1
|
Kim S, Park J, Han YK, Son H. FgVAC1 is an Essential Gene Required for Golgi-to-Vacuole Transport and Fungal Development in Fusarium graminearum. J Microbiol 2024; 62:649-660. [PMID: 39080148 PMCID: PMC11379736 DOI: 10.1007/s12275-024-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 09/07/2024]
Abstract
Fusarium graminearum is an important plant pathogen that causes head blight in cereal crops such as wheat, barley, and rice worldwide. In this study, we identified and functionally characterized FgVAC1, an essential gene in F. graminearum that encodes a Rab5 effector involved in membrane tethering functions. The essentiality of FgVAC1 was confirmed through a conditional promoter replacement strategy using the zearalenone-inducible promoter (PZEAR). Cytological analyses revealed that FgVac1 colocalizes with FgRab51 on early endosomes and regulates the proper transport of the vacuolar hydrolase FgCpy1 to the vacuole. Suppression of FgVAC1 led to inhibited vegetative growth, reduced asexual and sexual reproduction, decreased deoxynivalenol (DON) biosynthesis, and diminished pathogenicity. Our findings highlight the significant role of FgVac1 in vacuolar protein sorting, fungal development, and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Sieun Kim
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jiyeun Park
- Institute for Plant Sciences, University of Cologne, 50923, Cologne, Germany
| | - You-Kyoung Han
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Yuan C, Wang Y, Zhang L, Wang D. Procatechuic acid and protocatechuic aldehyde increase survival of Caenorhabditis elegans after fungal infection and inhibit fungal virulence. Front Pharmacol 2024; 15:1396733. [PMID: 38841375 PMCID: PMC11150623 DOI: 10.3389/fphar.2024.1396733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Protocatechuic acid (PCA) and protocatechuic aldehyde (PAL) are important phenolic compounds in plants. We here investigated their possible beneficial effect against fungal infection and the underlying mechanism. The model animal of Caenorhabditis elegans was used as host, and Candida albicans was used as fungal pathogen. The nematodes were first infected with C. albicans, and the PCA and PAL treatment were then performed. Post-treatment with 10-100 μM PCA and PAL suppressed toxicity of C. albicans infection in reducing lifespan. Accompanied with this beneficial effect, treatment with 10-100 μM PCA and PAL inhibited C. albicans accumulation in intestinal lumen. In addition, treatment with 10-100 μM PCA and PAL suppressed the increase in expressions of antimicrobial genes caused by C. albicans infection. The beneficial effect of PCA and PAL against C. albicans infection depended on p38 MAPK and insulin signals. Moreover, although treatment with 10-100 μM PCA and PAL could not exhibit noticeable antifungal activity, PCA and PAL treatment obviously suppressed biofilm formation, inhibited hyphal growth, and reduced expressions of virulence genes (ALS3, CaVps34, Vma7, Vac1, and/or HWP1) related to biofilm formation and hyphal growth in C. albicans. Therefore, our data demonstrated the potential of PCA and PAL post-treatment against fungal infection and fungal virulence.
Collapse
Affiliation(s)
- Chunyan Yuan
- Department of Gynaecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuxing Wang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| | - Le Zhang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| | - Dayong Wang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Zhu X, Wang Y, Shen C, Zhang S, Wang W. The participation of vacuoles and the regulation of various metabolic pathways under acid stress promote the differentiation of chlamydospore in Trichoderma harzianum T4. J Appl Microbiol 2023; 134:lxad203. [PMID: 37669895 DOI: 10.1093/jambio/lxad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
AIMS Chlamydospores are a special, differentiated type with high environmental resistance. Consequently, the chlamydospores of Trichoderma harzianum T4 can used to industrialize the latter. This study aimed to investigate the key factors affecting the sporulation type of T. harzianum T4 and the mechanisms underlying this effect. METHODS AND RESULTS In the liquid fermentation of T. harzianum T4, ammonium sulfate (AS) inhibited conidia formation and chlamydospore production. Fermentation tests revealed that acid stress induced sporulation type alteration. Transcriptomic analysis was used to evaluate the adaptation strategy and mechanism underlying spore type alteration under acid stress. The fermentation experiments involving the addition of amino acids revealed that branched-chain amino acids benefited conidia production, whereas β-alanine benefited chlamydospore production. Confocal microscope fluorescence imaging and chloroquine intervention demonstrated that vacuole function was closely related to chlamydospore production. CONCLUSION The sporulation type of T. harzianum T4 can be controlled by adjusting the fermentation pH. T. harzianum T4 cells employ various self-protection measures against strong acid stress, including regulating their metabolism to produce a large number of chlamydospores for survival.
