1
|
Huang Y, Zhao Z, Yi G, Zhang M. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays. J Mater Chem B 2024; 12:4063-4079. [PMID: 38572575 DOI: 10.1039/d3tb02947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA methylation is the process by which specific bases on a DNA sequence acquire methyl groups under the catalytic action of DNA methyltransferases (DNMT). Abnormal changes in the function of DNMT are important markers for cancers and other diseases; therefore, the detection of DNMT and the selection of its inhibitors are critical to biomedical research and clinical practice. DNA molecules can undergo intermolecular assembly to produce functional aggregates because of their inherently stable physical and chemical properties and unique structures. Conventional DNMT detection methods are cumbersome and complicated processes; therefore, it is necessary to develop biosensing technology based on the assembly of DNA nanostructures to achieve rapid analysis, simple operation, and high sensitivity. The design of the relevant program has been employed in life science, anticancer drug screening, and clinical diagnostics. In this review, we explore how DNA assembly, including 2D techniques like hybridization chain reaction (HCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA), and exponential isothermal amplified strand displacement reaction (EXPAR), as well as 3D structures such as DNA tetrahedra, G-quadruplexes, DNA hydrogels, and DNA origami, enhances DNMT detection. We highlight the benefits of these DNA nanostructure-based biosensing technologies for clinical use and critically examine the challenges of standardizing these methods. We aim to provide reference values for the application of these techniques in DNMT analysis and early cancer diagnosis and treatment, and to alert researchers to challenges in clinical application.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| | - Zixin Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital, Chongqing 400050, China.
| |
Collapse
|
2
|
Non-growth inhibitory doses of dimethyl sulfoxide alter gene expression and epigenetic pattern of bacteria. Appl Microbiol Biotechnol 2022; 107:299-312. [DOI: 10.1007/s00253-022-12296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
|
3
|
Carvalho A, Mazel D, Baharoglu Z. Deficiency in cytosine DNA methylation leads to high chaperonin expression and tolerance to aminoglycosides in Vibrio cholerae. PLoS Genet 2021; 17:e1009748. [PMID: 34669693 PMCID: PMC8559950 DOI: 10.1371/journal.pgen.1009748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance has become a major global issue. Understanding the molecular mechanisms underlying microbial adaptation to antibiotics is of keen importance to fight Antimicrobial Resistance (AMR). Aminoglycosides are a class of antibiotics that target the small subunit of the bacterial ribosome, disrupting translational fidelity and increasing the levels of misfolded proteins in the cell. In this work, we investigated the role of VchM, a DNA methyltransferase, in the response of the human pathogen Vibrio cholerae to aminoglycosides. VchM is a V. cholerae specific orphan m5C DNA methyltransferase that generates cytosine methylation at 5'-RCCGGY-3' motifs. We show that deletion of vchM, although causing a growth defect in absence of stress, allows V. cholerae cells to cope with aminoglycoside stress at both sub-lethal and lethal concentrations of these antibiotics. Through transcriptomic and genetic approaches, we show that groESL-2 (a specific set of chaperonin-encoding genes located on the second chromosome of V. cholerae), are upregulated in cells lacking vchM and are needed for the tolerance of vchM mutant to lethal aminoglycoside treatment, likely by fighting aminoglycoside-induced misfolded proteins. Interestingly, preventing VchM methylation of the four RCCGGY sites located in groESL-2 region, leads to a higher expression of these genes in WT cells, showing that the expression of these chaperonins is modulated in V. cholerae by DNA methylation.
Collapse
Affiliation(s)
- André Carvalho
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Didier Mazel
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Département Génomes et Génétique, Institut Pasteur, UMR3525, CNRS, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
4
|
Antibiotic Resistance and Epigenetics: More to It than Meets the Eye. Antimicrob Agents Chemother 2020; 64:AAC.02225-19. [PMID: 31740560 DOI: 10.1128/aac.02225-19] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of antibiotics in the last century is considered one of the most important achievements in the history of medicine. Antibiotic usage has significantly reduced morbidity and mortality associated with bacterial infections. However, inappropriate use of antibiotics has led to emergence of antibiotic resistance at an alarming rate. Antibiotic resistance is regarded as a major health care challenge of this century. Despite extensive research, well-documented biochemical mechanisms and genetic changes fail to fully explain mechanisms underlying antibiotic resistance. Several recent reports suggest a key role for epigenetics in the development of antibiotic resistance in bacteria. The intrinsic heterogeneity as well as transient nature of epigenetic inheritance provides a plausible backdrop for high-paced emergence of drug resistance in bacteria. The methylation of adenines and cytosines can influence mutation rates in bacterial genomes, thus modulating antibiotic susceptibility. In this review, we discuss a plethora of recently discovered epigenetic mechanisms and their emerging roles in antibiotic resistance. We also highlight specific epigenetic mechanisms that merit further investigation for their role in antibiotic resistance.
