1
|
Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. J Virol 2021; 95:JVI.02193-20. [PMID: 33627387 DOI: 10.1128/jvi.02193-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.
Collapse
|
2
|
Rohaim MA, El Naggar RF, Madbouly Y, AbdelSabour MA, Ahmed KA, Munir M. Comparative infectivity and transmissibility studies of wild-bird and chicken-origin highly pathogenic avian influenza viruses H5N8 in chickens. Comp Immunol Microbiol Infect Dis 2020; 74:101594. [PMID: 33271478 DOI: 10.1016/j.cimid.2020.101594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Despite the recent advances in avian influenza viruses surveillance and genomic data, fundamental questions concerning the ecology and evolution of these viruses remain elusive. In Egypt, H5N8 highly pathogenic avian influenza viruses (HPAIVs) are co-circulating simultaneously with HPAIVs of subtypes H5N1 and low-pathogenic avian influenza viruses (LPAIVs) of subtype H9N2 in both commercial and backyard poultry. In order to isolate AIVs from wild birds and to assess their potential in causing infection in commercial poultry, a total of thirty-four cloacal swab samples were collected from apparently healthy migratory wild birds (Anas acuta, Anas crecca, Rallus aquaticus, and Bubulcus ibis) from four Egyptian Governorates (Giza, Menoufia, Gharbia, and Dakahlia). Based on matrix (M) gene-targeting real-time reverse transcriptase PCR and subsequent genetic characterization, our results revealed two positive isolates (2/34) for H5N8 whereas no H5N1 and H9N2 subtypes were detected. Genetic characterization of the full-length haemagglutinin (HA) genes revealed the clustering of two reported isolates within genotype 5 of clade 2.3.4.4b. The potential of a wild bird-origin H5N8 virus isolated from a cattle egret for its transmission capability within and between chickens was investigated in compare to chicken origin H5N8 AIV. Chickens inoculated with cattle egret isolate showed varying clinical signs and detection of virus shedding. In contrast, the contact chickens showed less levels of virus secretion indicating efficient virus inter/intra-species transmission. These results demonstrated the possibility for spreading of wild bird origin H5N8 viruses between chicken. In conclusion, our study highlights the need for continuous and frequent monitoring of the genetic diversity of H5N8 AIVs in wild birds as well as commercial poultry sectors for better understanding and determining the genetic nature of these viruses, which is fundamental to predict any future threat through virus reassortment with the potential to threaten human and animal health. Likewise, an assessment of coverage and efficacy of different vaccines and or vaccination regimes in the field conditions should be reconsidered along with strict biosecurity measures.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, 32897 Sadat, Egypt
| | - Yehia Madbouly
- Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo 11381, Agricultural Research Center (ARC), Egypt
| | - Mohammed A AbdelSabour
- Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo 11381, Agricultural Research Center (ARC), Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Science, Lancaster University, LA1 4YG Lancaster, Lancashire, UK.
| |
Collapse
|
3
|
Jerry C, Stallknecht D, Leyson C, Berghaus R, Jordan B, Pantin-Jackwood M, Hitchener G, França M. Recombinant hemagglutinin glycoproteins provide insight into binding to host cells by H5 influenza viruses in wild and domestic birds. Virology 2020; 550:8-20. [PMID: 32861143 PMCID: PMC7554162 DOI: 10.1016/j.virol.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Clade 2.3.4.4, H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have caused devastating effects across wild and domestic bird populations. We investigated differences in the intensity and distribution of the hemagglutinin (HA) glycoprotein binding of a clade 2.3.4.4 H5 HPAIV compared to a H5 low pathogenic avian influenza virus (LPAIV). Recombinant HA from gene sequences from a HPAIV, A/Northern pintail/Washington/40964/2014(H5N2) and a LPAIV, A/mallard/MN/410/2000(H5N2) were generated and, via protein histochemistry, HA binding in respiratory, intestinal and cloacal bursal tissue was quantified as median area of binding (MAB). Poultry species, shorebirds, ducks and terrestrial birds were used. Differences in MAB were observed between the HPAIV and LPAIV H5 HAs. We demonstrate that clade 2.3.4.4 HPAIV H5 HA has a broader host cell binding across a variety of bird species compared to the LPAIV H5 HA. These findings support published results from experimental trials, and outcomes of natural disease outbreaks with these viruses.
