klein
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Weiler AJ, Spitz O, Gudzuhn M, Schott-Verdugo SN, Kamel M, Thiele B, Streit WR, Kedrov A, Schmitt L, Gohlke H, Kovacic F. A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159101. [DOI: 10.1016/j.bbalip.2021.159101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
|
16
|
Bakholdina SI, Stenkova AM, Bystritskaya EP, Sidorin EV, Kim NY, Menchinskaya ES, Gorpenchenko TY, Aminin DL, Shved NA, Solov’eva TF. Studies on the Structure and Properties of Membrane Phospholipase A 1 Inclusion Bodies Formed at Low Growth Temperatures Using GFP Fusion Strategy. Molecules 2021; 26:molecules26133936. [PMID: 34203222 PMCID: PMC8271855 DOI: 10.3390/molecules26133936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.
Collapse
Affiliation(s)
- Svetlana I. Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| | - Anna M. Stenkova
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Evgenia P. Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Evgeniy V. Sidorin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Tatiana Yu. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, 690022 Vladivostok, Russia;
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Nikita A. Shved
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Tamara F. Solov’eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| |
Collapse
|
17
|
Characterization of Arcobacter spp. Isolated from human diarrheal, non-diarrheal and food samples in Thailand. PLoS One 2021; 16:e0246598. [PMID: 33544770 PMCID: PMC7864401 DOI: 10.1371/journal.pone.0246598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
Arcobacter butzleri is an emerging zoonotic food-borne and water-borne pathogen that can cause diarrhea in humans. The global prevalence of A. butzleri infection is underestimated, and little is known about their phenotypic and genotypic characterization. The aim of this study was to determine antimicrobial susceptibility (AST) profiles, detect related virulence genes, and classify sequence type (ST) of A. butzleri isolates obtained from human stool and food samples. A total of 84 A. butzleri isolates were obtained from human diarrheal (n = 25), non-diarrheal (n = 24) stool, and food (n = 35) samples in Thailand. They were evaluated for phenotypic identification by conventional microbiological procedures and AST by Kirby-Bauer disc diffusion method as well as virulence genes detection. Representative isolates from each origin were selected based on the presence of virulence genes and AST profiles to analyze genetic diversity by multilocus sequence typing (MLST). All isolates showed resistance to nalidixic acid 40.5% (34/84), ciprofloxacin 11.9% (10/84), azithromycin 8.3% (7/84), and erythromycin 3.6% (3/84). Regarding the ten virulence genes detected, cj1349, mviN and pldA had the highest prevalence 100% (84/84), followed by tlyA 98.8% (83/84), cadF 97.6% (82/84), ciaB 71.4% (60/84), hecA and hecB 22.6% (19/84), iroE 15.5% (13/84) and irgA 10.7% (9/84), respectively. Three virulence genes were present among A. butzleri isolates of human diarrheal stool and food samples, with a significant difference observed among isolates; hecB [36% (9/25) and 8.6% (3/35)], hecA [36% (9/25) and 5.7% (2/35)], and irgA [24% (6/25) and 2.9% (1/35)] (p < 0.05), respectively. The hecA and hecB virulence genes functions are related to the mechanism of hemolysis, while irgA supports a bacterial nutritional requirement. MLST analysis of 26 A. butzleri isolates revealed that 16 novel STs exhibited high genetic diversity. The results of this study is useful for understanding potentially pathogenic and antimicrobial-resistant A. butzleri in Thailand. The pathogenic virulence markers hecB, hecA, and irgA have the potential to be developed for rapid diagnostic detection in human diarrheal stool. No significant relationships among STs and sources of origin were observed. Little is known about A. butzleri, the mechanism of action of these virulence genes, is a topic that needs further investigation.
Collapse
|
18
|
Cheng S, Liang C, Geng P, Guo Z, Li Y, Zhang L, Shi G. Affinity adsorption of phospholipase A 1 with designed ligand binding to catalytic pocket. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122402. [PMID: 33130354 DOI: 10.1016/j.jchromb.2020.122402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
An affinity ligand was designed from 1-aminocyclohexane based on the crystal structure of Streptomyces albidoflavus phospholipase A1 (saPLA1) by using Discovery Studio software. The molecular docking results indicated that the designed ligand could interact with the active pocket of saPLA1. Epichlorohydrin, cyanuric chloride and 1-aminocyclohexane were used to synthesize the affinity ligand, which was composed to Sepharose beads. The density of the ligand on Sepharose beads was 22.5 ± 1.1 μmol/g wet gel. Adsorption analysis of the sorbent indicated the maximum adsorption (Qmax) of the enzyme was 10.7 ± 0.29 mg/g and the desorption constant (Kd) was 426.6 ± 29.7 μg/mL. The sorbent could bind the enzyme in the supernatant of disrupted recombinant Escherichia coli through one step of affinity adsorption. After the optimization of the purification process, a single band was obtained at approximately 30 kDa, which was confirmed as saPLA1 by the matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry and activity assay. The purity of the isolated enzyme was about 96.6% with the purify fold at 7.62, and the activity recovery was 52.5%.