Collapse
|
5
|
Blum P, Payne S. Evidence of an Epigenetics System in Archaea. Epigenet Insights 2019; 12:2516865719865280. [PMID: 31384725 PMCID: PMC6664620 DOI: 10.1177/2516865719865280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Changes in the phenotype of a cell or organism that are heritable but do not
involve changes in DNA sequence are referred to as epigenetic. They occur
primarily through the gain or loss of chemical modification of chromatin protein
or DNA. Epigenetics is therefore a non-Mendelian process. The study of
epigenetics in eukaryotes is expanding with advances in knowledge about the
relationship between mechanism and phenotype and as a requirement for
multicellularity and cancer. However, life also includes other groups or
domains, notably the bacteria and archaea. The occurrence of epigenetics in
these deep lineages is an emerging topic accompanied by controversy. In these
non-eukaryotic organisms, epigenetics is critically important because it
stimulates new evolutionary theory and refines perspective about biological
action.
Collapse
Affiliation(s)
- Paul Blum
- School of Biological Science, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Microbiology and Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sophie Payne
- School of Biological Science, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Microbiology and Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
6
|
Wang R, Lou J, Li J. A mobile restriction modification system consisting of methylases on the IncA/C plasmid. Mob DNA 2019; 10:26. [PMID: 31182978 PMCID: PMC6555945 DOI: 10.1186/s13100-019-0168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND IncA/C plasmids play important roles in the development and dissemination of multidrug resistance in bacteria. These plasmids carry three methylase genes, two of which show cytosine specificity. The effects of such a plasmid on the host methylome were observed by single-molecule, real-time (SMRT) and bisulfite sequencing in this work. RESULTS The results showed that the numbers of methylation sites on the host chromosomes were changed, as were the sequences recognized by MTase. The host chromosomes were completely remodified by the plasmid with a methylation pattern different from that of the host itself. When the three dcm genes were deleted, the transferability of the plasmid into other Vibrio cholerae and Escherichia coli strains was lost. During deletion of the dcm genes, except for the wild-type strains and the targeted deletion strains, 18.7%~ 38.5% of the clones lost the IncA/C plasmid and changed from erythromycin-, azithromycin- and tetracycline-resistant strains to strains that were sensitive to these antibiotics. CONCLUSIONS Methylation of the IncA/C plasmid was a new mobile restriction modification (RM) barrier against foreign DNA. By actively changing the host's methylation pattern, the plasmid crossed the barrier of the host's RM system, and this might be the simplest and most universal method by which plasmids acquire a broad host range. Elimination of plasmids by destruction of plasmid stability could be a new effective strategy to address bacterial multidrug resistance.
Collapse
Affiliation(s)
- Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| | - Jing Lou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| |
Collapse
|
7
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles. mBio 2017; 8:mBio.02312-16. [PMID: 28223461 PMCID: PMC5358918 DOI: 10.1128/mbio.02312-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N6-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa. Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats. With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.
Collapse
|
9
|
Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri. Mol Biol Evol 2016; 34:93-109. [PMID: 27744412 PMCID: PMC5854121 DOI: 10.1093/molbev/msw224] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10-3/genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift.
Collapse
Affiliation(s)
- Marcus M Dillon
- Microbiology Graduate Program, University of New Hampshire, Durham, NH
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, Charlotte, NC.,Department of Biology, Indiana University, Bloomington, IN
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
| | - Vaughn S Cooper
- Microbiology Graduate Program, University of New Hampshire, Durham, NH .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
10
|
Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016; 40:575-91. [PMID: 27476077 DOI: 10.1093/femsre/fuw023] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM. Dam methyltransferase in Escherichia coli is important for expression of certain genes such as the pap operon, as well as other cellular processes like DNA replication initiation and DNA repair. In Caulobacter crescentus and other Alphaproteobacteria, the methyltransferase CcrM is cell cycle regulated and is involved in the cell-cycle-dependent regulation of several genes. The diversity of regulatory targets as well as regulatory mechanisms suggests that gene regulation by methylation could be a widespread and potent method of regulation in bacteria.
Collapse
Affiliation(s)
- Satish Adhikari
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
11
|
Chao MC, Zhu S, Kimura S, Davis BM, Schadt EE, Fang G, Waldor MK. A Cytosine Methyltransferase Modulates the Cell Envelope Stress Response in the Cholera Pathogen [corrected]. PLoS Genet 2015; 11:e1005666. [PMID: 26588462 PMCID: PMC4654547 DOI: 10.1371/journal.pgen.1005666] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential σE cell envelope stress pathway is dispensable in ∆vchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes.