Collapse
Affiliation(s)
- Carmen Jerry
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA; The Department of Pathology, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D.W Brooks Drive, Athens, GA, 30602, USA
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Roy Berghaus
- Food Animal Health and Management Program, Veterinary Medical Center, 2200 College Station Road, Athens, GA, 30602, USA
| | - Brian Jordan
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Gavin Hitchener
- Cornell University Duck Research Laboratory, 192 Old Country Road, Eastport, NY, 11941, USA
| | - Monique França
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
4
|
Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios. Mol Biol Evol 2019; 36:2069-2085. [PMID: 31127303 PMCID: PMC6735705 DOI: 10.1093/molbev/msz131] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees. One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the uncertainty of inferences. We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts (namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools. The method is implemented in the PastML program and web server. The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corresponding to transmissions among untreated patients.
Collapse
Affiliation(s)
- Sohta A Ishikawa
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Evolutionary Genomics of RNA Viruses, Virology Department, Institut Pasteur, Paris, France
| | - Anna Zhukova
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
| | - Wataru Iwasaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Gascuel
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
| |
Collapse
|
5
|
Mine J, Uchida Y, Sharshov K, Sobolev I, Shestopalov A, Saito T. Phylogeographic evidence for the inter- and intracontinental dissemination of avian influenza viruses via migration flyways. PLoS One 2019; 14:e0218506. [PMID: 31242207 PMCID: PMC6594620 DOI: 10.1371/journal.pone.0218506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Genetically related highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype caused outbreaks simultaneously in East Asia and Europe—geographically distinct regions—during winter 2017–2018. This situation prompted us to consider whether the application of phylogeographic analysis to a particular gene segment of AIVs could provide clues for understanding how AIV had been disseminated across the continent. Here, the N6 NA genes of influenza viruses isolated across the world were subjected to phylogeographic analysis to illustrate the inter- and intracontinental dissemination of AIVs. Those isolated in East Asia during winter and in Mongolia/Siberia during summer were comingled within particular clades of the phylogeographic tree. For AIVs in one clade, their dissemination in eastern Eurasia extended from Yakutia, Russia, in the north to East Asia in the south. AIVs in western Asia, Europe, and Mongolia were also comingled within other clades, indicating that Mongolia/Siberia plays an important role in the dissemination of AIVs across the Eurasian continent. Mongolia/Siberia may therefore have played a role in the simultaneous outbreaks of H5N6 HPAIVs in Europe and East Asia during the winter of 2017–2018. In addition to the long-distance intracontinental disseminations described above, intercontinental disseminations of AIVs between Eurasia and Africa and between Eurasia and North America were also observed. Integrating these results and known migration flyways suggested that the migration of wild birds and the overlap of flyways, such as that observed in Mongolia/Siberia and along the Alaskan Peninsula, contributed to the long-distance intra- and intercontinental dissemination of AIVs. These findings highlight the importance of understanding the movement of migratory birds and the dynamics of AIVs in breeding areas—especially where several migration flyways overlap—in forecasting outbreaks caused by HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
6
|
Mathieu C, Gonzalez A, Garcia A, Johow M, Badia C, Jara C, Nuñez P, Neira V, Montiel NA, Killian ML, Brito BP. H7N6 low pathogenic avian influenza outbreak in commercial turkey farms in Chile caused by a native South American Lineage. Transbound Emerg Dis 2019; 68:2-12. [PMID: 30945819 DOI: 10.1111/tbed.13166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
In December 2016, low pathogenic avian influenza (LPAI) caused by an H7N6 subtype was confirmed in a grow-out turkey farm located in Valparaiso Region, Chile. Depopulation of exposed animals, zoning, animal movement control and active surveillance were implemented to contain the outbreak. Two weeks later, a second grow-out turkey farm located 70 km north of the first site was also infected by H7N6 LPAI, which subsequently spilled over to one backyard poultry flock. The virus involved in the outbreak shared a close genetic relationship with Chilean aquatic birds' viruses collected in previous years. The A/turkey/Chile/2017(H7N6) LPAI virus belonged to a native South American lineage. Based on the H7 and most of the internal genes' phylogenies, these viruses were also closely related to the ones that caused a highly pathogenic avian influenza outbreak in Chile in 2002. Results from this study help to understand the regional dynamics of influenza outbreaks, highlighting the importance of local native viruses circulating in the natural reservoir hosts.