Collapse
Affiliation(s)
- Shi Cheng
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Chaojuan Liang
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Peng Geng
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Zitao Guo
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Youran Li
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Liang Zhang
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| | - Guiyang Shi
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| |
Collapse
|
19
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
20
|
Vijaya Kumar S, Abraham PE, Hurst GB, Chourey K, Bible AN, Hettich RL, Doktycz MJ, Morrell-Falvey JL. A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Sci Rep 2020; 10:14985. [PMID: 32917935 PMCID: PMC7486946 DOI: 10.1038/s41598-020-71672-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Membrane organization plays an important role in signaling, transport, and defense. In eukaryotes, the stability, organization, and function of membrane proteins are influenced by certain lipids and sterols, such as cholesterol. Bacteria lack cholesterol, but carotenoids and hopanoids are predicted to play a similar role in modulating membrane properties. We have previously shown that the loss of carotenoids in the plant-associated bacteria Pantoea sp. YR343 results in changes to membrane biophysical properties and leads to physiological changes, including increased sensitivity to reactive oxygen species, reduced indole-3-acetic acid secretion, reduced biofilm and pellicle formation, and reduced plant colonization. Here, using whole cell and membrane proteomics, we show that the deletion of carotenoid production in Pantoea sp. YR343 results in altered membrane protein distribution and abundance. Moreover, we observe significant differences in the protein composition of detergent-resistant membrane fractions from wildtype and mutant cells, consistent with the prediction that carotenoids play a role in organizing membrane microdomains. These data provide new insights into the function of carotenoids in bacterial membrane organization and identify cellular functions that are affected by the loss of carotenoids.
Collapse
Affiliation(s)
- Sushmitha Vijaya Kumar
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Amber N Bible
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jennifer L Morrell-Falvey
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA. .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
21
|
Cui Z, Dang G, Song N, Cui Y, Li Z, Zang X, Liu H, Wang Z, Liu S. Rv3091, An Extracellular Patatin-Like Phospholipase in Mycobacterium tuberculosis, Prolongs Intracellular Survival of Recombinant Mycolicibacterium smegmatis by Mediating Phagosomal Escape. Front Microbiol 2020; 11:2204. [PMID: 33042041 PMCID: PMC7517356 DOI: 10.3389/fmicb.2020.532371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/19/2020] [Indexed: 12/02/2022] Open
Abstract
Patatin-like phospholipases (PLPs) are important virulence factors of many pathogens. However, there are no prevailing studies regarding PLPs as a virulence factor of Mycobacterium tuberculosis (Mtb). Analysis of Rv3091, a putative protein of Mtb, shows that it belongs to the PLPs family. Here, we cloned and expressed the rv3091 gene in Mycobacterium smegmatis and, subsequently, conducted protein purification and characterization. We show that it possesses phospholipase A1, phospholipase A2, and lipase activity. We confirm the putative active site residues, namely, Ser214 and Asp407, using site directed mutagenesis. The Rv3091 is an extracellular protein that alters the colony morphology of M. smegmatis. The presence of Rv3091 enhances the intracellular survival capability of M. smegmatis in murine peritoneal macrophages. Additionally, it promotes M. smegmatis phagosomal escape from macrophages. Moreover, Rv3091 significantly increased the survival of M. smegmatis and aggravated lesions in C57BL/6 J murine lungs in vivo. Taken together, our results indicate that Rv3091 as an extracellular PLP that is critical to the pathogenicity of mycobacterium as it allows mycobacterium to utilize phospholipids for its growth and provides resistance to phagosome killing, resulting in its enhanced intracellular survival.
Collapse
Affiliation(s)
- Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongxiu Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhongxing Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
22
|
Lamiyan AK, Dalal R, Kumar NR. Venom peptides in association with standard drugs: a novel strategy for combating antibiotic resistance - an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200001. [PMID: 32843888 PMCID: PMC7416788 DOI: 10.1590/1678-9199-jvatitd-2020-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Ramkesh Dalal
- Department of Zoology, Panjab University, Chandigarh, India
| | | |
Collapse
|
23
|
Niu M, Keller NP. Co-opting oxylipin signals in microbial disease. Cell Microbiol 2020; 21:e13025. [PMID: 30866138 DOI: 10.1111/cmi.13025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Oxylipins, or oxygenated lipids, are universal signalling molecules across all kingdoms of life. These molecules, either produced by microbial pathogens or their mammalian host, regulate inflammation during microbial infection. In this review, we summarise current literature on the biosynthesis pathways of microbial oxylipins and their biological activity towards mammalian cells. Collectively, these studies have illustrated how microbial pathogens can modulate immune rsponse and disease outcome via oxylipin-mediated mechanisms.
Collapse
Affiliation(s)
- Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
24
|
Rv2037c, a stress induced conserved hypothetical protein of Mycobacterium tuberculosis, is a phospholipase: Role in cell wall modulation and intracellular survival. Int J Biol Macromol 2020; 153:817-835. [DOI: 10.1016/j.ijbiomac.2020.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
|
25
|
Bott E, López MG, Lammel EM, Carfagna IE, Durante de Isola EL, Ruybal P, Taboga O, Gimenez G, Belaunzarán ML. Cellular localization, cloning and expression of Leishmania braziliensis Phospholipase A 1. Microb Pathog 2020; 141:104010. [PMID: 32004623 DOI: 10.1016/j.micpath.2020.104010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
Leishmaniasis is caused by several species of protozoan parasites of the genus Leishmania and represents an important global health problem. Leishmania braziliensis in particular is responsible of cutaneous and mucocutaneous forms of this parasitosis, with prevalence in Latin America. In the present work, we describe in L. braziliensis promastigotes and amastigotes the presence of a Phospholipase A1 (PLA1) activity, an enzyme that catalyses extensive deacylation of phospholipids like phosphatidylcholine. In order to deepen the knowledge about L. braziliensis PLA1, the cloning and expression of the gene that codifies for this enzyme was carried out in a baculovirus expression system with the obtaintion of a purified recombinant protein that displayed PLA1 activity. Given that this is the first molecular and functional protein characterization of a PLA1 in the Leishmania genus, we also performed a phylogenetic analysis of this gene throughout 12 species whose genome sequences were available. The results presented here will contribute to increase the knowledge about trypanosome phospholipases, which could be novel and valuable as potential targets to fight neglected diseases like Leishmaniasis.
