1
|
Antunes CA, Goodall ECA, Henderson IR, Wild D, Mehltretter A, Ott P, Hölzl M, Ott L, Seidel G, Burkovski A. Genome-wide high-throughput transposon mutagenesis unveils key factors for acidic pH adaptation of Corynebacterium diphtheriae. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001554. [PMID: 40272866 PMCID: PMC12022263 DOI: 10.1099/mic.0.001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Corynebacterium diphtheriae, a notable pathogen responsible for the life-threatening disease diphtheria, encounters harsh intracellular environments within the host, particularly within macrophages where acidic conditions prevail. To elucidate the genetic and molecular mechanisms underlying its acid stress response, we employed a Transposon Directed Insertion-site Sequencing approach. This comprehensive study identified crucial genes and pathways facilitating C. diphtheriae's survival at low pH. In subsequent experiments, the Ktr potassium transport system was identified as a putative key factor for maintaining pH homeostasis and growth under acidic stress. A ktrBA deletion strain exhibited significantly reduced growth at pH 5, which could be restored by ktrBA expression in trans. The deletion strain showed unchanged uptake and survival in macrophages compared to the wild-type, indicating that the Ktr system is not crucial for the survival of C. diphtheriae in phagocytes. These findings advance our understanding of C. diphtheriae's pathophysiology, further delineating the intricate survival strategies of C. diphtheriae in hostile environments.
Collapse
Affiliation(s)
- Camila Azevedo Antunes
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Emily C. A. Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David Wild
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Alexander Mehltretter
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Philipp Ott
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Markus Hölzl
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Lisa Ott
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Gerald Seidel
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| |
Collapse
|
2
|
Kim NK, Baek JE, Lee YJ, Oh Y, Oh JI. Rel-dependent decrease in the expression of ribosomal protein genes by inhibition of the respiratory electron transport chain in Mycobacterium smegmatis. Front Microbiol 2024; 15:1448277. [PMID: 39188315 PMCID: PMC11345224 DOI: 10.3389/fmicb.2024.1448277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
In this study, we demonstrated that both the expression of most ribosomal protein genes and the amount of ribosomes were decreased in the Δaa 3 mutant of Mycobacterium smegmatis, in which the major terminal oxidase (aa 3 cytochrome c oxidase) of the respiratory electron transport chain (ETC) is inactivated, compared to those in the wild-type strain. Deletion of the rel gene encoding the major (p)ppGpp synthetase in the background of the Δaa 3 mutant restored the reduced expression of ribosomal protein genes, suggesting that inhibition of the respiratory ETC leads to the Rel-dependent stringent response (SR) in this bacterium. Both a decrease in the expression of ribosomal protein genes by overexpression of rel and the increased expression of rel in the Δaa 3 mutant relative to the wild-type strain support the Rel-dependent induction of SR in the Δaa 3 mutant. We also demonstrated that the expression of ribosomal protein genes was decreased in M. smegmatis exposed to respiration-inhibitory conditions, such as KCN and bedaquiline treatment, null mutation of the cytochrome bcc 1 complex, and hypoxia. The MprBA-SigE-SigB regulatory pathway was implicated in both the increased expression of rel and the decreased expression of ribosomal protein genes in the Δaa 3 mutant of M. smegmatis.
Collapse
Affiliation(s)
- Na-Kyeong Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jong-Eun Baek
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Ye-Jin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
4
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Park HT, Lee SM, Ko S, Kim S, Park HE, Shin MK, Kim D, Yoo HS. Delineating transcriptional crosstalk between Mycobacterium avium subsp. paratuberculosis and human THP-1 cells at the early stage of infection via dual RNA-seq analysis. Vet Res 2022; 53:71. [PMID: 36100945 PMCID: PMC9469519 DOI: 10.1186/s13567-022-01089-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/13/2022] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic debilitating disease in ruminants. To control this disease, it is crucial to understand immune evasion and the mechanism of persistence by analyzing the early phase interplays of the intracellular pathogens and their hosts. In the present study, host–pathogen interactions at the transcriptomic level were investigated in an in vitro macrophage infection model. When differentiated human THP-1 cells were infected with MAP, the expression of various genes associated with stress responses and metabolism was altered in both host and MAP at 3 h post-infection. MAP upregulates stress-responsive global gene regulators, such as two-component systems and sigma factors, in response to oxidative and cell wall stress. Downstream genes involved in type VII secretion systems, cell wall synthesis (polyketide biosynthesis proteins), and iron uptake were changed in response to the intracellular environment of macrophages. On the host side, upregulation of inflammatory cytokine genes was observed along with pattern recognition receptor genes. Notably, alterations in gene sets involved in arginine metabolism were observed in both the host and MAP, along with significant downregulation of NOS2 expression. These observations suggest that the utilization of metabolites such as arginine by intracellular MAP might affect host NO production. Our dual RNA-seq data can provide novel insights by capturing the global transcriptome with higher resolution, especially in MAP, thus enabling a more systematic understanding of host–pathogen interactions.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Seyoung Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Hyun-Eui Park
- Department of Microbiology, College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea.
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Zorzan I, Del Favero S, Giaretta A, Manganelli R, Di Camillo B, Schenato L. Mathematical modelling of SigE regulatory network reveals new insights into bistability of mycobacterial stress response. BMC Bioinformatics 2021; 22:558. [PMID: 34798803 PMCID: PMC8605609 DOI: 10.1186/s12859-021-04372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background The ability to rapidly adapt to adverse environmental conditions represents the key of success of many pathogens and, in particular, of Mycobacterium tuberculosis. Upon exposition to heat shock, antibiotics or other sources of stress, appropriate responses in terms of genes transcription and proteins activity are activated leading part of a genetically identical bacterial population to express a different phenotype, namely to develop persistence. When the stress response network is mathematically described by an ordinary differential equations model, development of persistence in the bacterial population is associated with bistability of the model, since different emerging phenotypes are represented by different stable steady states. Results In this work, we develop a mathematical model of SigE stress response network that incorporates interactions not considered in mathematical models currently available in the literature. We provide, through involved analytical computations, accurate approximations of the system’s nullclines, and exploit the obtained expressions to determine, in a reliable though computationally efficient way, the number of equilibrium points of the system. Conclusions Theoretical analysis and perturbation experiments point out the crucial role played by the degradation pathway involving RseA, the anti-sigma factor of SigE, for coexistence of two stable equilibria and the emergence of bistability. Our results also indicate that a fine control on RseA concentration is a necessary requirement in order for the system to exhibit bistability. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04372-5.
Collapse
Affiliation(s)
- Irene Zorzan
- Department of Information Engineering, University of Padova, 35131, Padova, Italy.
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| | - Alberto Giaretta
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131, Padova, Italy.,Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro (Padova), Italy
| | - Luca Schenato
- Department of Information Engineering, University of Padova, 35131, Padova, Italy
| |
Collapse
|
8
|
Waturuocha UW, P. J. A, Singh KK, Malhotra V, Krishna MS, Saini DK. A high-frequency single nucleotide polymorphism in the MtrB sensor kinase in clinical strains of Mycobacterium tuberculosis alters its biochemical and physiological properties. PLoS One 2021; 16:e0256664. [PMID: 34529706 PMCID: PMC8445491 DOI: 10.1371/journal.pone.0256664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The DNA polymorphisms found in clinical strains of Mycobacterium tuberculosis drive altered physiology, virulence, and pathogenesis in them. Although the lineages of these clinical strains can be traced back to common ancestor/s, there exists a plethora of difference between them, compared to those that have evolved in the laboratory. We identify a mutation present in ~80% of clinical strains, which maps in the HATPase domain of the sensor kinase MtrB and alters kinase and phosphatase activities, and affects its physiological role. The changes conferred by the mutation were probed by in-vitro biochemical assays which revealed changes in signaling properties of the sensor kinase. These changes also affect bacterial cell division rates, size and membrane properties. The study highlights the impact of DNA polymorphisms on the pathophysiology of clinical strains and provides insights into underlying mechanisms that drive signal transduction in pathogenic bacteria.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Athira P. J.