Collapse
Affiliation(s)
- Christian Mathieu
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Alvaro Gonzalez
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Alfonso Garcia
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Magdalena Johow
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Catalina Badia
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Cecilia Jara
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Paula Nuñez
- Servicio Agrícola y Ganadero (SAG), Laboratorio y Estación Cuarentenaria de Lo Aguirre, Santiago, Chile
| | - Victor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana, Santiago, Chile
| | - Nestor A Montiel
- National Veterinary Services Laboratories, Science, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, Iowa
| | - Mary Lea Killian
- National Veterinary Services Laboratories, Science, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, Iowa
| | - Barbara P Brito
- The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Poen MJ, Venkatesh D, Bestebroer TM, Vuong O, Scheuer RD, Oude Munnink BB, de Meulder D, Richard M, Kuiken T, Koopmans MPG, Kelder L, Kim YJ, Lee YJ, Steensels M, Lambrecht B, Dan A, Pohlmann A, Beer M, Savic V, Brown IH, Fouchier RAM, Lewis NS. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017-18. Virus Evol 2019; 5:vez004. [PMID: 31024736 PMCID: PMC6476160 DOI: 10.1093/ve/vez004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4 viruses were first introduced into Europe in late 2014 and re-introduced in late 2016, following detections in Asia and Russia. In contrast to the 2014-15 H5N8 wave, there was substantial local virus amplification in wild birds in Europe in 2016-17 and associated wild bird mortality, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Since December 2017, several European countries have again reported events or outbreaks with HPAI H5N6 reassortant viruses in both wild birds and poultry, respectively. Previous phylogenetic studies have shown that the two earliest incursions of HPAI H5N8 viruses originated in Southeast Asia and subsequently spread to Europe. In contrast, this study indicates that recent HPAI H5N6 viruses evolved from the H5N8 2016-17 viruses during 2017 by reassortment of a European HPAI H5N8 virus and wild host reservoir LPAI viruses. The genetic and phenotypic differences between these outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern for both animal and human health. The current co-circulation of potentially zoonotic HPAI and LPAI virus strains in Asia warrants the determination of drivers responsible for the global spread of Asian lineage viruses and the potential threat they pose to public health.