Collapse
Affiliation(s)
- Emanuel Bott
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Gabriela López
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Estela María Lammel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina
| | - Ivanna Emilce Carfagna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina
| | - Elvira Luisa Durante de Isola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina
| | - Paula Ruybal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Guadalupe Gimenez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Belaunzarán
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
27
|
Comparison of type 5d autotransporter phospholipases demonstrates a correlation between high activity and intracellular pathogenic lifestyle. Biochem J 2019; 476:2657-2676. [PMID: 31492736 DOI: 10.1042/bcj20190136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Autotransporters, or type 5 secretion systems, are widespread surface proteins of Gram-negative bacteria often associated with virulence functions. Autotransporters consist of an outer membrane β-barrel domain and an exported passenger. In the poorly studied type 5d subclass, the passenger is a patatin-like lipase. The prototype of this secretion pathway is PlpD of Pseudomonas aeruginosa, an opportunistic human pathogen. The PlpD passenger is a homodimer with phospholipase A1 (PLA1) activity. Based on sequencing data, PlpD-like proteins are present in many bacterial species. We characterized the enzymatic activity, specific lipid binding and oligomeric status of PlpD homologs from Aeromonas hydrophila (a fish pathogen), Burkholderia pseudomallei (a human pathogen) and Ralstonia solanacearum (a plant pathogen) and compared these with PlpD. We demonstrate that recombinant type 5d-secreted patatin domains have lipase activity and form dimers or higher-order oligomers. However, dimerization is not necessary for lipase activity; in fact, by making monomeric variants of PlpD, we show that enzymatic activity slightly increases while protein stability decreases. The lipases from the intracellular pathogens A. hydrophila and B. pseudomallei display PLA2 activity in addition to PLA1 activity. Although the type 5d-secreted lipases from the animal pathogens bound to intracellular lipid targets, phosphatidylserine and phosphatidylinositol phosphates, hydrolysis of these lipids could only be observed for FplA of Fusobacterium nucleatum Yet, we noted a correlation between high lipase activity in type 5d autotransporters and intracellular lifestyle. We hypothesize that type 5d phospholipases are intracellularly active and function in modulation of host cell signaling events.
Collapse
|
28
|
Fernandez M, Paulucci NS, Peppino Margutti M, Biasutti AM, Racagni GE, Villasuso AL, Agostini E, González PS. Membrane Rigidity and Phosphatidic Acid (PtdOH) Signal: Two Important Events in Acinetobacter guillouiae SFC 500-1A Exposed to Chromium(VI) and Phenol. Lipids 2019; 54:557-570. [PMID: 31475368 DOI: 10.1002/lipd.12187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/06/2022]
Abstract
The remodeling of membrane lipids is a mechanism that allows microorganisms to survive in unfavorable environments such as industrial effluents, which often contain inorganic and organic pollutants, like chromium and phenol. In the present work, we evaluated the effect of Cr(VI) and phenol on the membrane of Acinetobacter guillouiae SFC 500-1A, a bacterial strain isolated from tannery sediments where such pollutants can be found. The presence of lipid kinases and phospholipases and the changes in their activities under exposure to these pollutants were determined. Cr(VI) and Cr(VI) + phenol caused the membrane to become more rigid for up to 16 h after exposure. This could be due to an increase in cardiolipin (Ptd2 Gro) and a decrease in phosphatidylethanolamine (PtdEtn), which are indicative of more order and rigidity in the membrane. Increased phospholipase A activity (PLA, EC 3.1.1.4) could be responsible for the decrease in PtdEtn levels. Moreover, our results indicate that Cr(VI) and Cr(VI) + phenol trigger the phosphatidic acid (PtdOH) signal. The finding of significantly increased phosphatidylinositol-4-phosphate (PtdIns-4-P) levels means this is likely achieved via PtdIns-PLC/DGK. This report provides the first evidence that A. guillouiae SFC 500-1A is able to sense Cr(VI) and phenol, transduce this signal through changes in the physical state of the membrane, and trigger lipid-signaling events.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Natalia S Paulucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Micaela Peppino Margutti
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Alicia M Biasutti
- Departamento de Química-FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Graciela E Racagni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Ana L Villasuso
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
29
|
Aliramezani A, Soleimani M, Fard RMN, Nojoomi F. Virulence determinants and biofilm formation of Acinetobacter baumannii isolated from hospitalized patients. Germs 2019; 9:148-153. [PMID: 31646145 DOI: 10.18683/germs.2019.1171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022]
Abstract
Introduction Acinetobacter baumannii are nosocomial bacteria that are responsible for outbreaks and severe infections in hospitalized patients globally. The major target of this study was the characterization of virulence determinants and biofilm formation of A. baumannii isolates from hospitalized patients. Methods In total, 100 A. baumannii were collected from three hospitals in Tehran, Iran, 2017-2018. The isolates were assessed using phenotypic and genotypic methods and then screened for virulence factor encoding genes such as plcN and lasB using conventional polymerase chain reaction. Furthermore, bacterial biofilm formation, motility and hemolytic and proteolytic activities were assessed. Results Of 100 A. baumannii isolates, 20 isolates included plcN and four isolates included lasB using PCR assay. Overall, 21 isolates were negative for biofilm formation while 45, 20 and 14 of the total isolates were reported as weak, moderate and strong biofilm producers, respectively. All isolates were positive for bap genes using PCR. Moreover, 35 isolates were motile on Luria-Bertani media, 47 isolates were α-hemolytic on Brucella blood agar media and all isolates displayed proteolytic activity. Conclusions Healthcare-associated infections with A. baumannii are a major concern, importantly due to their potency to acquire virulence factor genes. Therefore, shedding light in the discovery of new antimicrobial and/or therapeutic agents against virulent A. baumannii strains seem to be necessary.