Collapse
Affiliation(s)
- Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
5
|
Li J, Pei J, Liu Y, Xia W, Cheng F, Tian W, Lin Z, Zhu J, Wang A. Transcriptome sequencing of Verticillium dahliae from a cotton farm reveals positive correlation between virulence and tolerance of sugar-induced hyperosmosis. PeerJ 2019; 7:e8035. [PMID: 31737452 PMCID: PMC6855202 DOI: 10.7717/peerj.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Verticillium dahliae causes disease symptoms in its host plants; however, due to its rapid variability, V. dahliae is difficult to control. To analyze the reason for this pathogenic differentiation, 22 V. dahliae strains with different virulence were isolated from a cotton farm. The genetic diversity of cotton varieties make cotton cultivars have different Verticillium wilt resistance, so the Xinluzao 7 (susceptible to V. dahliae), Zhongmian 35 (tolerant), and Xinluzao 33 (resistant) were used to investigate the pathogenicity of the strains in a green house. Vegetative compatibility groups (VCGs) assays, Internal Transcribed Spacer (ITS) PCR, and pathogenicity analysis showed that SHZ-4, SHZ-5, and SHZ-9 had close kinship and significantly different pathogenicity. Transcriptome sequencing of the three strains identified 19 of 146 unigenes in SHZ-4_vs_ SHZ-5, SHZ-5_vs_ SHZ-9, and SHZ-4_vs_ SHZ-9. In these unigenes, three proteinase and four polysaccharide degrading hydrolases were found to be associated with the pathogenicity. However, due to a number of differentially expressed genes in the transport, these unigenes not only played a role in nutrition absorption but might also contribute to the resistance of sugar-induced hyperosmosis. Moreover, the tolerance ability was positively related to the pathogenicity of V. dahliae. This resistance to sugar-induced hyperosmosis might help V. dahliae to access the nutrition of the host. The pathogenicity of V. dahliae correlated with the resistance of sugar-induced-hyperosmosis, which provides clues for the cultivation of V. dahliae resistant varieties.
Collapse
Affiliation(s)
- Jin Li
- College of Life Science, Shihezi University, Shihezi, China
| | - Juan Pei
- College of Life Science, Shihezi University, Shihezi, China
| | - Yuanyuan Liu
- College of Life Science, Shihezi University, Shihezi, China
| | - Wenwen Xia
- College of Life Science, Shihezi University, Shihezi, China
| | - Fengfeng Cheng
- College of Life Science, Shihezi University, Shihezi, China
| | - Wenhui Tian
- College of Life Science, Shihezi University, Shihezi, China
| | - Zhongping Lin
- College of Life Sciences, Peking University, Beijing, China
| | - Jianbo Zhu
- College of Life Science, Shihezi University, Shihezi, China
| | - Aiying Wang
- College of Life Science, Shihezi University, Shihezi, China
| |
Collapse
|
6
|
Douglas LM, Konopka JB. Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genet 2019; 15:e1007911. [PMID: 30633741 PMCID: PMC6345494 DOI: 10.1371/journal.pgen.1007911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/24/2019] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to resist copper toxicity is important for microbial pathogens to survive attack by innate immune cells. A sur7Δ mutant of the fungal pathogen Candida albicans exhibits decreased virulence that correlates with increased sensitivity to copper, as well as defects in other stress responses and morphogenesis. Previous studies indicated that copper kills sur7Δ cells by a mechanism distinct from the known resistance pathways involving the Crp1 copper exporter or the Cup1 metallothionein. Since Sur7 resides in punctate plasma membrane domains known as MCC/eisosomes, we examined overexpression of SUR7 and found that it rescued the copper sensitivity of a mutant that fails to form MCC/eisosomes (pil1Δ lsp1Δ), indicating that these domains act to facilitate Sur7 function. Genetic screening identified new copper-sensitive mutants, the strongest of which were similar to