Collapse
Affiliation(s)
- Marjolein J Poen
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Divya Venkatesh
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Oanh Vuong
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rachel D Scheuer
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Leon Kelder
- Staatsbosbeheer, Amersfoort, the Netherlands
| | - Yong-Joo Kim
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Republic of Korea
| | | | | | - Adam Dan
- Veterinary Diagnostics Directorate, Budapest, Hungary
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Ian H Brown
- OIE/FAO/EURL International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA)—Weybridge, Addlestone, Surrey, UK
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Nicola S Lewis
- OIE/FAO/EURL International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA)—Weybridge, Addlestone, Surrey, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| |
Collapse
|
8
|
Wille M, Latorre-Margalef N, Tolf C, Halpin R, Wentworth D, Fouchier RAM, Raghwani J, Pybus OG, Olsen B, Waldenström J. Where do all the subtypes go? Temporal dynamics of H8-H12 influenza A viruses in waterfowl. Virus Evol 2018; 4:vey025. [PMID: 30151242 PMCID: PMC6101617 DOI: 10.1093/ve/vey025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Influenza A virus (IAV) is ubiquitous in waterfowl. In the northern hemisphere IAV prevalence is highest during the autumn and coincides with a peak in viral subtype diversity. Although haemagglutinin subtypes H1-H12 are associated with waterfowl hosts, subtypes H8-H12 are detected very infrequently. To better understand the role of waterfowl in the maintenance of these rare subtypes, we sequenced H8-H12 viruses isolated from Mallards (Anas platyrhynchos) from 2002 to 2009. These rare viruses exhibited varying ecological and phylodynamic features. The Eurasian clades of H8 and H12 phylogenies were dominated by waterfowl sequences; mostly viruses sequenced in this study. H11, once believed to be a subtype that infected charadriiformes (shorebirds), exhibited patterns more typical of common virus subtypes. Finally, subtypes H9 and H10, which have maintained lineages in poultry, showed markedly different patterns: H10 was associated with all possible NA subtypes and this drove HA lineage diversity within years. Rare viruses belonging to subtypes H8-H12 were highly reassorted, indicating that these rare subtypes are part of the broader IAV pool. Our results suggest that waterfowl play a role in the maintenance of these rare subtypes, but we recommend additional sampling of non-traditional hosts to better understand the reservoirs of these rare viruses.
Collapse
Affiliation(s)
- Michelle Wille
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Neus Latorre-Margalef
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.,Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Conny Tolf
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - David Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD, USA
| | - Ron A M Fouchier
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - Björn Olsen
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden
| |
Collapse
|
9
|
Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. J Virol 2018; 92:JVI.00433-18. [PMID: 29769347 PMCID: PMC6052287 DOI: 10.1128/jvi.00433-18] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area. IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.
Collapse
|
10
|
Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. INFECTION GENETICS AND EVOLUTION 2017; 58:56-65. [PMID: 29248796 DOI: 10.1016/j.meegid.2017.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 01/16/2023]
Abstract
Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt.
Collapse
|
11
|
Abstract
Waterbirds are the main reservoir for low pathogenic avian influenza A viruses (LPAIV), from which occasional spillover to poultry occurs. When circulating among poultry, LPAIV may become highly pathogenic avian influenza A viruses (HPAIV). In recent years, the epidemiology of HPAIV viruses has changed drastically. HPAIV H5N1 are currently endemic among poultry in a number of countries. In addition, global spread of HPAIV H5Nx viruses has resulted in major outbreaks among wild birds and poultry worldwide. Using data collected during these outbreaks, the role of migratory birds as a vector became increasingly clear. Here we provide an overview of current data about various aspects of the changing role of wild birds in the epidemiology of avian influenza A viruses.
Collapse
|
12
|
Fourment M, Darling AE, Holmes EC. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol Biol 2017; 17:118. [PMID: 28545432 PMCID: PMC5445350 DOI: 10.1186/s12862-017-0965-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background Wild birds are the major reservoir hosts for influenza A viruses (AIVs) and have been implicated in the emergence of pandemic events in livestock and human populations. Understanding how AIVs spread within and across continents is therefore critical to the development of successful strategies to manage and reduce the impact of influenza outbreaks. In North America many bird species undergo seasonal migratory movements along a North-South axis, thereby providing opportunities for viruses to spread over long distances. However, the role played by such avian flyways in shaping the genetic structure of AIV populations remains uncertain. Results To assess the relative contribution of bird migration along flyways to the genetic structure of AIV we performed a large-scale phylogeographic study of viruses sampled in the USA and Canada, involving the analysis of 3805 to 4505 sequences from 36 to 38 geographic localities depending on the gene segment data set. To assist in this we developed a maximum likelihood-based genetic algorithm to explore a wide range of complex spatial models, depicting a more complete picture of the migration network than determined previously. Conclusions Based on phylogenies estimated from nucleotide sequence data sets, our results show that AIV migration rates are significantly higher within than between flyways, indicating that the migratory patterns of birds play a key role in viral dispersal. These findings provide valuable insights into the evolution, maintenance and transmission of AIVs, in turn allowing the development of improved programs for surveillance and risk assessment.