Collapse
Affiliation(s)
- Amir Aliramezani
- PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, PO Box: 14117-18541, Iran, Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, PO Box: 14117-18541, Iran
| | - Ramin Mazaheri Nezhad Fard
- PhD, Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, PO Box: 14716-13151, Iran, Food Microbiology Research Centre, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Nojoomi
- PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, PO Box: 14117-18541, Iran
| |
Collapse
|
30
|
Valencia Lopez MJ, Schimmeck H, Gropengießer J, Middendorf L, Quitmann M, Schneider C, Holstermann B, Wacker R, Heussler V, Reimer R, Aepfelbacher M, Ruckdeschel K. Activation of the macroautophagy pathway by Yersinia enterocolitica promotes intracellular multiplication and egress of yersiniae from epithelial cells. Cell Microbiol 2019; 21:e13046. [PMID: 31099152 DOI: 10.1111/cmi.13046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.
Collapse
Affiliation(s)
- Maria Jose Valencia Lopez
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Hanna Schimmeck
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Julia Gropengießer
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Lukas Middendorf
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Melanie Quitmann
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Barbara Holstermann
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rahel Wacker
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Abstract
Abstract
Snake venoms are aqueous solutions containing peptides and proteins with various biochemical, physiological, and pathophysiological effects. Several snake venom components are used as lead molecules in the development of new active substances for the treatment of cardiovascular diseases, clotting disorders, cancer or pain.
Antibacterial activity has also been attributed to snake venoms and proteins isolated from snake venoms. This study provides information regarding the antibacterial activity of venoms obtained from various snake species from the Elapidae and Viperidae families. Minimum inhibitory and bactericidal concentrations of snake venoms were determined for three Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, and Methicillin-resistant Staphylococcus aureus ATCC 43300) and three Gram-negative (Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and Pseudomonas aeruginosa ATCC 27853) pathogenic bacteria. The observed effects were correlated with the protein content of each venom, determined using SDS-PAGE analysis and comparison with data available in the literature. Our findings represent a starting point for the selection of snake venoms containing components with potential use as lead molecules in the development of new antibacterial agents, targeting multidrug resistant bacterial strains.
Collapse
|
32
|
Sinha AK, Dutta A, Chandravanshi M, Kanaujia SP. An insight into bacterial phospholipase C classification and their translocation through Tat and Sec pathways: A data mining study. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
33
|
Transcriptional analysis of flagellar and putative virulence genes of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii. Arch Microbiol 2019; 201:1075-1083. [DOI: 10.1007/s00203-019-01678-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/27/2019] [Accepted: 05/11/2019] [Indexed: 11/26/2022]
|
34
|
Ormsby MJ, Grahame E, Burchmore R, Davies RL. Comparative bioinformatic and proteomic approaches to evaluate the outer membrane proteome of the fish pathogen Yersinia ruckeri. J Proteomics 2019; 199:135-147. [PMID: 30831250 PMCID: PMC6447952 DOI: 10.1016/j.jprot.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Yersinia ruckeri is the aetiological agent of enteric redmouth (ERM) disease and is responsible for significant economic losses in farmed salmonids. Enteric redmouth disease is associated primarily with rainbow trout (Oncorhynchus mykiss, Walbaum) but its incidence in Atlantic salmon (Salmo salar) is increasing. Outer membrane proteins (OMPs) of Gram-negative bacteria are located at the host-pathogen interface and play important roles in virulence. The outer membrane of Y. ruckeri is poorly characterised and little is known about its composition and the roles of individual OMPs in virulence. Here, we employed a bioinformatic pipeline to first predict the OMP composition of Y. ruckeri. Comparative proteomic approaches were subsequently used to identify those proteins expressed in vitro in eight representative isolates recovered from Atlantic salmon and rainbow trout. One hundred and forty-one OMPs were predicted from four Y. ruckeri genomes and 77 of these were identified in three or more genomes and were considered as "core" proteins. Gel-free and gel-based proteomic approaches together identified 65 OMPs in a single reference isolate and subsequent gel-free analysis identified 64 OMPs in the eight Atlantic salmon and rainbow trout isolates. Together, our gel-free and gel-based proteomic analyses identified 84 unique OMPs in Y. ruckeri. SIGNIFICANCE: Yersinia ruckeri is an important pathogen of Atlantic salmon and rainbow trout and is of major economic significance to the aquaculture industry worldwide. Disease outbreaks are becoming more problematic in Atlantic salmon and there is an urgent need to investigate in further detail the cell-surface (outer membrane) composition of strains infecting each of these host species. Currently, the outer membrane of Y. ruckeri is poorly characterised and very little is known about the OMP composition of strains infecting each of these salmonid species. This study represents the most comprehensive comparative outer membrane proteomic analysis of Y. ruckeri to date, encompassing isolates of different biotypes, serotypes, OMP-types and hosts of origin and provides insights into the potential roles of these diverse proteins in host-pathogen interactions. The study has identified key OMPs likely to be involved in disease pathogenesis and makes a significant contribution to furthering our understanding of the cell-surface composition of this important fish pathogen that will be relevant to the development of improved vaccines and therapeutics.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Edward Grahame