sur7Δ in having altered plasma membranes due to defects in membrane trafficking, cortical actin, and morphogenesis (rvs161Δ, rvs167Δ, and arp2Δ arp3Δ). Consistent with the mutants having altered plasma membrane organization, they were all more readily permeabilized by copper, which is known to bind phosphatidylserine and phosphatidylethanolamine and cause membrane damage. Although these phospholipids are normally localized to the intracellular leaflet of the plasma membrane, their exposure on the surface of the copper-sensitive mutants was indicated by increased susceptibility to membrane damaging agents that bind to these phospholipids. Increased copper sensitivity was also detected for a drs2Δ mutant, which lacks a phospholipid flippase that is involved in maintaining phospholipid asymmetry. Copper binds phosphatidylserine with very high affinity, and deleting CHO1 to prevent phosphatidylserine synthesis rescued the copper sensitivity of sur7Δ cells, confirming a major role for phosphatidylserine in copper sensitivity. These results highlight how proper plasma membrane architecture protects fungal pathogens from copper and attack by the immune system, thereby opening up new avenues for therapeutic intervention. The transition metal copper is used by the innate immune system to attack microbial pathogens. To better understand how the human fungal pathogen Candida albicans resists this type of stress, we screened for mutants that were more susceptible to killing by copper. Interestingly, we identified a new class of copper-sensitive mutants whose plasma membranes are more readily permeabilized by copper. The common characteristic of these new copper-sensitive mutants is that they have an altered cell surface, which weakened their resistance to copper. These results help to explain the toxic effects of copper and suggest novel therapeutic strategies for fungal infections.
Collapse
Affiliation(s)
- Lois M. Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sun ZB, Zhang J, Sun MH, Li SD. Identification of genes related to chlamydospore formation in Clonostachys rosea 67-1. Microbiologyopen 2018; 8:e00624. [PMID: 29635882 PMCID: PMC6341034 DOI: 10.1002/mbo3.624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 01/15/2023] Open
Abstract
Chlamydospores are specific structures that are of great significance to the commercialization of fungal biopesticides. To explore the genes associated with chlamydospore formation, a biocontrol fungus Clonostachys rosea 67‐1 that is capable of producing resistant spores under particular conditions was investigated by transcriptome sequencing and analysis. A total of 549,661,174 clean reads were obtained, and a series of differentially expressed genes potentially involved in fungal chlamydospore formation were identified. At 36 hr, 67 and 117 genes were up‐ and downregulated in C. rosea during chlamydospore production, compared with the control for conidiation, and 53 and 24 genes were up‐ and downregulated at 72 hr. GO classification suggested that the differentially expressed genes were related to cellular component, biological process, and molecular function categories. A total of 188 metabolism pathways were linked to chlamydospore production by KEGG analysis. Sixteen differentially expressed genes were verified by reverse transcription quantitative PCR, and the expression profiles were consistent with the transcriptome data. To the best of our knowledge, it is the first report on the genes associated with chlamydospore formation in C. rosea. The results provide insight into the molecular mechanisms underlying C. rosea sporulation, which will assist the development of fungal biocontrol agents.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Richardson JP, Moyes DL, Ho J, Naglik JR. Candida innate immunity at the mucosa. Semin Cell Dev Biol 2018; 89:58-70. [PMID: 29501618 DOI: 10.1016/j.semcdb.2018.02.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.