Collapse
Affiliation(s)
- Mathieu Fourment
- ithree institute, University of Technology Sydney, Sydney, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia.
| | - Aaron E Darling
- ithree institute, University of Technology Sydney, Sydney, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Gonzalez-Reiche AS, Nelson MI, Angel M, Müller ML, Ortiz L, Dutta J, van Bakel H, Cordon-Rosales C, Perez DR. Evidence of Intercontinental Spread and Uncommon Variants of Low-Pathogenicity Avian Influenza Viruses in Ducks Overwintering in Guatemala. mSphere 2017; 2:e00362-16. [PMID: 28405632 PMCID: PMC5381266 DOI: 10.1128/msphere.00362-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 01/02/2023] Open
Abstract
Over a hundred species of aquatic birds overwinter in Central America's wetlands, providing opportunities for the transmission of influenza A viruses (IAVs). To date, limited IAV surveillance in Central America hinders our understanding of the evolution and ecology of IAVs in migratory hosts within the Western Hemisphere. To address this gap, we sequenced the genomes of 68 virus isolates obtained from ducks overwintering along Guatemala's Pacific Coast during 2010 to 2013. High genetic diversity was observed, including 9 hemagglutinin (HA) subtypes, 7 neuraminidase (NA) subtypes, and multiple avian IAV lineages that have been detected at low levels (<1%) in North America. An unusually large number of viruses with the rare H14 subtype were identified (n = 14) over two consecutive seasons, the highest number of H14 viruses ever reported in a single location, providing evidence for a possible H14 source population located outside routinely sampled regions of North America. Viruses from Guatemala were positioned within minor clades divergent from the main North American lineage on phylogenies inferred for the H3, H4, N2, N8, PA, NP, and NS segments. A time-scaled phylogeny indicates that a Eurasian virus PA segment introduced into the Americas in the early 2000s disseminated to Guatemala during ~2007.1 to 2010.4 (95% highest posterior density [HPD]). Overall, the diversity detected in Guatemala in overwintering ducks highlights the potential role of Central America in the evolution of diverse IAV lineages in the Americas, including divergent variants rarely detected in the United States, and the importance of increasing IAV surveillance throughout Central America. IMPORTANCE Recent outbreaks of highly pathogenic H7N3, H5Nx, and H7N8 avian influenza viruses in North America were introduced by migratory birds, underscoring the importance of understanding how wild birds contribute to the dissemination and evolution of IAVs in nature. At least four of the main IAV duck host species in North America migrate through or overwinter within a narrow strip of Central America, providing opportunities for diverse IAV lineages to mix and exchange gene segments. By obtaining whole-genome sequences of 68 IAV isolates collected from migratory waterfowl in Guatemala (2010 to 2013), the largest data set available from Central America to date, we detected extensive viral diversity, including gene variants rarely found in North America and gene segments of Eurasian origin. Our findings highlight the need for increased IAV surveillance across the geographical span of bird migration flyways, including Neotropical regions that have been vastly undersampled to date.
Collapse
Affiliation(s)
- Ana S. Gonzalez-Reiche
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mathew Angel
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| | - Maria L. Müller
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucia Ortiz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Veterinary Medicine, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
14
|
Ge Y, Chai H, Fan Z, Wang X, Yao Q, Ma J, Chen S, Hua Y, Deng G, Chen H. New H6 influenza virus reassortment strains isolated from Anser fabalis in Anhui Province, China. Virol J 2017; 14:36. [PMID: 28222765 PMCID: PMC5320792 DOI: 10.1186/s12985-017-0680-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022] Open
Abstract
Background H6 subtype avian influenza viruses are globally distributed and, in recent years, have been isolated with increasing frequency from both domestic and wild bird species as well as infected humans. Many reports have examined the viruses in the context of poultry or several wild bird species, but there is less information regarding their presence in migratory birds. Methods Hemagglutination and hemagglutination inhibition tests were used to measure HA activity for different HA subtypes. Whole viral genomes were sequenced and analysed using DNAstar and MEGA 6 to understand their genetic evolution. Pathogenicity was evaluated using a mouse infection model. Results We isolated 13 strains of H6 virus from faecal samples of migratory waterfowl in Anhui Province of China in 2014. Phylogenetic analysis showed gene reassortment between Eurasian and North American lineages. Five of the identified H6 strains had the ability to infect mice without adaptation. Conclusion Our findings suggest that regular surveillance of wild birds, especially migratory birds, is important for providing early warning and control of avian influenza outbreaks.