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Krishna Kumar Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - M. S. Krishna
- Department of Studies in Zoology, Manasagangotri, University of Mysore, Mysore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
9
|
Waturuocha UW, Krishna MS, Malhotra V, Dixit NM, Saini DK. A Low-Prevalence Single-Nucleotide Polymorphism in the Sensor Kinase PhoR in Mycobacterium tuberculosis Suppresses Its Autophosphatase Activity and Reduces Pathogenic Fitness: Implications in Evolutionary Selection. Front Microbiol 2021; 12:724482. [PMID: 34512602 PMCID: PMC8424205 DOI: 10.3389/fmicb.2021.724482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The genome sequencing of Mycobacterium tuberculosis, the causative organism of tuberculosis, has significantly improved our understanding of the mechanisms that drive the establishment of infection and disease progression. Several clinical strains of M. tuberculosis exhibit single-nucleotide polymorphisms (SNPs), the implications of which are only beginning to be understood. Here, we examined the impact of a specific polymorphism in PhoR, the sensor kinase of the PhoPR two-component system. Biochemical analysis revealed reduced autophosphatase/ATPase activity, which led to enhanced downstream gene expression. We complemented M. tuberculosis H37Ra with the wild-type and mutant phoPR genes and characterized the strains in a cell line infection model. We provide an explanation for the low prevalence of the SNP in clinical strains (∼1%), as the mutation causes a survival disadvantage in the host cells. The study provides a rare example of selection of a signaling node under competing evolutionary forces, wherein a biochemically superior mutation aids bacterial adaptation within-host but has low fitness for infection and hence is not selected. Our study highlights the importance of accounting for such SNPs to test therapeutic and co-therapeutic methods to combat TB.
Collapse
Affiliation(s)
- Uchenna Watson Waturuocha
- Department of Studies in Zoology, University of Mysore, Mysore, India.,Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - M S Krishna
- Department of Studies in Zoology, University of Mysore, Mysore, India
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
10
|
Kundu M, Basu J. Applications of Transcriptomics and Proteomics for Understanding Dormancy and Resuscitation in Mycobacterium tuberculosis. Front Microbiol 2021; 12:642487. [PMID: 33868200 PMCID: PMC8044303 DOI: 10.3389/fmicb.2021.642487] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis can survive within its host for extended periods of time without any clinical symptoms of disease and reactivate when the immune system is weakened. A detailed understanding of how M. tuberculosis enters into and exits out of dormancy, is necessary in order to develop new strategies for tackling tuberculosis. Omics methodologies are unsupervised and unbiased to any hypothesis, making them useful tools for the discovery of new drug targets. This review summarizes the findings of transcriptomic and proteomic approaches toward understanding dormancy and reactivation of M. tuberculosis. Within the granuloma of latently infected individuals, the bacteria are dormant, with a marked slowdown of growth, division and metabolism. In vitro models have attempted to simulate these features by subjecting the bacterium to hypoxia, nutrient starvation, potassium depletion, growth in the presence of vitamin C, or growth in the presence of long-chain fatty acids. The striking feature of all the models is the upregulation of the DosR regulon, which includes the transcriptional regulator Rv0081, one of the central hubs of dormancy. Also upregulated are chaperone proteins, fatty acid and cholesterol degrading enzymes, the sigma factors SigE and SigB, enzymes of the glyoxylate and the methylcitrate cycle, the Clp proteases and the transcriptional regulator ClgR. Further, there is increased expression of genes involved in mycobactin synthesis, fatty acid degradation, the glyoxylate shunt and gluconeogenesis, in granulomas formed in vitro from peripheral blood mononuclear cells from latently infected individuals compared to naïve individuals. Genes linked to aerobic respiration, replication, transcription, translation and cell division, are downregulated during dormancy in vitro, but upregulated during reactivation. Resuscitation in vitro is associated with upregulation of genes linked to the synthesis of mycolic acids, phthiocerol mycocerosate (PDIM) and sulfolipids; ribosome biosynthesis, replication, transcription and translation, cell division, and genes encoding the five resuscitation promoting factors (Rpfs). The expression of proteases, transposases and insertion sequences, suggests genome reorganization during reactivation.
Collapse
Affiliation(s)
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
11
|
Wang C, Ren X, Yu C, Wang J, Wang L, Zhuge X, Liu X. Physiological and Transcriptional Responses of Streptomyces albulus to Acid Stress in the Biosynthesis of ε-Poly-L-lysine. Front Microbiol 2020; 11:1379. [PMID: 32636829 PMCID: PMC7317143 DOI: 10.3389/fmicb.2020.01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Streptomyces albulus has commercially been used for the production of ε-poly-L-lysine (ε-PL), a natural food preservative, where acid stress is inevitably encountered in the biosynthesis process. To elucidate the acid tolerance response (ATR), a comparative physiology and transcriptomic analysis of S. albulus M-Z18 at different environmental pH (5.0, 4.0, and 3.0) was carried out. In response to acid stress, cell envelope regulated the membrane fatty acid composition and chain length to reduce damage. Moreover, intracellular pH homeostasis was maintained by increasing H+-ATPase activity and intracellular ATP and amino acid (mainly arginine, glutamate, aspartate and lysine) concentrations. Transcriptional analysis based on RNA-sequencing indicated that acid stress aroused global changes and the differentially expressed genes involved in transcriptional regulation, stress-response protein, transporter, cell envelope, secondary metabolite biosynthesis, DNA and RNA metabolism and ribosome subunit. Consequently, the ATR of S. albulus was preliminarily proposed. Notably, it is indicated that the biosynthesis of ε-PL is also a response mechanism for S. albulus to combat acid stress. These results provide new insights into the ATR of S. albulus and will contribute to the production of ε-PL via adaptive evolution or metabolic engineering.