Collapse
Affiliation(s)
- Michael C. Chao
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shijia Zhu
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multi-scale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Satoshi Kimura
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric E. Schadt
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multi-scale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (GF); (MKW)
| | - Matthew K. Waldor
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GF); (MKW)
| |
Collapse
|
12
|
Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014; 42:10618-31. [PMID: 25120263 PMCID: PMC4176335 DOI: 10.1093/nar/gku734] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/21/2023] Open
Abstract
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
13
|
Baharoglu Z, Mazel D. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli. Res Microbiol 2014; 165:476-80. [PMID: 24946128 DOI: 10.1016/j.resmic.2014.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, 25 rue du docteur Roux, 75015 Paris, France; CNRS, UMR3525, Paris, France.
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, 25 rue du docteur Roux, 75015 Paris, France; CNRS, UMR3525, Paris, France
| |
Collapse
|
14
|
Militello KT, Mandarano AH, Varechtchouk O, Simon RD. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol Lett 2013; 350:100-6. [PMID: 24164619 DOI: 10.1111/1574-6968.12299] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/09/2013] [Accepted: 10/09/2013] [Indexed: 11/28/2022] Open
Abstract
Escherichia coli K-12 strains contain the orphan cytosine-5 DNA methyltransferase enzyme Dcm (DNA cytosine methyltransferase). Two recent reports indicate that Dcm has an influence on stationary phase gene expression in E. coli. Herein, we demonstrate that dcm knockout cells overexpress the drug resistance transporter SugE, which has been linked to ethidium bromide (ETBR) resistance. SugE expression also increased in the presence of the DNA methylation inhibitor 5-azacytidine, suggesting that Dcm-mediated DNA methylation normally represses sugE expression. The effect of Dcm on sugE expression is primarily restricted to early stationary phase, and RpoS is required for robust sugE expression. Dcm knockout cells are more resistant to ETBR than wild-type cells, and complementation with a plasmid-borne dcm gene restores ETBR sensitivity. SugE knockout cells are more sensitive to ETBR than wild-type cells. These data indicate that Dcm influences the sensitivity to an antimicrobial compound through changes in gene expression.
Collapse
Affiliation(s)
- Kevin T Militello
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The activities of DNA methyltransferases are important for a variety of cellular functions in bacteria. In this study, we developed a modified high-throughput technique called methyl homopolymer tail mediated sequencing (methyl HTM-seq) to identify the undermethylated sites in the Vibrio cholerae genome for the two DNA methyltransferases, Dam, an adenine methyltransferase, and VchM, a cytosine methyltransferase, during growth in rich medium in vitro. Many of the undermethylated sites occurred in intergenic regions, and for most of these sites, we identified the transcription factors responsible for undermethylation. This confirmed the presence of previously hypothesized DNA-protein interactions for these transcription factors and provided insight into the biological state of these cells during growth in vitro. DNA adenine methylation has previously been shown to mediate heritable epigenetic switches in gene regulation. However, none of the undermethylated Dam sites tested showed evidence of regulation by this mechanism. This study is the first to identify undermethylated adenines and cytosines genomewide in a bacterium using second-generation sequencing technology.
Collapse
|
16
|
Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM, Luscombe NM, Seshasayee ASN. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 2012; 3:886. [PMID: 22673913 DOI: 10.1038/ncomms1878] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023] Open
Abstract
DNA cytosine methylation regulates gene expression in mammals. In bacteria, its role in gene expression and genome architecture is less understood. Here we perform high-throughput sequencing of bisulfite-treated genomic DNA from Escherichia coli K12 to describe, for the first time, the extent of cytosine methylation of bacterial DNA at single-base resolution. Whereas most target sites (C(m)CWGG) are fully methylated in stationary phase cells, many sites with an extended CC(m)CWGG motif are only partially methylated in exponentially growing cells. We speculate that these partially methylated sites may be selected, as these are slightly correlated with the risk of spontaneous, non-synonymous conversion of methylated cytosines to thymines. Microarray analysis in a cytosine methylation-deficient mutant of E. coli shows increased expression of the stress response sigma factor RpoS and many of its targets in stationary phase. Thus, DNA cytosine methylation is a regulator of stationary phase gene expression in E. coli.