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK; Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, TCRC, University of Glasgow, Glasgow G12 1QH, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
35
|
Kamischke C, Fan J, Bergeron J, Kulasekara HD, Dalebroux ZD, Burrell A, Kollman JM, Miller SI. The Acinetobacter baumannii Mla system and glycerophospholipid transport to the outer membrane. eLife 2019; 8:e40171. [PMID: 30638443 PMCID: PMC6365058 DOI: 10.7554/elife.40171] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria serves as a selective permeability barrier that allows entry of essential nutrients while excluding toxic compounds, including antibiotics. The OM is asymmetric and contains an outer leaflet of lipopolysaccharides (LPS) or lipooligosaccharides (LOS) and an inner leaflet of glycerophospholipids (GPL). We screened Acinetobacter baumannii transposon mutants and identified a number of mutants with OM defects, including an ABC transporter system homologous to the Mla system in E. coli. We further show that this opportunistic, antibiotic-resistant pathogen uses this multicomponent protein complex and ATP hydrolysis at the inner membrane to promote GPL export to the OM. The broad conservation of the Mla system in Gram-negative bacteria suggests the system may play a conserved role in OM biogenesis. The importance of the Mla system to Acinetobacter baumannii OM integrity and antibiotic sensitivity suggests that its components may serve as new antimicrobial therapeutic targets.
Collapse
Affiliation(s)
- Cassandra Kamischke
- Department of Microbiology, University of Washington, Seattle, United States
| | - Junping Fan
- Department of Microbiology, University of Washington, Seattle, United States
| | - Julien Bergeron
- Department of Biochemistry, University of Washington, Seattle, United States
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | | | - Zachary D Dalebroux
- Department of Microbiology, University of Washington, Seattle, United States
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
36
|
In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species. Sci Rep 2018; 8:15453. [PMID: 30337679 PMCID: PMC6194013 DOI: 10.1038/s41598-018-32476-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Hom) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded β-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.
Collapse
|
37
|
Hasan KA, Ali SA, Rehman M, Bin-Asif H, Zahid S. The unravelled Enterococcus faecalis zoonotic superbugs: Emerging multiple resistant and virulent lineages isolated from poultry environment. Zoonoses Public Health 2018; 65:921-935. [PMID: 30105884 DOI: 10.1111/zph.12512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the zoonotic potential by virtue of phylogenetic analysis, virulence and resistance gene profiles of Enterococcus faecalis originating from poultry environment. The ERIC, BOX and RAPD PCR analysis showed the clustering of E. faecalis strains (n = 74) into five groups (G1-G5) and fifteen sub-clusters (B1-B15), which share 50%-80% similarities with ATCC E. faecalis and clinical strains of human infection. E. faecalis strains harboured seven enterocins genes including ent1097 (85%), entB (84%), enterolysinA (51%), entSEK4 (51%), entL50 (31%), entA (25.7%) and ent1071 (14.9%). The highest prevalence of gelE-sprE (90%), lip-fl (90%) followed by cylL (62%), hyl (60%), katA (16%) and cylA (5.4%) was observed in poultry isolates. The fsr operon and gelE-sprE was co-associated in 66.2% strains. E. faecalis also harboured biofilm and endocarditis-associated genes, including efaAfs (97%), ebp-pilli (ebpABC and srtC 69.9%-80%), asa1 (71%), agg (55%), ace (54%) and esp-Tim (3%). Despite all found sensitive to vancomycin, 98.6% strains were multi-drug resistant to five to twelve tested antimicrobials. An increased-level of resistance (≥32 μg/ml) was observed to ampicillin (8.1%), meropenem (21.6%), chloramphenicol (73.4%), erythromycin (90.5%), tetracycline (100%) and high-level resistance to kanamycin (79.7%) and gentamicin (52.7%). The multi-drug resistant E. faecalis (MDRe.f) were carried pbp4 (90%), tetL (90%), tetM (70%), ermB (81%), cat (52.7%), acc6-aph2 (58.1%), aaph(3)-III (49.9%), gyrA (97%) and parC (98%) genes. Moreover, these MDRe.f were also harboured, hospital-associated marker IS16 (58%) and pheromone responsive genes, that is ccf (88%), cpd (74%), cob (62%) and eep (66%). Thus, regardless of the distinct phylogenetic background of E. faecalis of poultry origin, ATCC E. faecalis and clinical strains of human origin, we found major similarities in virulence, resistance gene profiles and mobile genetic elements (IS16 and pheromone responsive plasmids), supporting the zoonotic/reverse zoonotic risk associated with this organism.