Collapse
Affiliation(s)
- Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xidong Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Junming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Zhuge
- Process Development Department, IntellectiveBio Co., Ltd., Suzhou, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
12
|
Wu T, Liu J, Li M, Zhang G, Liu L, Li X, Men X, Xian M, Zhang H. Improvement of sabinene tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:79. [PMID: 32346395 PMCID: PMC7181518 DOI: 10.1186/s13068-020-01715-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/13/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Biosynthesis of sabinene, a bicyclic monoterpene, has been accomplished in engineered microorganisms by introducing heterologous pathways and using renewable sugar as a carbon source. However, the efficiency and titers of this method are limited by the low host tolerance to sabinene (in both eukaryotes and prokaryotes). RESULTS In this study, Escherichia coli BL21(DE3) was selected as the strain for adaptive laboratory evolution. The strain was evolved by serial passaging in the medium supplemented with gradually increasing concentration of sabinene, and the evolved strain XYF(DE3), which exhibited significant tolerance to sabinene, was obtained. Then, XYF(DE3) was used as the host for sabinene production and an 8.43-fold higher sabinene production was achieved compared with the parental BL21(DE3), reaching 191.76 mg/L. Whole genomes resequencing suggested the XYF(DE3) strain is a hypermutator. A comparative analysis of transcriptomes of XYF(DE3) and BL21(DE3) was carried out to reveal the mechanism underlying the improvement of sabinene tolerance, and 734 up-regulated genes and 857 down-regulated genes were identified. We further tested the roles of the identified genes in sabinene tolerance via reverse engineering. The results demonstrated that overexpressions of ybcK gene of the DLP12 family, the inner membrane protein gene ygiZ, and the methylmalonyl-CoA mutase gene scpA could increase sabinene tolerance of BL21(DE3) by 127.7%, 71.1%, and 75.4%, respectively. Furthermore, scanning electron microscopy was applied to monitor cell morphology. Under sabinene stress, the parental BL21(DE3) showed increased cell length, whereas XYF(DE3) showed normal cell morphology. In addition, overexpression of ybcK, ygiZ or scpA could partially rescue cell morphology under sabinene stress and overexpression of ygiZ or scpA could increase sabinene production in BL21(DE3). CONCLUSIONS This study not only obtained a sabinene-tolerant strain for microbial production of sabinene but also revealed potential regulatory mechanisms that are important for sabinene tolerance. In addition, for the first time, ybcK, ygiZ, and scpA were identified to be important for terpene tolerance in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Tong Wu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinfeng Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Meijie Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
| | - Lijuan Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
| | - Xing Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101 China
| |
Collapse
|
13
|
Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. ACTA ACUST UNITED AC 2019; 46:1781-1792. [DOI: 10.1007/s10295-019-02240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Abstract
ε-Poly-l-lysine (ε-PL) is a natural food preservative, which exhibits antimicrobial activity against a wide spectra of microorganisms. The production of ε-PL was significantly enhanced by pH shock in our previous study, but the underlying mechanism is poorly understood. According to transcriptional and physiological analyses in this study, the mprA/B and pepD signal transduction system was first proved to be presented and activated in Streptomyces albulus M-Z18 by pH shock, which positively regulated the transcription of ε-PL synthetase (Pls) gene and enhanced the Pls activity during fermentation. Furthermore, pH shock changed the ratio of unsaturation to saturation fatty acid in the membrane through up-regulating the transcription of fatty acid desaturase genes (SAZ_RS14940, SAZ_RS14945). In addition, pH shock also enhanced the transcription of cytochrome c oxidase (SAZ_RS15070, SAZ_RS15075), ferredoxin reductase (SAZ_RS34975) and iron sulfur protein (SAZ_RS31410) genes, and finally resulted in the improvement of cell respiratory activity. As a result, pH shock was considered to influence a wide range of proteins including regulators, fatty acid desaturase, respiratory chain component, and ATP-binding cassette transporter during fermentation. These combined influences might contribute to enhanced ε-PL productivity with pH shock.
Collapse
|
14
|
Liu DQ, Zhang JL, Pan ZF, Mai JT, Mei HJ, Dai Y, Zhang L, Wang QZ. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish. Int J Med Microbiol 2019; 310:151378. [PMID: 31757695 DOI: 10.1016/j.ijmm.2019.151378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can persist in the host for decades without causing TB symptoms and can cause a latent infection, which is an intricate challenge of current TB control. The DosR regulon, which contains approximately 50 genes, is crucial in the non-replicating persistence of Mtb. tgs1 is one of the most powerfully induced genes in this regulon during Mtb non-replicating persistence. The gene encodes a triacyl glycerol synthase catalyzing synthesis of triacyl glycerol (TAG), which is proposed as an energy source during bacilli persistence. Here, western blotting showed that the Tgs1 protein was upregulated in clinical Mtb strains. To detect its physiological effects on mycobacterium, we constructed serial recombinant M. marinum including over-expressed Tgs1(Tgs1-H), reduced-expressed Tgs1(Tgs1-L), and wild type M. marinum strains as controls. Tgs1 over-expression did not influence M. marinum growth under aerobic shaking and in hypoxic cultures, while growth advantages were observed at an early stage under nutrient starvation. Transmission electron microscopy revealed more lipid droplets in Tgs1-H than the other two strains; the droplets filled the cytoplasm. Two-dimensional thin-layer chromatography revealed more phosphatidyl-myo-inositol mannosides in the Tgs1-H cell wall. To assess the virulence of recombinant M. marinum in the natural host, adult zebrafish were infected with Tgs1-H or wild type strains. Hypervirulence of Tgs1-H was characterized by markedly increased bacterial load and early death of adult zebrafish. Remarkably, zebrafish infected with Tgs1-H developed necrotizing granulomas much more rapidly and in higher amounts, which facilitated mycobacterial replication and dissemination among organs and eventual tissue destruction in zebrafish. RNA sequencing analysis showed Tgs1-H induced 13 genes differentially expressed under aerobiosis. Among them, PE_PGRS54 (MMAR_5307),one of the PE_PGRS family of antigens, was markedly up-regulated, while 110 coding genes were down-regulated in Tgs1-L.The 110 genes included 22 member genes of the DosR regulon. The collective results indicate an important role for the Tgs1 protein of M. marinumin progression of infection in the natural host. Tgs1 signaling may be involved in a previously unknown behavior of M. marinum under hypoxia/aerobiosis.
Collapse
Affiliation(s)
- Ding-Qian Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China; Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun-Li Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhi-Fen Pan
- The Tuberculosis Division of the First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jun-Tao Mai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Heng-Jun Mei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yue Dai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.
| | | |
Collapse
|
15
|
Dulberger CL, Rubin EJ, Boutte CC. The mycobacterial cell envelope - a moving target. Nat Rev Microbiol 2019; 18:47-59. [PMID: 31728063 DOI: 10.1038/s41579-019-0273-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
Abstract
Mycobacterium tuberculosis, the leading cause of death due to infection, has a dynamic and immunomodulatory cell envelope. The cell envelope structurally and functionally varies across the length of the cell and during the infection process. This variability allows the bacterium to manipulate the human immune system, tolerate antibiotic treatment and adapt to the variable host environment. Much of what we know about the mycobacterial cell envelope has been gleaned from model actinobacterial species, or model conditions such as growth in vitro, in macrophages and in the mouse. In this Review, we combine data from different experimental systems to build a model of the dynamics of the mycobacterial cell envelope across space and time. We describe the regulatory pathways that control metabolism of the cell wall and surface lipids in M. tuberculosis during growth and stasis, and speculate about how this regulation might affect antibiotic susceptibility and interactions with the immune system.
Collapse
Affiliation(s)
- Charles L Dulberger
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
16
|
Pan L, Chen X, Wang K, Mao Z. A temporal transcriptomic dynamics study reveals the reason of enhanced ε-poly-L-lysine production in Streptomyces albulus M-Z18 by pH shock. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Li X, Lv X, Lin Y, Zhen J, Ruan C, Duan W, Li Y, Xie J. Role of two-component regulatory systems in intracellular survival of Mycobacterium tuberculosis. J Cell Biochem 2019; 120:12197-12207. [PMID: 31026098 DOI: 10.1002/jcb.28792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/06/2022]
Abstract
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Lv
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yanping Lin
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Junfeng Zhen
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Cao Ruan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wei Duan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yue Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Sun X, Zhang L, Jiang J, Ng M, Cui Z, Mai J, Ahn SK, Liu J, Zhang J, Liu J, Li Y. Transcription factors Rv0081 and Rv3334 connect the early and the enduring hypoxic response of Mycobacterium tuberculosis. Virulence 2019; 9:1468-1482. [PMID: 30165798 PMCID: PMC6177252 DOI: 10.1080/21505594.2018.1514237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (M. tb) to survive and persist in the host for decades in an asymptomatic state is an important aspect of tuberculosis pathogenesis. Although adaptation to hypoxia is thought to play a prominent role underlying M. tb persistence, how the bacteria achieve this goal is largely unknown. Rv0081, a member of the DosR regulon, is induced at the early stage of hypoxia while Rv3334 is one of the enduring hypoxic response genes. In this study, we uncovered genetic interactions between these two transcription factors. RNA-seq analysis of ΔRv0081 and ΔRv3334 revealed that the gene expression profiles of these two mutants were highly similar. We also found that under hypoxia, Rv0081 positively regulated the expression of Rv3334 while Rv3334 repressed transcription of Rv0081. In addition, we demonstrated that Rv0081 formed dimer and bound to the promoter region of Rv3334. Taken together, these data suggest that Rv0081 and Rv3334 work in the same regulatory pathway and that Rv3334 functions immediately downstream of Rv0081. We also found that Rv3334 is a bona fide regulator of the enduring hypoxic response genes. Our study has uncovered a regulatory pathway that connects the early and the enduring hypoxic response, revealing a transcriptional cascade that coordinates the temporal response of M. tb to hypoxia.