Collapse
Affiliation(s)
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Jemima Ho
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| |
Collapse
|
9
|
Gazi MA, Kibria MG, Mahfuz M, Islam MR, Ghosh P, Afsar MNA, Khan MA, Ahmed T. Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: An in silico approach for prioritizing the targets. Gene 2016; 591:442-55. [PMID: 27374154 DOI: 10.1016/j.gene.2016.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 01/11/2023]
Abstract
The global control of tuberculosis (TB) remains a great challenge from the standpoint of diagnosis, detection of drug resistance, and treatment. Major serodiagnostic limitations include low sensitivity and high cost in detecting TB. On the other hand, treatment measures are often hindered by low efficacies of commonly used drugs and resistance developed by the bacteria. Hence, there is a need to look into newer diagnostic and therapeutic targets. The proteome information available suggests that among the 3906 proteins in Mycobacterium tuberculosis H37Rv, about quarter remain classified as hypothetical uncharacterized set. This study involves a combination of a number of bioinformatics tools to analyze those hypothetical proteins (HPs). An entire set of 999 proteins was primarily screened for protein sequences having conserved domains with high confidence using a combination of the latest versions of protein family databases. Subsequently, 98 of such potential target proteins were extensively analyzed by means of physicochemical characteristics, protein-protein interaction, sub-cellular localization, structural similarity and functional classification. Next, we predicted antigenic proteins from the entire set and identified B and T cell epitopes of these proteins in M. tuberculosis H37Rv. We predicted the function of these HPs belong to various classes of proteins such as enzymes, transporters, receptors, structural proteins, transcription regulators and other proteins. However, the structural similarity prediction of the annotated proteins substantiated the functional classification of those proteins. Consequently, based on higher antigenicity score and sub-cellular localization, we choose two (NP_216420.1, NP_216903.1) of the antigenic proteins to exemplify B and T cell epitope prediction approach. Finally we found 15 epitopes those located partially or fully in the linear epitope region. We found 21 conformational epitopes by using Ellipro server as well. In silico methodology used in this study and the data thus generated for HPs of M. tuberculosis H37Rv may facilitate swift experimental identification of potential serodiagnostic and therapeutic targets for treatment and control.
Collapse
Affiliation(s)
- Md Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Mohammad Golam Kibria
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Md Rezaul Islam
- International Max Planck Research School, Grisebachstraße 5, 37077 Göttingen, Germany.
| | - Prakash Ghosh
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Md Nure Alam Afsar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Md Arif Khan
- Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, 1/E/1, Poribag, Dhaka 1000, Bangladesh.
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| |
Collapse
|
10
|
Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS One 2015; 10:e0124177. [PMID: 25894582 PMCID: PMC4403809 DOI: 10.1371/journal.pone.0124177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/10/2015] [Indexed: 01/17/2023] Open
Abstract
Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.
Collapse
|
11
|
Watanabe T, Ito T, Goda HM, Ishibashi Y, Miyamoto T, Ikeda K, Taguchi R, Okino N, Ito M. Sterylglucoside catabolism in Cryptococcus neoformans with endoglycoceramidase-related protein 2 (EGCrP2), the first steryl-β-glucosidase identified in fungi. J Biol Chem 2014; 290:1005-19. [PMID: 25361768 DOI: 10.1074/jbc.m114.616300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368-381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl-β-glucosidase identified as well as a missing link in sterylglucoside metabolism in fungi.
Collapse
Affiliation(s)
- Takashi Watanabe
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomoharu Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hatsumi M Goda
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yohei Ishibashi
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomofumi Miyamoto
- the Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazutaka Ikeda
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan, and
| | - Ryo Taguchi
- the Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Nozomu Okino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan,
| |
Collapse
|
12
|
Novel mechanism coupling cyclic AMP-protein kinase A signaling and golgi trafficking via Gyp1 phosphorylation in polarized growth. EUKARYOTIC CELL 2014; 13:1548-56. [PMID: 25326521 DOI: 10.1128/ec.00231-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic AMP (cAMP)-protein kinase A (PKA) signaling activates virulence expression during hyphal development in the fungal human pathogen Candida albicans. The hyphal growth is characterized by Golgi polarization toward the hyphal tips, which is thought to enhance directional vesicle transport. However, how the hypha-induction signal regulates Golgi polarization is unknown. Gyp1, a Golgi-associated protein and the first GTPase-activating protein (GAP) in the Rab GAP cascade, critically regulates membrane trafficking from the endoplasmic reticulum to the plasma membrane. Here, we report a novel pathway by which the cAMP-PKA signaling triggers Golgi polarization during hyphal growth. We demonstrate that Gyp1 plays a crucial role in actin-dependent Golgi polarization. Hyphal induction activates PKA, which in turn phosphorylates Gyp1. Phosphomimetic mutation of four PKA sites identified by mass spectrometry (Gyp1(4E)) caused strong Gyp1 polarization to hyphal tips, whereas nonphosphorylatable mutations (Gyp1(4A)) abolished it. Gyp1(4E) exhibited enhanced association with the actin motor Myo2, while Gyp1(4A) showed the opposite effect, providing a possible mechanism for Golgi polarization. A GAP-dead Gyp1 (Gyp1(R292K)) showed strong polarization similar to that seen with Gyp1(4E), indicating a role for the GAP activity. Mutating the PKA sites on Gyp1 also impaired the recruitment of a late Golgi marker, Sec7. Furthermore, proper PKA phosphorylation and GAP activity of Gyp1 are required for virulence in mice. We propose that the cAMP-PKA signaling directly targets Gyp1 to promote Golgi polarization in the yeast-to-hypha transition, an event crucial for C. albicans infection.
