1
|
Saeed MI. Minireview: Designing next generation human metapneumovirus (HMPV) vaccine. Clin Exp Vaccine Res 2025; 14:116-118. [PMID: 40321790 PMCID: PMC12046092 DOI: 10.7774/cevr.2025.14.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 05/08/2025] Open
Abstract
The recently circulating human metapneumovirus (HMPV) is a serious respiratory infection that affects immunocompromised persons, the elderly, and children. HMPV infections can cause significant morbidity, including pneumonia, bronchiolitis, and worsen chronic respiratory diseases. Despite the clinical burden, there is still no licensed HMPV vaccine. This short review examines the mechanisms underpinning next generation HMPV vaccines, the gene involved, the significant epitopes, the immunological responses they elicit, and the potential impact on herd immunity.
Collapse
|
2
|
Chongyu T, Guanglin L, Fang S, Zhuoya D, Hao Y, Cong L, Xinyu L, Wei H, Lingyun T, Yan N, Penghui Y. A chimeric influenza virus vaccine expressing fusion protein epitopes induces protection from human metapneumovirus challenge in mice. Front Microbiol 2023; 13:1012873. [PMID: 38155756 PMCID: PMC10753001 DOI: 10.3389/fmicb.2022.1012873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2023] Open
Abstract
Human metapneumovirus (HMPV) is a common virus associated with acute respiratory distress syndrome in pediatric patients. There are no HMPV vaccines or therapeutics that have been approved for prevention or treatment. In this study, we constructed a novel recombinant influenza virus carrying partial HMPV fusion protein (HMPV-F), termed rFLU-HMPV/F-NS, utilizing reverse genetics, which contained (HMPV-F) in the background of NS segments of influenza virus A/PuertoRico/8/34(PR8). The morphological characteristics of rFLU-HMPV/F-NS were consistent with the wild-type flu virus. Additionally, immunofluorescence results showed that fusion proteins in the chimeric rFLU-HMPV/F-NS could work well, and the virus could be stably passaged in SPF chicken embryos. Furthermore, intranasal immunization with rFLU-HMPV/F-NS in BALB/c mice induced robust humoral, mucosal and Th1-type dominant cellular immune responses in vivo. More importantly, we discovered that rFLU-HMPV/F-NS afforded significant protective efficacy against the wild-type HMPV and influenza virus challenge, with significantly attenuated pathological changes and reduced viral titers in the lung tissues of immunized mice. Collectively, these findings demonstrated that chimeric recombinant rFLU-HMPV/F-NS as a promising HMPV candidate vaccine has potentials for the development of HMPV vaccine.
Collapse
Affiliation(s)
- Tian Chongyu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Lei Guanglin
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sun Fang
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deng Zhuoya
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Hao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Cong
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Xinyu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - He Wei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tan Lingyun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Niu Yan
- Inner Mongolia Medical University, Hohhot, China
| | - Yang Penghui
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Inner Mongolia Medical University, Hohhot, China
- First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Host Components That Modulate the Disease Caused by hMPV. Viruses 2021; 13:v13030519. [PMID: 33809875 PMCID: PMC8004172 DOI: 10.3390/v13030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main pathogens responsible for acute respiratory infections in children up to 5 years of age, contributing substantially to health burden. The worldwide economic and social impact of this virus is significant and must be addressed. The structural components of hMPV (either proteins or genetic material) can be detected by several receptors expressed by host cells through the engagement of pattern recognition receptors. The recognition of the structural components of hMPV can promote the signaling of the immune response to clear the infection, leading to the activation of several pathways, such as those related to the interferon response. Even so, several intrinsic factors are capable of modulating the immune response or directly inhibiting the replication of hMPV. This article will discuss the current knowledge regarding the innate and adaptive immune response during hMPV infections. Accordingly, the host intrinsic components capable of modulating the immune response and the elements capable of restricting viral replication during hMPV infections will be examined.
Collapse
|
4
|
Pilaev M, Shen Y, Carbonneau J, Venable MC, Rhéaume C, Lavigne S, Couture C, Guarné A, Hamelin MÈ, Boivin G. Evaluation of pre- and post-fusion Human metapneumovirus F proteins as subunit vaccine candidates in mice. Vaccine 2020; 38:2122-2127. [DOI: 10.1016/j.vaccine.2020.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
|
5
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|
6
|
Tzelepis F, Blagih J, Khan N, Gillard J, Mendonca L, Roy DG, Ma EH, Joubert P, Jones RG, Divangahi M. Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci Immunol 2018; 3:eaar4135. [PMID: 29752301 DOI: 10.1126/sciimmunol.aar4135] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most ancient human pathogens, yet the exact mechanism(s) of host defense against Mtb remains unclear. Although one-third of the world's population is chronically infected with Mtb, only 5 to 10% develop active disease. This indicates that, in addition to resistance mechanisms that control bacterial burden, the host has also evolved strategies to tolerate the presence of Mtb to limit disease severity. We identify mitochondrial cyclophilin D (CypD) as a critical checkpoint of T cell metabolism that controls the expansion of activated T cells. Although loss of CypD function in T cells led to enhanced Mtb antigen-specific T cell responses, this increased T cell response had no impact on bacterial burden. Rather, mice containing CypD-deficient T cells exhibited substantially compromised disease tolerance and succumbed to Mtb infection. This study establishes a mechanistic link between T cell-mediated immunity and disease tolerance during Mtb infection.