Collapse
Affiliation(s)
- Khwaja A Hasan
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Syed A Ali
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Marium Rehman
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Hassaan Bin-Asif
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sindhu Zahid
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
38
|
Munsch-Alatossava P, Käkelä R, Ibarra D, Youbi-Idrissi M, Alatossava T. Phospholipolysis Caused by Different Types of Bacterial Phospholipases During Cold Storage of Bovine Raw Milk Is Prevented by N 2 Gas Flushing. Front Microbiol 2018; 9:1307. [PMID: 29971053 PMCID: PMC6018212 DOI: 10.3389/fmicb.2018.01307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Cold storage aims to preserve the quality and safety of raw milk from farms to dairies; unfortunately, low temperatures also promote the growth of psychrotrophic bacteria, some of which produce heat-stable enzymes that cause spoilage of milk or dairy products. Previously, N2 gas flushing of raw milk has demonstrated significant potential as a method to hinder bacterial growth at both laboratory and pilot plant scales. Using a mass spectrometry-based lipidomics approach, we examined the impact of cold storage [at 6°C for up to 7 days, the control condition (C)], on the relative amounts of major phospholipids (phosphatidylethanolamine/PE, phosphatidylcholine/PC, phosphatidylserine/PS, phosphatidylinositol/PI, and sphingomyelin/SM) in three bovine raw milk samples, and compared it to the condition that received additional N2 gas flushing (N). As expected, bacterial growth was hindered by the N2-based treatment (over 4 log-units lower at day 7) compared to the non-treated control condition. At the end of the cold storage period, the control condition (C7) revealed higher hydrolysis of PC, SM, PE, and PS (the major species reached 27.2, 26.7, 34.6, and 9.9 μM, respectively), compared to the N2-flushed samples (N7) (the major species reached 55.6, 35.9, 54.0, and 18.8 μM, respectively). C7 samples also exhibited a three-fold higher phosphatidic acid (PA) content (6.8 μM) and a five-fold higher content (17.3 μM) of lysophospholipids (LPE, LPC, LPS, and LPI) whereas both lysophospholipids and PA remained at their initial levels for 7 days in N7 samples. Taking into consideration the significant phospholipid losses in the controls, the lipid profiling results together with the microbiological data suggest a major role of phospholipase (PLase) C (PLC) in phospholipolysis during cold storage. However, the experimental data also indicate that bacterial sphingomyelinase C, together with PLases PLD and PLA contributed to the degradation of phospholipids present in raw milk as well, and potential contributions from PLB activity cannot be excluded. Altogether, this lipidomics study highlights the beneficial effects of N2 flushing treatment on the quality and safety of raw milk through its ability to effectively hinder phospholipolysis during cold storage.
Collapse
Affiliation(s)
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dominique Ibarra
- Air Liquide, Centre de Recherches Paris-Saclay, Jouy-en-Josas, France
| | | | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Borges IP, Silva MF, Santiago FM, de Faria LS, Júnior ÁF, da Silva RJ, Costa MS, de Freitas V, Yoneyama KAG, Ferro EAV, Lopes DS, Rodrigues RS, de Melo Rodrigues V. Antiparasitic effects induced by polyclonal IgY antibodies anti-phospholipase A2 from Bothrops pauloensis venom. Int J Biol Macromol 2018; 112:333-342. [DOI: 10.1016/j.ijbiomac.2018.01.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/07/2023]
|
40
|
Bakholdina SI, Sidorin EV, Khomenko VA, Isaeva MP, Kim NY, Bystritskaya EP, Pimenova EA, Solov’eva TF. The Effect of Conditions of the Expression of the Recombinant Outer Membrane Phospholipase А1 from Yersinia pseudotuberculosis on the Structure and Properties of Inclusion Bodies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Stead CM, Cockrell DC, Beare PA, Miller HE, Heinzen RA. A Coxiella burnetii phospholipase A homolog pldA is required for optimal growth in macrophages and developmental form lipid remodeling. BMC Microbiol 2018; 18:33. [PMID: 29661138 PMCID: PMC5902883 DOI: 10.1186/s12866-018-1181-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/09/2018] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Many gram-negative bacteria produce an outer membrane phospholipase A (PldA) that plays an important role in outer membrane function and is associated with virulence. RESULTS In the current study, we characterized a pldA mutant of Coxiella burnetii, an intracellular gram-negative pathogen and the agent of human Q fever. The C. burnetti pldA open reading frame directs synthesis of a protein with conserved PldA active site residues. A C. burnetii ΔpldA deletion mutant had a significant growth defect in THP-1 macrophages, but not axenic medium, that was rescued by complementation. Thin layer chromatography was employed to assess whether pldA plays a role in remodeling membrane lipids during C. burnetii morphological differentiation. Extracted lipids were analyzed from replicating, logarithmic phase large cell variants (LCVs), non-replicating, stationary phase small cell variants (SCVs), and a mixture of LCVs and SCVs. Similar to Escherichia coli, all three forms contained cardiolipin (CL), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). However, PE and PG were present in lower quantities in the SCV while three additional lipid species were present in higher quantities. Co-migration with standards tentatively identified two of the three SCV-enriched lipids as lyso-phosphatidylethanolamine, a breakdown product of PE, and free fatty acids, which are generally toxic to bacteria. Developmental form lipid modifications required the activity of PldA. CONCLUSIONS Collectively, these results indicate developmentally-regulated lipid synthesis by C. burnetii contributes to colonization of macrophages and may contribute to the environmental stability and the distinct biological properties of the SCV.