Collapse
|
17
|
Seshasayee ASN, Singh P, Krishna S. Context-dependent conservation of DNA methyltransferases in bacteria. Nucleic Acids Res 2012; 40:7066-73. [PMID: 22573173 PMCID: PMC3424554 DOI: 10.1093/nar/gks390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA methytransferases (MTs) in bacteria are best understood in the context of restriction–modification (R–M) systems, which act as bacterial immune systems against incoming DNA including phages, but have also been described as selfish elements. But several orphan MTs, which are not associated with any restriction enzyme, have also been characterized and may protect against parasitism by R–M systems. The occurrence of MTs in these two contexts, namely as part of R–M systems or as orphans, is poorly understood. Here we report the results of a comparative genomic survey of DNA MTs across ∼1000 bacterial genomes. We show that orphan MTs overwhelm R–M systems in their occurrence. In general, R–M MTs are poorly conserved, whereas orphans are nearly as conserved within a genus as any average gene. However, oligonucleotide usage and conservation patterns across genera suggest that both forms of MTs might have been horizontally acquired. We suggest that many orphan MTs might be ‘degradation’ products of R–M systems, based on the properties of orphan MTs encoded adjacent to highly diverged REs. In addition, several fully degraded R–M systems exist in which both the MT and the RE are highly divergent from their corresponding reference R–M pair. Despite their sporadic occurrence, conserved R–M systems are present in strength in two highly transformable genera, in which they may contribute to selection against integration of foreign DNA.
Collapse
Affiliation(s)
- Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India.
| | | | | |
Collapse
|
18
|
Militello KT, Simon RD, Qureshi M, Maines R, VanHorne ML, Hennick SM, Jayakar SK, Pounder S. Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli. FEMS Microbiol Lett 2012; 328:78-85. [PMID: 22150247 DOI: 10.1111/j.1574-6968.2011.02482.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/27/2022] Open
Abstract
In Escherichia coli, cytosine DNA methylation is catalyzed by the DNA cytosine methyltransferase (Dcm) protein and occurs at the second cytosine in the sequence 5'CCWGG3'. Although the presence of cytosine DNA methylation was reported over 35 years ago, the biological role of 5-methylcytosine in E. coli remains unclear. To gain insight into the role of cytosine DNA methylation in E. coli, we (1) screened the 72 strains of the ECOR collection and 90 recently isolated environmental samples for the presence of the full-length dcm gene using the polymerase chain reaction; (2) examined the same strains for the presence of 5-methylcytosine at 5'CCWGG3' sites using a restriction enzyme isoschizomer digestion assay; and (3) quantified the levels of 5-methyl-2'-deoxycytidine in selected strains using liquid chromatography tandem mass spectrometry. Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines. We also demonstrate that Dcm reduces the expression of ribosomal protein genes during stationary phase, and this may explain the highly conserved nature of this DNA modification pathway.
Collapse
|
19
|
Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon YS, Kim DW, Lee JH, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Munk AC, Chertkov O, Meincke L, Saunders E, Walters RA, Huq A, Nair GB, Colwell RR. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 2009; 106:15442-7. [PMID: 19720995 PMCID: PMC2741270 DOI: 10.1073/pnas.0907787106] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Indexed: 12/23/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the sixth and the current seventh pandemics, respectively. Cholera researchers continually face newly emerging and reemerging pathogenic clones carrying diverse combinations of phenotypic and genotypic properties, which significantly hampered control of the disease. To elucidate evolutionary mechanisms governing genetic diversity of pandemic V. cholerae, we compared the genome sequences of 23 V. cholerae strains isolated from a variety of sources over the past 98 years. The genome-based phylogeny revealed 12 distinct V. cholerae lineages, of which one comprises both O1 classical and El Tor biotypes. All seventh pandemic clones share nearly identical gene content. Using analogy to influenza virology, we define the transition from sixth to seventh pandemic strains as a "shift" between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages. In contrast, transition among clones during the present pandemic period is characterized as a "drift" between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V. cholerae O139 and V. cholerae O1 El Tor hybrid clones. Based on the comparative genomics it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.
Collapse
Affiliation(s)
- Jongsik Chun
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
- Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, and
- International Vaccine Institute, Seoul 151-818, Republic of Korea
| | - Christopher J. Grim
- Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, and
| | - Nur A. Hasan
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka-1000, Bangladesh
| | - Je Hee Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
- International Vaccine Institute, Seoul 151-818, Republic of Korea
| | - Seon Young Choi
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
- International Vaccine Institute, Seoul 151-818, Republic of Korea
| | - Bradd J. Haley
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Elisa Taviani
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Yoon-Seong Jeon
- International Vaccine Institute, Seoul 151-818, Republic of Korea
| | - Dong Wook Kim
- International Vaccine Institute, Seoul 151-818, Republic of Korea
| | - Jae-Hak Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Thomas S. Brettin
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - David C. Bruce
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Jean F. Challacombe
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - J. Chris Detter
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Cliff S. Han
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - A. Christine Munk
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Olga Chertkov
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Linda Meincke
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Elizabeth Saunders
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - G. Balakrish Nair
- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata 700 010, India; and
| | - Rita R. Colwell
- Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, and
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
20
|
Morita R, Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of a putative DNA methylase TTHA0409 from Thermus thermophilus HB8. Proteins 2008; 73:259-64. [DOI: 10.1002/prot.22158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|