Collapse
Affiliation(s)
- Fanny Tzelepis
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Julianna Blagih
- Goodman Cancer Research Centre and Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Nargis Khan
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Joshua Gillard
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Laura Mendonca
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Dominic G Roy
- Goodman Cancer Research Centre and Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Eric H Ma
- Goodman Cancer Research Centre and Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Philippe Joubert
- Department of Pathology, Quebec Heart and Lung Institute, Laval University, 2725 Chemin Sainte-Foy, Quebec, Quebec G1V 4G5, Canada
| | - Russell G Jones
- Goodman Cancer Research Centre and Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
7
|
Olmedillas E, Cano O, Martínez I, Luque D, Terrón MC, McLellan JS, Melero JA, Más V. Chimeric Pneumoviridae fusion proteins as immunogens to induce cross-neutralizing antibody responses. EMBO Mol Med 2018; 10:175-187. [PMID: 29217660 PMCID: PMC5801496 DOI: 10.15252/emmm.201708078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/30/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV), two members of the Pneumoviridae family, account for the majority of severe lower respiratory tract infections worldwide in very young children. They are also a frequent cause of morbidity and mortality in the elderly and immunocompromised adults. High levels of neutralizing antibodies, mostly directed against the viral fusion (F) glycoprotein, correlate with protection against either hRSV or hMPV However, no cross-neutralization is observed in polyclonal antibody responses raised after virus infection or immunization with purified F proteins. Based on crystal structures of hRSV F and hMPV F, we designed chimeric F proteins in which certain residues of well-characterized antigenic sites were swapped between the two antigens. The antigenic changes were monitored by ELISA with virus-specific monoclonal antibodies. Inoculation of mice with these chimeras induced polyclonal cross-neutralizing antibody responses, and mice were protected against challenge with the virus used for grafting of the heterologous antigenic site. These results provide a proof of principle for chimeric fusion proteins as single immunogens that can induce cross-neutralizing antibody and protective responses against more than one human pneumovirus.
Collapse
Affiliation(s)
- Eduardo Olmedillas
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Cano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Luque
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María C Terrón
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Más
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines 2017; 16:419-431. [PMID: 28116910 DOI: 10.1080/14760584.2017.1283223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) has become one of the major pathogens causing acute respiratory infections (ARI) mainly affecting young children, immunocompromised patients, and the elderly. Currently there are no licensed vaccines against this virus. Areas covered: Since the discovery of hMPV in 2001, many groups have focused on developing vaccines against this pathogen. This review presents the outcomes and perspectives derived from preclinical studies performed in cell cultures and animals as well as the only candidate that has reached evaluation in a clinical trial. Limitations of the current vaccine candidates are discussed and perspectives for the development of plant-based vaccines are analyzed. Expert commentary: Several hMPV vaccine candidates are under development with the potential to progress into clinical trials. In parallel, the molecular farming field offers new opportunities to generate innovative vaccines that will offer several advantages in the fight against hMPV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- a Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, San Luis Potosí 78210 , SLP , Mexico
| |
Collapse
|
9
|
Más V, Rodriguez L, Olmedillas E, Cano O, Palomo C, Terrón MC, Luque D, Melero JA, McLellan JS. Engineering, Structure and Immunogenicity of the Human Metapneumovirus F Protein in the Postfusion Conformation. PLoS Pathog 2016; 12:e1005859. [PMID: 27611367 PMCID: PMC5017722 DOI: 10.1371/journal.ppat.1005859] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 08/10/2016] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.3 Å by X-ray crystallography. The structure resembles an elongated cone and is very similar to the postfusion F protein from the related human respiratory syncytial virus (hRSV). In contrast, significant differences were apparent with the postfusion F proteins from other paramyxoviruses, such as human parainfluenza type 3 (hPIV3) and Newcastle disease virus (NDV). The high similarity of hMPV and hRSV postfusion F in two antigenic sites targeted by neutralizing antibodies prompted us to test for antibody cross-reactivity. The widely used monoclonal antibody 101F, which binds to antigenic site IV of hRSV F, was found to cross-react with hMPV postfusion F and neutralize both hRSV and hMPV. Despite the cross-reactivity of 101F and the reported cross-reactivity of two other antibodies, 54G10 and MPE8, we found no detectable cross-reactivity in the polyclonal antibody responses raised in mice against the postfusion forms of either hMPV or hRSV F. The postfusion-stabilized hMPV F protein did, however, elicit high titers of hMPV-neutralizing activity, suggesting that it could serve as an effective subunit vaccine. Structural insights from these studies should be useful for designing novel immunogens able to induce wider cross-reactive antibody responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cross Reactions
- Crystallography, X-Ray
- Female
- Genetic Engineering
- Humans
- Metapneumovirus/genetics
- Metapneumovirus/immunology
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Molecular Conformation
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Sequence Alignment
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- Vicente Más
- Unidad de Biología Viral, Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Laura Rodriguez
- Unidad de Biología Viral, Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eduardo Olmedillas
- Unidad de Biología Viral, Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Olga Cano
- Unidad de Biología Viral, Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Concepción Palomo
- Unidad de Biología Viral, Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María C. Terrón
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José A. Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jason S. McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
10
|
New Approaches for Immunization and Therapy against Human Metapneumovirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:858-66. [PMID: 26063237 DOI: 10.1128/cvi.00230-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human metapneumovirus (HMPV) is a paramyxovirus discovered in 2001 in the Netherlands. Studies have identified HMPV as an important causative agent of acute respiratory disease in infants, the elderly, and immunocompromised individuals. Clinical signs of infection range from mild upper respiratory illness to more serious lower respiratory illness, including bronchiolitis and pneumonia. There are currently no licensed therapeutics or vaccines against HMPV. However, several research groups have tested vaccine candidates and monoclonal antibodies in various animal models. Several of these approaches have shown promise in animal models. This minireview summarizes the current therapies used to treat HMPV infection as well as different approaches for immunization.
Collapse
|