Collapse
Affiliation(s)
- Xian Sun
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Lu Zhang
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Jun Jiang
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Mark Ng
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Zhenling Cui
- c Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Medical School , Tongji University , Shanghai , China
| | - Juntao Mai
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Sang Kyun Ahn
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Jingqian Liu
- b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Jinyu Zhang
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| | - Jun Liu
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China.,b Department of Molecular Genetics , University of Toronto , Toronto , Canada
| | - Yao Li
- a State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science , Fudan University , Shanghai , China
| |
Collapse
|
19
|
Gorla P, Plocinska R, Sarva K, Satsangi AT, Pandeeti E, Donnelly R, Dziadek J, Rajagopalan M, Madiraju MV. MtrA Response Regulator Controls Cell Division and Cell Wall Metabolism and Affects Susceptibility of Mycobacteria to the First Line Antituberculosis Drugs. Front Microbiol 2018; 9:2839. [PMID: 30532747 PMCID: PMC6265350 DOI: 10.3389/fmicb.2018.02839] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/05/2018] [Indexed: 11/25/2022] Open
Abstract
The biological processes regulated by the essential response regulator MtrA and the growth conditions promoting its activation in Mycobacterium tuberculosis, a slow grower and pathogen, are largely unknown. Here, using a gain-of-function mutant, MtrAY 102C, which functions in the absence of the cognate MtrB sensor kinase, we show that the MtrA regulon includes several genes involved in the processes of cell division and cell wall metabolism. The expression of selected MtrA targets and intracellular MtrA levels were compromised under replication arrest induced by genetic manipulation and under stress conditions caused by toxic radicals. The loss of the mtrA gene in M. smegmatis, a rapid grower and non-pathogen, produced filamentous cells with branches and bulges, indicating defects in cell division and cell shape. The ΔmtrA mutant was sensitized to rifampicin and vancomycin and became more resistant to isoniazid, the first line antituberculosis drug. Our data are consistent with the proposal that MtrA controls the optimal cell division, cell wall integrity, and susceptibility to some antimycobacterial drugs.
Collapse
Affiliation(s)
- Purushotham Gorla
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Renata Plocinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Krishna Sarva
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Akash T Satsangi
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Emmanuel Pandeeti
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Robert Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Malini Rajagopalan
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| | - Murty V Madiraju
- Biomedical Research, The University of Texas Health Science Center, Tyler, TX, United States
| |
Collapse
|
20
|
Abhishek S, Saikia UN, Gupta A, Bansal R, Gupta V, Singh N, Laal S, Verma I. Transcriptional Profile of Mycobacterium tuberculosis in an in vitro Model of Intraocular Tuberculosis. Front Cell Infect Microbiol 2018; 8:330. [PMID: 30333960 PMCID: PMC6175983 DOI: 10.3389/fcimb.2018.00330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Intraocular tuberculosis (IOTB), an extrapulmonary manifestation of tuberculosis of the eye, has unique and varied clinical presentations with poorly understood pathogenesis. As it is a significant cause of inflammation and visual morbidity, particularly in TB endemic countries, it is essential to study the pathogenesis of IOTB. Clinical and histopathologic studies suggest the presence of Mycobacterium tuberculosis in retinal pigment epithelium (RPE) cells. Methods: A human retinal pigment epithelium (ARPE-19) cell line was infected with a virulent strain of M. tuberculosis (H37Rv). Electron microscopy and colony forming units (CFU) assay were performed to monitor the M. tuberculosis adherence, invasion, and intracellular replication, whereas confocal microscopy was done to study its intracellular fate in the RPE cells. To understand the pathogenesis, the transcriptional profile of M. tuberculosis in ARPE-19 cells was studied by whole genome microarray. Three upregulated M. tuberculosis transcripts were also examined in human IOTB vitreous samples. Results: Scanning electron micrographs of the infected ARPE-19 cells indicated adherence of bacilli, which were further observed to be internalized as monitored by transmission electron microscopy. The CFU assay showed that 22.7 and 8.4% of the initial inoculum of bacilli adhered and invaded the ARPE-19 cells, respectively, with an increase in fold CFU from 1 dpi (0.84) to 5dpi (6.58). The intracellular bacilli were co-localized with lysosomal-associated membrane protein-1 (LAMP-1) and LAMP-2 in ARPE-19 cells. The transcriptome study of intracellular bacilli showed that most of the upregulated transcripts correspond to the genes encoding the proteins involved in the processes such as adherence (e.g., Rv1759c and Rv1026), invasion (e.g., Rv1971 and Rv0169), virulence (e.g., Rv2844 and Rv0775), and intracellular survival (e.g., Rv1884c and Rv2450c) as well as regulators of various metabolic pathways. Two of the upregulated transcripts (Rv1971, Rv1230c) were also present in the vitreous samples of the IOTB patients. Conclusions:M. tuberculosis is phagocytosed by RPE cells and utilizes these cells for intracellular multiplication with the involvement of late endosomal/lysosomal compartments and alters its transcriptional profile plausibly for its intracellular adaptation and survival. The findings of the present study could be important to understanding the molecular pathogenesis of IOTB with a potential role in the development of diagnostics and therapeutics for IOTB.
Collapse
Affiliation(s)
- Sudhanshu Abhishek
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reema Bansal
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nirbhai Singh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, NY, United States
- Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Novel MprA binding motifs in the phoP regulatory region in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2018; 112:62-68. [PMID: 30205970 DOI: 10.1016/j.tube.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022]
Abstract
MprAB and PhoPR are important two-component systems (TCSs) in Mycobacterium tuberculosis, and both regulate EspR, a key regulator of the ESX-1 secretion system. Although previous studies suggest that the response regulator PhoP does not directly regulate mprA, the interplay between MprAB and PhoPR remains unclear. In this study, we found that the response regulator MprA can bind to the phoP promoter. Four repeat motifs, D1-D4, constituting two predicted binding sites, were located in the region protected by MprA in DNA footprinting. D1-D4 lack the reported conserved MprA binding sequences, indicating that MprA can recognize a greater range of target sites. Interestingly, D1-D2 overlap a previously reported PhoP binding site, and mutation of D1-D2 inhibited PhoP binding, whereas the D3-D4 site, but not the D1-D2 site, was required for MprA binding. EMSA assays also suggest that MprA and PhoP compete to bind to the phoP promoter. The results of the transcriptional and western blot assays are consistent with a model in which MprA positively controls the phoP expression, which in turn upregulates the expression of espR. These findings reveal complex regulation of a major mycobacterial TCS by dual TCSs.
Collapse
|
22
|
Arora D, Chawla Y, Malakar B, Singh A, Nandicoori VK. The transpeptidase PbpA and noncanonical transglycosylase RodA of Mycobacterium tuberculosis play important roles in regulating bacterial cell lengths. J Biol Chem 2018. [PMID: 29530985 DOI: 10.1074/jbc.m117.811190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall of Mycobacterium tuberculosis (Mtb) is a complex structure that protects the pathogen in hostile environments. Peptidoglycan (PG), which helps determine the morphology of the cell envelope, undergoes substantial remodeling under stress. This meshwork of linear chains of sugars, cross-linked through attached peptides, is generated through the sequential action of enzymes termed transglycosylases and transpeptidases. The Mtb genome encodes two classical transglycosylases and four transpeptidases, the functions of which are not fully elucidated. Here, we present work on the yet uncharacterized transpeptidase PbpA and a nonclassical transglycosylase RodA. We elucidate their roles in regulating in vitro growth and in vivo survival of pathogenic mycobacteria. We find that RodA and PbpA are required for regulating cell length, but do not affect mycobacterial growth. Biochemical analyses show PbpA to be a classical transpeptidase, whereas RodA is identified to be a member of an emerging class of noncanonical transglycosylases. Phosphorylation of RodA at Thr-463 modulates its biological function. In a guinea pig infection model, RodA and PbpA are found to be required for both bacterial survival and formation of granuloma structures, thus underscoring the importance of these proteins in mediating mycobacterial virulence in the host. Our results emphasize the fact that whereas redundant enzymes probably compensate for the absence of RodA or PbpA during in vitro growth, the two proteins play critical roles for the survival of the pathogen inside its host.