Collapse
|
13
|
Olsen I. Attenuation of Candida albicans virulence with focus on disruption of its vacuole functions. J Oral Microbiol 2014; 6:23898. [PMID: 24765242 PMCID: PMC3974176 DOI: 10.3402/jom.v6.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/03/2014] [Accepted: 03/12/2014] [Indexed: 12/03/2022] Open
Abstract
The objective of the present review is to discuss if the yeast vacuole can be used as a target for attenuation of Candida albicans virulence. Literature searches were made electronically using predetermined inclusion criteria. The main searches were made through a systematic strategy in PubMed and authoritative journals in microbiology. It appeared that C. albicans virulence may be reduced by inhibiting vacuolar proton-translocating ATPase (V-ATPase) functions and acidification of the yeast vacuole by V-ATPase inhibitors, by seeking the synergistic effect of antifungals and non-antifungals affecting yeast vacuolar functions, and by inhibiting filament production – also regulated by the vacuole. Accordingly, we may impair C. albicans virulence by inhibiting functions of its vacuole, which plays essential roles during colonization and invasion of the host. Except for drugs where indications for clinical use can be redefined, such interventions may be closer to theory than to reality at the moment. But since the yeast is so difficult to eradicate by antifungal treatment, it could be rewarding to seek new strategies for reducing its virulence rather than trying to eradicate it completely from the microbiota, which often turns out to be impossible.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Role of retrograde trafficking in stress response, host cell interactions, and virulence of Candida albicans. EUKARYOTIC CELL 2013; 13:279-87. [PMID: 24363364 DOI: 10.1128/ec.00295-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence of Candida albicans. We found that C. albicans vps15Δ/Δ and vps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cells in vitro and attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of the vps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway members CHR11, UTR2, CRZ1, CNA1, and CNA2 were elevated in the vps15Δ/Δ and vps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion of CHR11 and UTR2 further increased the stress susceptibility of these mutants. In contrast, overexpression of CRH11 and UTR2 partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking in C. albicans is essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enables C. albicans to withstand environmental stress.
Collapse
|
15
|
Li D, Zhao Z, Huang Y, Lu Z, Yao M, Hao Y, Zhai C, Wang Y. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS One 2013; 8:e58623. [PMID: 23516518 PMCID: PMC3597732 DOI: 10.1371/journal.pone.0058623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.
Collapse
Affiliation(s)
- Delong Li
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhijian Zhao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidan Huang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Lu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meng Yao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Hao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chunhua Zhai
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, and Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Borth N, Walther A, Reijnst P, Jorde S, Schaub Y, Wendland J. Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5. Microbiology (Reading) 2010; 156:2962-2969. [DOI: 10.1099/mic.0.041707-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, a link between endocytosis and hyphal morphogenesis has been identified in Candida albicans via the Wiskott–Aldrich syndrome gene homologue WAL1. To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the C. albicans WASP-interacting protein (WIP) homologue encoded by VRP1. Deletion of both alleles of VRP1 results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant vrp1 cells show a delay in endocytosis – measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles – compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in vrp1 daughter cells. The morphology of the vrp1 null mutant could be complemented by reintegration of the wild-type VRP1 gene at the BUD3 locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1–Vrp1–Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in C. albicans.
Collapse
Affiliation(s)
- Nicole Borth
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Andrea Walther
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Patrick Reijnst
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Sigyn Jorde
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Yvonne Schaub
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
| | - Jürgen Wendland
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
17
|
Reijnst P, Walther A, Wendland J. Functional analysis of Candida albicans genes encoding SH3-domain-containing proteins. FEMS Yeast Res 2010; 10:452-61. [DOI: 10.1111/j.1567-1364.2010.00624.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
18
|
Abstract
Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents.