Collapse
Affiliation(s)
- Ye Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.,College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Zhiqiang Fan
- School of Life Sciences, Anqing Normal University, Anqing, Anhui Province, China
| | - Xianfu Wang
- Natural Protection & Management Station of Forestry Department Centre of Anhui Province, Hefei, Anhui Province, China
| | - Qiucheng Yao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Si Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
15
|
Abstract
We tested wild birds in Poland during 2008-15 for avian influenza virus (AIV). We took 10,312 swabs and feces samples from 6,314 live birds representing 12 orders and 84 bird species, mostly from orders Anseriformes and Charadriiformes, for testing and characterization by various PCR methods. From PCR-positive samples, we attempted to isolate and subtype the virus. The RNA of AIV was detected in 1.8% (95% confidence interval [CI], 1.5-2.1%) of birds represented by 48 Mallards ( Anas platyrhynchos ), 11 Mute Swans ( Cygnus olor ), 48 Common Teals ( Anas crecca ), three Black-headed Gulls (Chroicocephalus ridibundus), one Common Coot ( Fulica atra ), one Garganey (Spatula querquedula), and one unidentified bird species. Overall, the prevalence of AIV detection in Mallards and Mute Swans (the most frequently sampled species) was 2.0% (95% CI, 1.4-2.5%) and 0.5% (95% CI, 0.2-0.8%), respectively; the difference was statistically significant (P=0.000). Hemagglutinin subtypes from H1 to H13 were identified, including H5 and H7 low pathogenic AIV subtypes. Mallards and Common Teals harbored the greatest diversity of subtypes. We observed seasonality of viral detection in Mallards, with higher AIV prevalence in late summer and autumn than in winter and spring. In addition, two peaks in AIV prevalence in summer (August) and autumn (November) were demonstrated for Mallards. The prevalence of AIV in Mute Swans did not show any statistically significant seasonal patterns.
Collapse
|
16
|
Gillman A. Risk of resistant avian influenza A virus in wild waterfowl as a result of environmental release of oseltamivir. Infect Ecol Epidemiol 2016; 6:32870. [PMID: 27733236 PMCID: PMC5061866 DOI: 10.3402/iee.v6.32870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Oseltamivir is the best available anti-influenza drug and has therefore been stockpiled worldwide in large quantities as part of influenza pandemic preparedness planning. The active metabolite oseltamivir carboxylate (OC) is stable and is not removed by conventional sewage treatment. Active OC has been detected in river water at concentrations up to 0.86 µg/L. Although the natural reservoir hosts of influenza A virus (IAV) are wild waterfowl that reside in aquatic environments, the ecologic risks associated with environmental OC release and its potential to generate resistant viral variants among wild birds has largely been unknown. However, in recent years a number of in vivo mallard (Anas platyrhynchos) studies have been conducted regarding the potential of avian IAVs to become resistant to OC in natural reservoir birds if these are drug exposed. Development of resistance to OC was observed both in Group 1 (N1) and Group 2 (N2, N9) neuraminidase subtypes, when infected ducks were exposed to OC at concentrations between 0.95 and 12 µg/L in their water. All resistant variants maintained replication and transmission between ducks during drug exposure. In an A(H1N1)/H274Y virus, the OC resistance mutation persisted without selective drug pressure, demonstrating the potential of an IAV with a permissive genetic background to acquire and maintain OC resistance, potentially allowing circulation of the resistant variant among wild birds. The experimental studies have improved the appreciation of the risks associated with the environmental release of OC related to resistance development of avian IAVs among wild birds. Combined with knowledge of efficient methods for improved sewage treatment, the observations warrant implementation of novel efficient wastewater treatment methods, rational use of anti-influenza drugs, and improved surveillance of IAV resistance in wild birds.