Collapse
Affiliation(s)
- Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Yogesh Chawla
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Basanti Malakar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, 110025 New Delhi, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067 India and
| |
Collapse
|
23
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
24
|
Deletion of the β-Propeller Protein Gene Rv1057 Reduces ESAT-6 Secretion and Intracellular Growth of Mycobacterium tuberculosis. Curr Microbiol 2017; 75:401-409. [DOI: 10.1007/s00284-017-1394-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
25
|
The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. mBio 2017; 8:mBio.01092-17. [PMID: 28811344 PMCID: PMC5559634 DOI: 10.1128/mbio.01092-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was conducted to investigate the role of iron deprivation in the persistence of Mycobacterium tuberculosis. We present evidence of iron restriction in human necrotic granulomas and demonstrate that under iron starvation M. tuberculosis persists, refractive to antibiotics and capable of restarting replication when iron is made available. Transcriptomics and metabolomic analyses indicated that the persistence of M. tuberculosis under iron starvation is dependent on strict control of endogenous Fe utilization and is associated with upregulation of pathogenicity and intrinsic antibiotic resistance determinants. M. tuberculosis mutants compromised in their ability to survive Fe starvation were identified. The findings of this study advance the understanding of the physiological settings that may underpin the chronicity of human tuberculosis (TB) and are relevant to the design of effective antitubercular therapies. One-third of the world population may harbor persistent M. tuberculosis, causing an asymptomatic infection that is refractory to treatment and can reactivate to become potentially lethal tuberculosis disease. However, little is known about the factors that trigger and maintain M. tuberculosis persistence in infected individuals. Iron is an essential nutrient for M. tuberculosis growth. In this study, we show, first, that in human granulomas the immune defense creates microenvironments in which M. tuberculosis likely experiences drastic Fe deprivation and, second, that Fe-starved M. tuberculosis is capable of long-term persistence without growth. Together, these observations suggest that Fe deprivation in the lung might trigger a state of persistence in M. tuberculosis and promote chronic TB. We also identified vulnerabilities of iron-restricted persistent M. tuberculosis, which can be exploited for the design of new antitubercular therapies.
Collapse
|
26
|
Wang Y, Lu T, Yin X, Zhou Z, Li S, Liu M, Hu S, Bi D, Li Z. A Novel RAYM_RS09735/RAYM_RS09740 Two-Component Signaling System Regulates Gene Expression and Virulence in Riemerella anatipestifer. Front Microbiol 2017; 8:688. [PMID: 28484437 PMCID: PMC5399024 DOI: 10.3389/fmicb.2017.00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/04/2017] [Indexed: 02/02/2023] Open
Abstract
The Gram-negative bacterium Riemerella anatipestifer is an important waterfowl pathogen, causing major economic losses to the duck-producing industry. However, little is known of the virulence factors that mediate pathogenesis during R. anatipestifer infection. In this study, RAYM_RS09735 and RAYM_RS09740 were predicted to form a two-component signaling system (TCS) through bioinformatics analysis. This TCS was highly conserved across the Flavobacteriaceae. A mutant YMΔRS09735/RS09740 strain was constructed to investigate the role of the RAYM_RS09735/RAYM_RS09740 TCS in R. anatipestifer virulence and gene regulation. The median lethal dose (LD50) of YMΔRS09735/RS09740 was found to be >1011 CFU, equivalent to that of avirulent bacterial strains. The bacterial abundances of the YMΔRS09735/RS09740 strain in the heart, brain, liver, blood, and spleen were significantly lower than that of the wild-type R. anatipestifer YM strain. Pathological analysis using hematoxylin and eosin staining showed that, compared to the wild-type, the mutant YMΔRS09735/RS09740 strain caused significantly less virulence in infected ducklings. RNAseq and real-time PCR analysis indicated that the RAYM_RS09735/RAYM_RS09740 TCS is a PhoP/PhoR system. This is a novel type of TCS for Gram-negative bacteria. The TCS was also found to be a global regulator of expression in R. anatipestifer, with 112 genes up-regulated and 693 genes down-regulated in the YMΔRS09735/RS09740 strain (~33% genes demonstrated differential expression). In summary, we have reported the first PhoP/PhoR TCS identified in a Gram-negative bacterium and demonstrated that it is involved in virulence and gene regulation in R. anatipestifer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Ti Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Xuehuan Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Zutao Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Shaowen Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Mei Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Sishun Hu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Dingren Bi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zili Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
27
|
Peddireddy V, Doddam SN, Ahmed N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Front Immunol 2017; 8:84. [PMID: 28261197 PMCID: PMC5309233 DOI: 10.3389/fimmu.2017.00084] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) caused by the intracellular pathogen, Mycobacterium tuberculosis (Mtb), claims more than 1.5 million lives worldwide annually. Despite promulgation of multipronged strategies to prevent and control TB, there is no significant downfall occurring in the number of new cases, and adding to this is the relapse of the disease due to the emergence of antibiotic resistance and the ability of Mtb to remain dormant after primary infection. The pathology of Mtb is complex and largely attributed to immune-evading strategies that this pathogen adopts to establish primary infection, its persistence in the host, and reactivation of pathogenicity under favorable conditions. In this review, we present various biochemical, immunological, and genetic strategies unleashed by Mtb inside the host for its survival. The bacterium enables itself to establish a niche by evading immune recognition via resorting to masking, establishment of dormancy by manipulating immune receptor responses, altering innate immune cell fate, enhancing granuloma formation, and developing antibiotic tolerance. Besides these, the regulatory entities, such as DosR and its regulon, encompassing various putative effector proteins play a vital role in maintaining the dormant nature of this pathogen. Further, reactivation of Mtb allows relapse of the disease and is favored by the genes of the Rtf family and the conditions that suppress the immune system of the host. Identification of target genes and characterizing the function of their respective antigens involved in primary infection, dormancy, and reactivation would likely provide vital clues to design novel drugs and/or vaccines for the control of dormant TB.
Collapse
Affiliation(s)
- Vidyullatha Peddireddy
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad , Hyderabad , India
| | - Sankara Narayana Doddam
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad , Hyderabad , India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India; Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
28
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
29
|
Dual-Reporter Mycobacteriophages (Φ2DRMs) Reveal Preexisting Mycobacterium tuberculosis Persistent Cells in Human Sputum. mBio 2016; 7:mBio.01023-16. [PMID: 27795387 PMCID: PMC5080378 DOI: 10.1128/mbio.01023-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Persisters are the minor subpopulation of bacterial cells that lack alleles conferring resistance to a specific bactericidal antibiotic but can survive otherwise lethal concentrations of that antibiotic. In infections with Mycobacterium tuberculosis, such persisters underlie the need for long-term antibiotic therapy and contribute to treatment failure in tuberculosis cases. Here, we demonstrate the value of dual-reporter mycobacteriophages (Φ2DRMs) for characterizing M. tuberculosis persisters. The addition of isoniazid (INH) to exponentially growing M. tuberculosis cells consistently resulted in a 2- to 3-log decrease in CFU within 4 days, and the remaining ≤1% of cells, which survived despite being INH sensitive, were INH-tolerant persisters with a distinct transcriptional profile. We fused the promoters of several genes upregulated in persisters to the red fluorescent protein tdTomato gene in Φ2GFP10, a mycobacteriophage constitutively expressing green fluorescent protein (GFP), thus generating Φ2DRMs. A population enriched in INH persisters exhibited strong red fluorescence, by microscopy and flow cytometry, using a Φ2DRM with tdTomato controlled from the dnaK promoter. Interestingly, we demonstrated that, prior to INH exposure, a population primed for persistence existed in M. tuberculosis cells from both cultures and human sputa and that this population was highly enriched following INH exposure. We conclude that Φ2DRMs provide a new tool to identify and quantitate M. tuberculosis persister cells. IMPORTANCE Tuberculosis (TB) is again the leading cause of death from a single infectious disease, having surpassed HIV. The recalcitrance of the TB pandemic is largely due to the ability of the pathogen Mycobacterium tuberculosis to enter a persistent state in which it is less susceptible to antibiotics and immune effectors, necessitating lengthy treatment. It has been difficult to study persister cells, as we have lacked tools to isolate these rare cells. In this article, we describe the development of dual-reporter mycobacteriophages that encode a green fluorescent marker of viability and in which the promoters of genes we have identified as induced in the persister state are fused to a gene encoding a red fluorescent protein. We show that these tools can identify heterogeneity in a cell population that correlates with propensity to survive antibiotic treatment and that the proportions of these subpopulations change in M. tuberculosis cells within human sputum during the course of treatment.