Collapse
Affiliation(s)
- Jeffrey J. Coleman
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Essary BD, Marshall PA. Assessment of FUN-1 vital dye staining: Yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J Microbiol Methods 2009; 78:208-12. [PMID: 19501122 DOI: 10.1016/j.mimet.2009.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 12/01/2022]
Abstract
FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide] is a fluorescent dye used in studies of yeast and other fungi to monitor cell viability in the research lab and to assay for active fungal infection in the clinical setting. When the plasma membrane is intact, fungal cells internalize FUN-1 and the dye is seen as diffuse green cytosolic fluorescence. FUN-1 is then transported to the vacuole in metabolically active wild type cells and subsequently is compacted into fluorescent red cylindrical intravacuolar structures (CIVS) by an unknown transport pathway. This dye is used to determine yeast viability, as only live cells form CIVS. However, in live Saccharomyces cerevisiae with impaired protein sorting to the yeast vacuole, we report decreased to no CIVS formation, depending on the cellular location of the block in the sorting pathway. Cells with a block in vesicle-mediated transport from the Golgi to prevacuolar compartment (PVC) or with a block in recycling from the PVC to the Golgi demonstrate a substantial impairment in CIVS formation. Instead, the FUN-1 dye is seen either in small punctate structures under fluorescence or as diffuse red cytosol under white light. Thus, researchers using FUN-1 should be cognizant of the limitations of this procedure in determining cell viability as there are viable yeast mutants with impaired CIVS formation.
Collapse
Affiliation(s)
- Brandin D Essary
- Division of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Phoenix, AZ 85069, United States
| | | |
Collapse
|
20
|
Johnston DA, Eberle KE, Sturtevant JE, Palmer GE. Role for endosomal and vacuolar GTPases in Candida albicans pathogenesis. Infect Immun 2009; 77:2343-55. [PMID: 19364843 PMCID: PMC2687335 DOI: 10.1128/iai.01458-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 12/24/2008] [Accepted: 03/26/2009] [Indexed: 01/30/2023] Open
Abstract
The vacuole has crucial roles in stress resistance and adaptation of the fungal cell. Furthermore, in Candida albicans it has been observed to undergo dramatic expansion during the initiation of hyphal growth, to produce highly "vacuolated" subapical compartments. We hypothesized that these functions may be crucial for survival within the host and tissue-invasive hyphal growth. We also considered the role of the late endosome or prevacuole compartment (PVC), a distinct organelle involved in vacuolar and endocytic trafficking. We identified two Rab GTPases, encoded by VPS21 and YPT72, required for trafficking through the PVC and vacuole biogenesis, respectively. Deletion of VPS21 or YPT72 led to mild sensitivities to some cellular stresses. However, deletion of both genes resulted in a synthetic phenotype with severe sensitivity to cellular stress and impaired growth. Both the vps21Delta and ypt72Delta mutants had defects in filamentous growth, while the double mutant was completely deficient in polarized growth. The defects in hyphal growth were not suppressed by an "active" RIM101 allele or loss of the hyphal repressor encoded by TUP1. In addition, both single mutants had significant attenuation in a mouse model of hematogenously disseminated candidiasis, while the double mutant was rapidly cleared. Histological examination confirmed that the vps21Delta and ypt72Delta mutants are deficient in hyphal growth in vivo. We suggest that the PVC and vacuole are required on two levels during C. albicans infection: (i) stress resistance functions required for survival within tissue and (ii) a role in filamentous growth which may aid host tissue invasion.
Collapse
Affiliation(s)
- Douglas A Johnston
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA 70119, USA
| | | | | | | |
Collapse
|
21
|
Veses V, Casanova M, Murgui A, Gow NAR, Martínez JP. Candida albicans ABG1 gene is involved in endocytosis. FEMS Yeast Res 2009; 9:293-300. [PMID: 19175413 DOI: 10.1111/j.1567-1364.2009.00480.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
The human fungal pathogen Candida albicans undergoes reversible morphogenetic transitions between yeast, hyphal and pseudohyphal forms. The fungal vacuole actively participates in differentiation processes and plays a key role supporting hyphal growth. The ABG1 gene of C. albicans encodes an essential protein located in the vacuolar membranes of both yeast and hyphae. Using fluorescence microscopy of a green fluorescent protein-tagged version of Abg1p, a fraction of the protein was detected in hyphal tips, not associated with vacuolar membranes. Live cell imaging of emerging germ tubes showed that Abg1p migrated to the polarized growth site and colocalized with endocytic vesicles. Phenotypic analysis of a methionine-regulated conditional mutant confirmed that Abg1p is involved in endocytosis.