Collapse
Affiliation(s)
- Christopher M. Stead
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico USA
| | - Diane C. Cockrell
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| | - Heather E. Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana USA
| |
Collapse
|
42
|
An Optimized Synthetic-Bioinformatic Natural Product Antibiotic Sterilizes Multidrug-Resistant Acinetobacter baumannii-Infected Wounds. mSphere 2018; 3:mSphere00528-17. [PMID: 29404414 PMCID: PMC5784245 DOI: 10.1128/msphere.00528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
The antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) Acinetobacter baumannii clinical isolates, as well as other Gram-negative bacterial pathogens. In a rat cutaneous wound model, it completely sterilized MDR A. baumannii wound infections with no sign of rebound. Mechanistic studies point to a membrane-associated mode of action that results in leakage of intracellular contents. IMPORTANCE Natural product-inspired antibiotics have saved millions of lives and played a critical role in modern medicine. However, the emergence of drug-resistant pathogens is outpacing the rate at which new clinically useful antibiotics are being discovered. The lack of a means to combat infections caused by multidrug-resistant (MDR) Acinetobacter baumannii is of particular concern. The sharp increase in cases of MDR A. baumannii infections in recent years prompted the CDC (https://www.cdc.gov/drugresistance/biggest_threats.html) and WHO (http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/) to list this pathogen as a "serious threat" and "critical pathogen," respectively. Here we report a new antibiotic, paenimucillin C, active against Gram-negative bacterial pathogens, including many clinical isolates of MDR A. baumannii strains. Mechanistic studies point to membrane disruption leading to leakage of intracellular contents as its antibacterial mode of action. Paenimucillin C sterilizes MDR A. baumannii infections in a rat cutaneous wound model with no sign of rebound infection, providing a potential new therapeutic regimen.
Collapse
|
43
|
Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1404-1413. [PMID: 27956138 PMCID: PMC6162059 DOI: 10.1016/j.bbalip.2016.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Lysophospholipids (LPLs) are metabolic intermediates in bacterial phospholipid turnover. Distinct from their diacyl counterparts, these inverted cone-shaped molecules share physical characteristics of detergents, enabling modification of local membrane properties such as curvature. The functions of LPLs as cellular growth factors or potent lipid mediators have been extensively demonstrated in eukaryotic cells but are still undefined in bacteria. In the envelope of Gram-negative bacteria, LPLs are derived from multiple endogenous and exogenous sources. Although several flippases that move non-glycerophospholipids across the bacterial inner membrane were characterized, lysophospholipid transporter LplT appears to be the first example of a bacterial protein capable of facilitating rapid retrograde translocation of lyso forms of glycerophospholipids across the cytoplasmic membrane in Gram-negative bacteria. LplT transports lyso forms of the three bacterial membrane phospholipids with comparable efficiency, but excludes other lysolipid species. Once a LPL is flipped by LplT to the cytoplasmic side of the inner membrane, its diacyl form is effectively regenerated by the action of a peripheral enzyme, acyl-ACP synthetase/LPL acyltransferase (Aas). LplT-Aas also mediates a novel cardiolipin remodeling by converting its two lyso derivatives, diacyl or deacylated cardiolipin, to a triacyl form. This coupled remodeling system provides a unique bacterial membrane phospholipid repair mechanism. Strict selectivity of LplT for lyso lipids allows this system to fulfill efficient lipid repair in an environment containing mostly diacyl phospholipids. A rocker-switch model engaged by a pair of symmetric ion-locks may facilitate alternating substrate access to drive LPL flipping into bacterial cells. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Lei Zheng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | - Yibin Lin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Shuo Lu
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jiazhe Zhang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
44
|
Casasanta MA, Yoo CC, Smith HB, Duncan AJ, Cochrane K, Varano AC, Allen-Vercoe E, Slade DJ. A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J Biol Chem 2017; 292:20240-20254. [PMID: 29021252 PMCID: PMC5724010 DOI: 10.1074/jbc.m117.819144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fusobacterium nucleatum is an oral pathogen that is linked to multiple human infections and colorectal cancer. Strikingly, F. nucleatum achieves virulence in the absence of large, multiprotein secretion systems (Types I, II, III, IV, and VI), which are widely used by Gram-negative bacteria for pathogenesis. By contrast, F. nucleatum strains contain genomic expansions of Type V secreted effectors (autotransporters) that are critical for host cell adherence, invasion, and biofilm formation. Here, we present the first characterization of an F. nucleatum Type Vd phospholipase class A1 autotransporter (strain ATCC 25586, gene FN1704) that we hereby rename Fusobacterium phospholipase autotransporter (FplA). Biochemical analysis of multiple Fusobacterium strains revealed that FplA is expressed as a full-length 85-kDa outer membrane–embedded protein or as a truncated phospholipase domain that remains associated with the outer membrane. Whereas the role of Type Vd secretion in bacteria remains unidentified, we show that FplA binds with high affinity to host phosphoinositide-signaling lipids, revealing a potential role for this enzyme in establishing an F. nucleatum intracellular niche. To further analyze the role of FplA, we developed an fplA gene knock-out strain, which will guide future in vivo studies to determine its potential role in F. nucleatum pathogenesis. In summary, using recombinant FplA constructs, we have identified a biochemical toolbox that includes lipid substrates for enzymatic assays, potent inhibitors, and chemical probes to detect, track, and characterize the role of Type Vd secreted phospholipases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Michael A Casasanta
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Christopher C Yoo
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hans B Smith
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alison J Duncan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kyla Cochrane
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, Simon Fraser University, Vancouver, British Columbia V5A 1S6, Canada
| | - Ann C Varano
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.