Collapse
|
30
|
Du P, Sohaskey CD, Shi L. Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence. Front Microbiol 2016; 7:1346. [PMID: 27630619 PMCID: PMC5005354 DOI: 10.3389/fmicb.2016.01346] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.
Collapse
Affiliation(s)
- Peicheng Du
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| | - Charles D Sohaskey
- VA Long Beach Healthcare System, United States Department of Veterans Affairs Long Beach, CA, USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ, USA
| |
Collapse
|
31
|
Construction and application of a co-expression network in Mycobacterium tuberculosis. Sci Rep 2016; 6:28422. [PMID: 27328747 PMCID: PMC4916473 DOI: 10.1038/srep28422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
Because of its high pathogenicity and infectivity, tuberculosis is a serious threat to human health. Some information about the functions of the genes in Mycobacterium tuberculosis genome was currently available, but it was not enough to explore transcriptional regulatory mechanisms. Here, we applied the WGCNA (Weighted Gene Correlation Network Analysis) algorithm to mine pooled microarray datasets for the M. tuberculosis H37Rv strain. We constructed a co-expression network that was subdivided into 78 co-expression gene modules. The different response to two kinds of vitro models (a constant 0.2% oxygen hypoxia model and a Wayne model) were explained based on these modules. We identified potential transcription factors based on high Pearson’s correlation coefficients between the modules and genes. Three modules that may be associated with hypoxic stimulation were identified, and their potential transcription factors were predicted. In the validation experiment, we determined the expression levels of genes in the modules under hypoxic condition and under overexpression of potential transcription factors (Rv0081, furA (Rv1909c), Rv0324, Rv3334, and Rv3833). The experimental results showed that the three identified modules related to hypoxia and that the overexpression of transcription factors could significantly change the expression levels of genes in the corresponding modules.
Collapse
|
32
|
Banerjee SK, Kumar M, Alokam R, Sharma AK, Chatterjee A, Kumar R, Sahu SK, Jana K, Singh R, Yogeeswari P, Sriram D, Basu J, Kundu M. Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infection. Sci Rep 2016; 6:25851. [PMID: 27181265 PMCID: PMC4867592 DOI: 10.1038/srep25851] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/25/2016] [Indexed: 11/06/2022] Open
Abstract
The genome of M. tuberculosis (Mtb) encodes eleven paired two component systems (TCSs) consisting of a sensor kinase (SK) and a response regulator (RR). The SKs sense environmental signals triggering RR-dependent gene expression pathways that enable the bacterium to adapt in the host milieu. We demonstrate that a conserved motif present in the C-terminal domain regulates the DNA binding functions of the OmpR family of Mtb RRs. Molecular docking studies against this motif helped to identify two molecules with a thiazolidine scaffold capable of targeting multiple RRs, and modulating their regulons to attenuate bacterial replication in macrophages. The changes in the bacterial transcriptome extended to an altered immune response with increased autophagy and NO production, leading to compromised survival of Mtb in macrophages. Our findings underscore the promise of targeting multiple RRs as a novel yet unexplored approach for development of new anti-mycobacterial agents particularly against drug-resistant Mtb.
Collapse
Affiliation(s)
- Srijon Kaushik Banerjee
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Manish Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Reshma Alokam
- Department of Pharmacy, Birla Institute of Technology &Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India
| | - Arun Kumar Sharma
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Ayan Chatterjee
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Ranjeet Kumar
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Sanjaya Kumar Sahu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700054, India
| | - Ramandeep Singh
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway. Faridabad-121001, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology &Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology &Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| |
Collapse
|
33
|
Phosphate responsive regulation provides insights for ESX-5 function in Mycobacterium tuberculosis. Curr Genet 2016; 62:759-763. [PMID: 27105642 DOI: 10.1007/s00294-016-0604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Pathogenic microbes commonly respond to environmental cues in the host by activating specialized protein secretion systems. Mycobacterium tuberculosis uses the specialized Type VII ESX protein secretion systems to transport a subset of effector proteins. The ESX-5 secretion system is involved in virulence, but both the mechanism of regulation and activating signal were unknown. Our work, reviewed here, has established that the phosphate sensing Pst/SenX3-RegX3 system directly activates ESX-5 secretion in response to phosphate limitation, a relevant environmental signal likely encountered by M. tuberculosis in the host. This review focuses on how elucidation of the ESX-5 regulatory network provides insight into its biological roles, which may include both phosphate acquisition and pathogenesis.
Collapse
|
34
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
35
|
The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase. Tuberculosis (Edinb) 2016; 97:154-62. [DOI: 10.1016/j.tube.2015.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 11/20/2022]
|
36
|
Abstract
Two-component regulatory systems (2CRSs) are widely used by bacteria to sense and respond to environmental stimuli with coordinated changes in gene expression. Systems are normally comprised of a sensory kinase protein that activates a transcriptional regulator by phosphorylation. Mycobacteria have few 2CRSs, but they are of key importance for bacterial survival and play important roles in pathogenicity. Mycobacterium tuberculosis has 12 paired two-component regulatory systems (which include a system with two regulators and one sensor, and a split sensor system), as well as four orphan regulators. Several systems are involved in virulence, and disruption of different systems leads to attenuation or hypervirulence. PhoPR plays a major role in regulating cell wall composition, and its inactivation results in sufficient attenuation of M. tuberculosis that deletion strains are live vaccine candidates. MprAB controls the stress response and is required for persistent infections. SenX3-RegX3 is required for control of aerobic respiration and phosphate uptake, and PrrAB is required for adaptation to intracellular infection. MtrAB is an essential system that controls DNA replication and cell division. The remaining systems (KdpDE, NarL, TrcRS, TcrXY, TcrA, PdtaRS, and four orphan regulators) are less well understood. The structure and binding motifs for several regulators have been characterized, revealing variations in function and operation. The sensors are less well characterized, and stimuli for many remain to be confirmed. This chapter reviews our current understanding of the role of two-component systems in mycobacteria, in particular M. tuberculosis.
Collapse
|
37
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
38
|
Pandey R, Russo R, Ghanny S, Huang X, Helmann J, Rodriguez GM. MntR(Rv2788): a transcriptional regulator that controls manganese homeostasis in Mycobacterium tuberculosis. Mol Microbiol 2015; 98:1168-83. [PMID: 26337157 DOI: 10.1111/mmi.13207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
Abstract
The pathogenic mycobacterium Mycobacterium tuberculosis encodes two members of the DtxR/MntR family of metalloregulators, IdeR and SirR. IdeR represses gene expression in response to ferrous iron, and we here demonstrate that SirR (Rv2788), although also annotated as an iron-dependent repressor, functions instead as a manganese-dependent transcriptional repressor and is therefore renamed MntR. MntR regulates transporters that promote manganese import and genes that respond to metal ion deficiency such as the esx3 system. Repression of manganese import by MntR is essential for survival of M. tuberculosis under conditions of high manganese availability, but mntR is dispensable during infection. In contrast, manganese import by MntH and MntABCD was found to be indispensable for replication of M. tuberculosis in macrophages. These results suggest that manganese is limiting in the host and that interfering with import of this essential metal may be an effective strategy to attenuate M. tuberculosis.