Collapse
Affiliation(s)
- Verónica Veses
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
22
|
Veses V, Richards A, Gow NAR. Vacuole inheritance regulates cell size and branching frequency of Candida albicans hyphae. Mol Microbiol 2009; 71:505-19. [PMID: 19040629 PMCID: PMC2680324 DOI: 10.1111/j.1365-2958.2008.06545.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2008] [Indexed: 01/14/2023]
Abstract
Hyphal growth of Candida albicans is characterized by asymmetric cell divisions in which the subapical mother cell inherits most of the vacuolar space and becomes cell cycle arrested in G1, while the apical daughter cell acquires most of the cell cytoplasm and progresses through G1 into the next mitotic cell cycle. Consequently, branch formation in hyphal compartments is delayed until sufficient cytoplasm is synthesized to execute the G1 'START' function. To test the hypothesis that this mode of vacuole inheritance determines cell cycle progression and therefore the branching of hyphae, eight tetracycline-regulated conditional mutants were constructed that were affected at different stages of the vacuole inheritance pathway. Under repressing conditions, vac7, vac8 and fab1 mutants generated mycelial compartments with more symmetrically distributed vacuoles and increased branching frequencies. Repression of VAC1, VAM2 and VAM3 resulted in sparsely branched hyphae, with large vacuoles and enlarged hyphal compartments. Therefore, during hyphal growth of C. albicans the cell cycle, growth and branch formation can be uncoupled, resulting in the investment of cytoplasm to support hyphal extension at the expense of hyphal branching.
Collapse
Affiliation(s)
- Veronica Veses
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen AB25 2ZD, UK
| | - Andrea Richards
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen AB25 2ZD, UK
| | - Neil A R Gow
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of AberdeenAberdeen AB25 2ZD, UK
| |
Collapse
|
23
|
Veses V, Richards A, Gow NAR. Vacuoles and fungal biology. Curr Opin Microbiol 2008; 11:503-10. [PMID: 18935977 DOI: 10.1016/j.mib.2008.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Fungal vacuoles have long been recognised as versatile organelles, involved in many aspects of protein turnover, cellular homeostasis, membrane trafficking, signalling and nutrition. Recent research has also revealed an expanding repertoire of physiological functions for fungal vacuoles that are vital for fungal growth, differentiation, symbiosis and pathogenesis. Vacuole-mediated long-distance nutrient transporting systems have been shown to facilitate mycelial foraging and long-distance communication in saprophytes and mycorrhizal fungi. Some hyphae of plant and human fungal pathogens can grow under severely nutrient-limited conditions by expanding the vacuolar space rather than synthesising new cytoplasm and organelles. Autophagy has been recognised as a crucial process in plant pathogens for the initiation of appressorium formation. These studies demonstrate the importance of fungal vacuoles as organelles that are essential for many of the attributes that define the activities and roles of fungi in their natural environments.
Collapse
Affiliation(s)
- Veronica Veses
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | | | | |
Collapse
|
24
|
Candida albicans VPS4 is required for secretion of aspartyl proteases and in vivo virulence. Mycopathologia 2008; 167:55-63. [PMID: 18814053 DOI: 10.1007/s11046-008-9155-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/02/2008] [Indexed: 11/27/2022]
Abstract
Candida albicans secretes aspartyl proteases (Saps) during infection. Although Saps are secretory proteins, little is known about the intracellular trafficking and secretion of these proteins. We previously cloned and analyzed the C. albicans pre-vacuolar protein sorting gene VPS4, and demonstrated that extracellular Sap2p is absent in the culture supernatants of the vps4delta null mutant. We therefore investigated the role of the C. albicans pre-vacuolar secretion pathway in the trafficking of Sap4-6p and in vivo virulence. The C. albicans vps4delta mutant failed to produce extracellular Sap4-6p. Next, when tested in a mouse model of disseminated candidiasis, the vps4delta mutant was greatly attenuated in virulence. Histopathological analysis indicated that infection with the vps4delta mutant did not cause renal microabscess formation, in contrast to the wild-type strain. Our results imply that VPS4 is required for extracellular secretion of Sap4-6p, and that C. albicans requires an intact pre-vacuolar secretory pathway for wild-type virulence in vivo.
Collapse
|
25
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|