| |
Collapse
|
45
|
Optimization of Phospholipase A1 (PLA1) Production from a Soil Isolate Bacillus subtilis subsp. inaquosorum RG1 via Solid State Fermentation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Vollan HS, Tannæs T, Caugant DA, Vriend G, Bukholm G. Outer membrane phospholipase A's roles in Helicobacter pylori acid adaptation. Gut Pathog 2017; 9:36. [PMID: 28616083 PMCID: PMC5469174 DOI: 10.1186/s13099-017-0184-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023] Open
Abstract
Background The pH of the human gastric mucosa varies around 2.5 so that only bacteria with strong acidic stress tolerance can colonize it. The ulcer causing Helicobacter pylori thrives in the gastric mucosa. We analyse the roles of the key outer membrane protein OMPLA in its roles in acid tolerance. Results The homology model of Helicobacter pylori outer membrane phospholipase A (OMPLA) reveals a twelve stranded β-barrel with a pore that allows molecules to pass with a diameter up to 4 Å. Structure based multiple sequence alignments revealed the functional roles of many amino acids, and led to the suggestion that OMPLA has multiple functions. Besides its role as phospholipase it lets urea enter and ammonium exit the periplasm. Combined with an extensive literature study, our work leads to a comprehensive model for H. pylori’s acid tolerance. This model is based on the conversion of urea into ammonium, and it includes multiple roles for OMPLA and involves two hitherto little studied membrane channels in the OMPLA operon. Conclusion The three-dimensional model of OMPLA predicts a transmembrane pore that can aid H. pylori’s acid tolerance through urea influx and ammonium efflux. After urea passes through OMPLA into the periplasm, it passes through the pH-gated inner membrane channel UreI into the cytoplasm where urease hydrolyses it into NH3 and CO2. Most of the NH3 becomes NH4+ that is likely to need an inner membrane channel to reach the periplasm. Two genes that are co-regulated with OMPLA in gastric Helicobacter operons could aid this transport. The NH4+ that might leave the cell through the OMPLA pore has been implicated in H. pylor’s pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0184-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hilde S Vollan
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, PO box 28, 1478 Lørenskog, Norway.,Norwegian Institute of Public Health, Box 4404, Nydalen, 0403 Oslo, Norway
| | - Tone Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, PO box 28, 1478 Lørenskog, Norway
| | - Dominique A Caugant
- Norwegian Institute of Public Health, Box 4404, Nydalen, 0403 Oslo, Norway.,Department of Community Medicine and Global Health, Faculty of Medicine, University of Oslo, P.O. Box 1130, Blindern, 0318 Oslo, Norway
| | - Gert Vriend
- CMBI, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Geir Bukholm
- Norwegian Institute of Public Health, Box 4404, Nydalen, 0403 Oslo, Norway.,Norwegian University of Life Sciences, PO Box 5003, 1430 Ås, Norway
| |
Collapse
|
47
|
Zhu H, Liu P, Du J, Wang J, Jing Y, Zhang J, Gu W, Wang W, Meng Q. Identification of lysophospholipase protein from Spiroplasma eriocheiris and verification of its function. Microbiology (Reading) 2017; 163:175-184. [DOI: 10.1099/mic.0.000407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Huanxi Zhu
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Peng Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jie Du
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jian Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Yunting Jing
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Jia Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wei Gu
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| |
Collapse
|
48
|
Sweeney EL, Dando SJ, Kallapur SG, Knox CL. The Human Ureaplasma Species as Causative Agents of Chorioamnionitis. Clin Microbiol Rev 2017; 30:349-379. [PMID: 27974410 PMCID: PMC5217797 DOI: 10.1128/cmr.00091-16] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human Ureaplasma species are the most frequently isolated microorganisms from the amniotic fluid and placentae of women who deliver preterm and are also associated with spontaneous abortions or miscarriages, neonatal respiratory diseases, and chorioamnionitis. Despite the fact that these microorganisms have been habitually found within placentae of pregnancies with chorioamnionitis, the role of Ureaplasma species as a causative agent has not been satisfactorily explained. There is also controversy surrounding their role in disease, particularly as not all women infected with Ureaplasma spp. develop chorioamnionitis. In this review, we provide evidence that Ureaplasma spp. are associated with diseases of pregnancy and discuss recent findings which demonstrate that Ureaplasma spp. are associated with chorioamnionitis, regardless of gestational age at the time of delivery. Here, we also discuss the proposed major virulence factors of Ureaplasma spp., with a focus on the multiple-banded antigen (MBA), which may facilitate modulation/alteration of the host immune response and potentially explain why only subpopulations of infected women experience adverse pregnancy outcomes. The information presented within this review confirms that Ureaplasma spp. are not simply "innocent bystanders" in disease and highlights that these microorganisms are an often underestimated pathogen of pregnancy.
Collapse
Affiliation(s)
- Emma L Sweeney
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Samantha J Dando
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Suhas G Kallapur
- Division of Neonatology, the Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christine L Knox
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Bent ZW, Poorey K, LaBauve AE, Hamblin R, Williams KP, Meagher RJ. A Rapid Spin Column-Based Method to Enrich Pathogen Transcripts from Eukaryotic Host Cells Prior to Sequencing. PLoS One 2016; 11:e0168788. [PMID: 28002481 PMCID: PMC5176299 DOI: 10.1371/journal.pone.0168788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023] Open
Abstract
When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich for pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000–3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.
Collapse
Affiliation(s)
- Zachary W. Bent
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| | - Kunal Poorey
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Annette E. LaBauve
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Hamblin
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Kelly P. Williams
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Robert J. Meagher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| |
Collapse
|
50
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|