Collapse
Affiliation(s)
- Ruchi Pandey
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| | - Riccardo Russo
- New Jersey Medical School, Rutgers State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Saleena Ghanny
- Genomics Research Program, NJMS, Rutgers State University of New Jersey, 185 South Orange Avenue, Newark, NJ, USA
| | - Xiaojuan Huang
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - John Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - G Marcela Rodriguez
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
39
|
Rybniker J, Chen JM, Sala C, Hartkoorn RC, Vocat A, Benjak A, Boy-Röttger S, Zhang M, Székely R, Greff Z, Orfi L, Szabadkai I, Pató J, Kéri G, Cole ST. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe 2015; 16:538-48. [PMID: 25299337 DOI: 10.1016/j.chom.2014.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/20/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) requires protein secretion systems like ESX-1 for intracellular survival and virulence. The major virulence determinant and ESX-1 substrate, EsxA, arrests phagosome maturation and lyses cell membranes, resulting in tissue damage and necrosis that promotes pathogen spread. To identify inhibitors of Mtb protein secretion, we developed a fibroblast survival assay exploiting this phenotype and selected molecules that protect host cells from Mtb-induced lysis without being bactericidal in vitro. Hit compounds blocked EsxA secretion and promoted phagosome maturation in macrophages, thus reducing bacterial loads. Target identification studies led to the discovery of BTP15, a benzothiophene inhibitor of the histidine kinase MprB that indirectly regulates ESX-1, and BBH7, a benzyloxybenzylidene-hydrazine compound. BBH7 affects Mtb metal-ion homeostasis and revealed zinc stress as an activating signal for EsxA secretion. This screening approach extends the target spectrum of small molecule libraries and will help tackle the mounting problem of antibiotic-resistant mycobacteria.
Collapse
Affiliation(s)
- Jan Rybniker
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; 1(st) Department of Internal Medicine, University of Cologne, 50937 Cologne, Germany
| | - Jeffrey M Chen
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ruben C Hartkoorn
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Stefanie Boy-Röttger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ming Zhang
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rita Székely
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Zoltán Greff
- Vichem Chemie Research Ltd., Herman Otto u. 15, 1022 Budapest, Hungary
| | - László Orfi
- Vichem Chemie Research Ltd., Herman Otto u. 15, 1022 Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre u. 9, 1092 Budapest, Hungary
| | - István Szabadkai
- Vichem Chemie Research Ltd., Herman Otto u. 15, 1022 Budapest, Hungary
| | - János Pató
- Vichem Chemie Research Ltd., Herman Otto u. 15, 1022 Budapest, Hungary
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Otto u. 15, 1022 Budapest, Hungary; MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, 1094 Budapest, Hungary
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
40
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
41
|
Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 2015; 96:901-16. [PMID: 25727695 DOI: 10.1111/mmi.12981] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
The pe/ppe genes represent one of the most intriguing aspects of the Mycobacterium tuberculosis genome. These genes are especially abundant in pathogenic mycobacteria, with more than 160 members in M. tuberculosis. Despite being discovered over 15 years ago, their function remains unclear, although various lines of evidence implicate selected family members in mycobacterial virulence. In this review, we use PE/PPE phylogeny as a framework within which we examine the diversity and putative functions of these proteins. We report on the evolution and diversity of the respective gene families, as well as the implications thereof for function and host immune recognition. We summarize recent findings on pe/ppe gene regulation, also placing this in the context of PE/PPE phylogeny. We collate data from several large proteomics datasets, providing an overview of PE/PPE localization, and discuss the implications this may have for host responses. Assessment of the current knowledge of PE/PPE diversity suggests that these proteins are not variable antigens as has been so widely speculated; however, they do clearly play important roles in virulence. Viewing the growing body of pe/ppe literature through the lens of phylogeny reveals trends in features and function that may be associated with the evolution of mycobacterial pathogenicity.
Collapse
Affiliation(s)
- S Fishbein
- Harvard School of Public Health, Boston, MA, USA.,DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - N van Wyk
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - R M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - S L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| |
Collapse
|
42
|
Hu X, Li X, Huang L, Chan J, Chen Y, Deng H, Mi K. Quantitative proteomics reveals novel insights into isoniazid susceptibility in mycobacteria mediated by a universal stress protein. J Proteome Res 2015; 14:1445-54. [PMID: 25664397 DOI: 10.1021/pr5011058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is caused by the ancient pathogen, Mycobacterium tuberculosis, and is one of the most serious infectious diseases in the world. Isoniazid (INH) is an important first-line drug for the treatment of active and latent TB. INH resistance is an increasing problem in the treatment of TB. Phenotypic resistance to INH, however, is poorly understood. In this study, we constructed a strain of Mycobacterium bovis BCG that overexpresses the latency-related universal stress protein (USP), BCG_2013, and designated this strain BCG-2013. BCG_2013 overexpression increased susceptibility to INH compared with that of the wild-type strain, BCG-pMV261. Quantitative proteomic analysis revealed that BCG_2013 overexpression resulted in the upregulation of 50 proteins and the downregulation of 26 proteins among the 1500 proteins identified. Upregulation of catalase-peroxidase KatG expression in BCG-2013 was observed and confirmed by qPCR, whereas expression of other INH resistance-related proteins did not change. In addition, differential expression of the mycobacterial persistence regulator MprA and its regulatory proteins was observed. BCG_2013 and katG mRNA levels increased in a Wayne dormancy model, whereas MprA mRNA levels decreased. Taken together, our results suggest that the increase in KatG levels induced by increased BCG_2013 levels underlies the phenotypic susceptibility of mycobacteria to INH.
Collapse
Affiliation(s)
- Xinling Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS , Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Malhotra V, Agrawal R, Duncan TR, Saini DK, Clark-Curtiss JE. Mycobacterium tuberculosis response regulators, DevR and NarL, interact in vivo and co-regulate gene expression during aerobic nitrate metabolism. J Biol Chem 2015; 290:8294-309. [PMID: 25659431 DOI: 10.1074/jbc.m114.591800] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and a ΔnarL mutant strain during exponential growth in broth cultures with or without nitrate defined an ∼30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis ΔdevR, ΔdevSΔdosT, and ΔnarL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR∼P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.
Collapse
Affiliation(s)
- Vandana Malhotra
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
| | - Ruchi Agrawal
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Tammi R Duncan
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Deepak K Saini
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Josephine E Clark-Curtiss
- From the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and the School of Life Sciences, Arizona State University, Tempe, Arizona 85287 and
| |
Collapse
|
44
|
Cao G, Howard ST, Zhang P, Wang X, Chen XL, Samten B, Pang X. EspR, a regulator of the ESX-1 secretion system in Mycobacterium tuberculosis, is directly regulated by the two-component systems MprAB and PhoPR. MICROBIOLOGY-SGM 2014; 161:477-89. [PMID: 25536998 DOI: 10.1099/mic.0.000023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regulatory mechanisms that control the ESX-1 secretion system, a key player in the pathogenesis of Mycobacterium tuberculosis, have not been fully elucidated. However, factors that regulate the ESX-1 substrate EspA usually affect ESX-1 function. Previous studies showed that espA is directly regulated by the nucleoid-associated protein EspR and the two-component system (TCS) MprAB. The PhoPR TCS also activates espA, but the direct target of PhoP was unknown. In this report, we reveal that EspR is directly regulated by MprA and PhoP-Rv, but not by PhoP-Ra. PhoP-Rv and MprA binding sites in the espR promoter were determined by gel-shift and DNase I footprinting assays, which identified a PhoP-protected region centred approximately 205 bp before the espR start codon and that encompasses MprA Region-1, one of two MprA-protected regions. MprA Region-2 is located approximately 60 bp downstream of MprA Region-1 and overlaps a known EspR binding site. Nucleotides essential for the binding of PhoP and/or MprA were identified through site-directed DNA mutagenesis. Our studies also indicate that MprA Region-2, but not MprA Region-1/PhoP region, is required for the full expression of espR. Recombinant strains carrying mutations at MprA Region-2 exhibited lower transcription levels for espR, espA and espD, and had reduced EspR and EspA levels in cell lysates. These findings indicate that EspR may mediate the regulatory effect of PhoPR and MprAB, and provide more insight into the mechanisms underlying ESX-1 control.
Collapse
Affiliation(s)
- Guangxiang Cao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China Shandong Medicinal Biotechnology Center, Jinan, 250062, PR China
| | - Susan T Howard
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Peipei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Xisheng Wang
- Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Buka Samten
- Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| |
Collapse
|
45
|
Zhang P, Wu H, Chen XL, Deng Z, Bai L, Pang X. Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. Microbiology (Reading) 2014; 160:1379-1392. [DOI: 10.1099/mic.0.076901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclothiazomycin is a member of the thiopeptide antibiotics, which are usually complicated derivatives of ribosomally synthesized peptides. A gene cluster containing 12 ORFs identical to the clt cluster encoding cyclothiazomycin from Streptomyces hygroscopicus 10-22 was revealed by genome sequencing in S. hygroscopicus 5008. Genes SHJG8833 and SHJG8837 of the cluster and flanking gene SHJG8838 were predicted to encode regulatory proteins from different families. In this study, we showed that the newly identified cluster is functional and we investigated the roles of these regulatory genes in the regulation of cyclothiazomycin biosynthesis. We determined that SHJG8833, but not SHJG8837 or SHJG8838, is critical for cyclothiazomycin biosynthesis. The transcriptional start point of SHJG8833 was located to a thymidine 54 nt upstream of the start codon. Inactivation of SHJG8833 abrogated the production of cyclothiazomycin, and synthesis could be restored by reintroducing SHJG8833 into the mutant strain. Gene expression analyses indicated that SHJG8833 regulates a consecutive set of seven genes from SHJG8826 to SHJG8832, whose products are predicted to be involved in different steps in the construction of the main framework of cyclothiazomycin. Transcriptional analysis indicated that these seven genes may form two operons, SHJG8826–27 and SHJG8828–32. Gel-shift analysis demonstrated that the DNA-binding domain of SHJG8833 binds the promoters of SHJG8826 and SHJG8828 and sequences internal to SHJG8826 and SHJG8829, and a conserved binding sequence was deduced. These results indicate that SHJG8833 is a positive regulator that controls cyclothiazomycin biosynthesis by activating structural genes in the clt cluster.
Collapse
Affiliation(s)
- Peipei Zhang
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, PR China
| | - Xiu-Lan Chen
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Zixin Deng
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Linquan Bai
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiuhua Pang
- Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
- The State Key Laboratory of Microbial Technology, Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| |
Collapse
|
46
|
Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB. Mapping of genotype-phenotype diversity among clinical isolates of mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol Evol 2014; 5:1849-62. [PMID: 24115728 PMCID: PMC3814196 DOI: 10.1093/gbe/evt138] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genome sequencing has identified an extensive repertoire of single nucleotide polymorphisms among clinical isolates of Mycobacterium tuberculosis, but the extent to which these differences influence phenotypic properties of the bacteria remains to be elucidated. To determine whether these polymorphisms give rise to phenotypic diversity, we have integrated genome data sets with RNA sequencing to assess their impact on the comparative transcriptome profiles of strains belonging to M. tuberculosis Lineages 1 and 2. We observed clear correlations between genotype and transcriptional phenotype. These arose by three mechanisms. First, lineage-specific changes in amino acid sequence of transcriptional regulators were associated with alterations in their ability to control gene expression. Second, changes in nucleotide sequence were associated with alteration of promoter activity and generation of novel transcriptional start sites in intergenic regions and within coding sequences. We show that in some cases this mechanism is expected to generate functionally active truncated proteins involved in innate immune recognition. Finally, genes showing lineage-specific patterns of differential expression not linked directly to primary mutations were characterized by a striking overrepresentation of toxin–antitoxin pairs. Taken together, these findings advance our understanding of mycobacterial evolution, contribute to a systems level understanding of this important human pathogen, and more broadly demonstrate the application of state-of-the-art techniques to provide novel insight into mechanisms by which intergenic and silent mutations contribute to diversity.
Collapse
Affiliation(s)
- Graham Rose
- MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Santos-Beneit F, Fernández-Martínez LT, Rodríguez-García A, Martín-Martín S, Ordóñez-Robles M, Yagüe P, Manteca A, Martín JF. Transcriptional response to vancomycin in a highly vancomycin-resistant Streptomyces coelicolor mutant. Future Microbiol 2014; 9:603-22. [DOI: 10.2217/fmb.14.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Aim: The main objective of this study is to understand the mechanism of vancomycin resistance in a Streptomyces coelicolor disrupted mutant highly resistant to vancomycin. Materials & methods: Different techniques have been performed in the study including gene disruption, primer extension, antibiotic susceptibility tests, electron microscopy, confocal microscopy, cell wall analysis and microarrays. Results: During the phenotypical characterization of mutant strains affected in phosphate-regulated genes of unknown function, we found that the S. coelicolor SCO2594 disrupted mutant was highly resistant to vancomycin and had other phenotypic alterations such as antibiotic overproduction, impaired growth and reduction of phosphate cell wall content. Transcriptomic studies with this mutant indicated a relationship between vancomycin resistance and cell wall stress. Conclusion: We identified a S. coelicolor mutant highly resistant to vancomycin in both high and low phosphate media. In addition to Van proteins, others such as WhiB or SigE appear to be involved in this regulatory mechanism.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain
- Departamento de Biología Molecular & IBBTEC, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena T Fernández-Martínez
- Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Antonio Rodríguez-García
- Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | - María Ordóñez-Robles
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional & IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional & IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
48
|
The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system. J Bacteriol 2013; 196:391-406. [PMID: 24187094 DOI: 10.1128/jb.01064-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world's population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB.
Collapse
|
49
|
Functional Analysis of the EspR Binding Sites Upstream of espR in Mycobacterium tuberculosis. Curr Microbiol 2013; 67:572-9. [DOI: 10.1007/s00284-013-0404-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/12/2013] [Indexed: 01/15/2023]
|
50
|
Lew JM, Mao C, Shukla M, Warren A, Will R, Kuznetsov D, Xenarios I, Robertson BD, Gordon SV, Schnappinger D, Cole ST, Sobral B. Database resources for the tuberculosis community. Tuberculosis (Edinb) 2013; 93:12-7. [PMID: 23332401 DOI: 10.1016/j.tube.2012.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Access to online repositories for genomic and associated "-omics" datasets is now an essential part of everyday research activity. It is important therefore that the Tuberculosis community is aware of the databases and tools available to them online, as well as for the database hosts to know what the needs of the research community are. One of the goals of the Tuberculosis Annotation Jamboree, held in Washington DC on March 7th-8th 2012, was therefore to provide an overview of the current status of three key Tuberculosis resources, TubercuList (tuberculist.epfl.ch), TB Database (www.tbdb.org), and Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org). Here we summarize some key updates and upcoming features in TubercuList, and provide an overview of the PATRIC site and its online tools for pathogen RNA-Seq analysis.
Collapse
Affiliation(s)
- Jocelyne M Lew
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|