Collapse
Affiliation(s)
- Anna Gillman
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
17
|
Zhou S, Tian H, Wu X, Xu B, Yang J, Chan KKY, Huang S, Dong L, Brownstein J, Xu B. Genetic evidence for avian influenza H5N1 viral transmission along the Black Sea–Mediterranean Flyway. J Gen Virol 2016; 97:2129-2134. [DOI: 10.1099/jgv.0.000534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sen Zhou
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, PR China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, PR China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, PR China
| | - Bo Xu
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, PR China
| | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, PR China
| | - Karen Kie Yan Chan
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, PR China
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, PR China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Beijing Normal University, Beijing, PR China
| | - John Brownstein
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bing Xu
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, PR China
- Department of Geography, University of Utah, Salt Lake City, UT, USA
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, PR China
| |
Collapse
|
18
|
Nelson MI, Pollett S, Ghersi B, Silva M, Simons MP, Icochea E, Gonzalez AE, Segovia K, Kasper MR, Montgomery JM, Bausch DG. The Genetic Diversity of Influenza A Viruses in Wild Birds in Peru. PLoS One 2016; 11:e0146059. [PMID: 26784331 PMCID: PMC4718589 DOI: 10.1371/journal.pone.0146059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022] Open
Abstract
Our understanding of the global ecology of avian influenza A viruses (AIVs) is impeded by historically low levels of viral surveillance in Latin America. Through sampling and whole-genome sequencing of 31 AIVs from wild birds in Peru, we identified 10 HA subtypes (H1-H4, H6-H7, H10-H13) and 8 NA subtypes (N1-N3, N5-N9). The majority of Peruvian AIVs were closely related to AIVs found in North America. However, unusual reassortants, including a H13 virus containing a PA segment related to extremely divergent Argentinian viruses, suggest that substantial AIV diversity circulates undetected throughout South America.
Collapse
Affiliation(s)
- Martha I. Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Simon Pollett
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Bruno Ghersi
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
| | - Maria Silva
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
| | - Mark P. Simons
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
| | - Eliana Icochea
- Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | - Armando E. Gonzalez
- Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
| | - Karen Segovia
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
| | - Matthew R. Kasper
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
| | - Joel M. Montgomery
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
| | - Daniel G. Bausch
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Callao, Peru
- Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
19
|
Influenza A Virus Coinfection through Transmission Can Support High Levels of Reassortment. J Virol 2015; 89:8453-61. [PMID: 26041285 DOI: 10.1128/jvi.01162-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The reassortment of gene segments between influenza viruses increases genomic diversity and plays an important role in viral evolution. We have shown previously that this process is highly efficient within a coinfected cell and, given synchronous coinfection at moderate or high doses, can give rise to ~60 to 70% of progeny shed from an animal host. Conversely, reassortment in vivo can be rendered undetectable by lowering viral doses or extending the time between infections. One might also predict that seeding of transmitted viruses into different sites within the target tissue could limit subsequent reassortment. Given the potential for stochastic factors to restrict reassortment during natural infection, we sought to determine its efficiency in a host coinfected through transmission. Two scenarios were tested in a guinea pig model, using influenza A/Panama/2007/99 (H3N2) virus (wt) and a silently mutated variant (var) thereof as parental virus strains. In the first, coinfection was achieved by exposing a naive guinea pig to two cagemates, one infected with wt and the other with var virus. When such exposure led to coinfection, robust reassortment was typically seen, with 50 to 100% of isolates carrying reassortant genomes at one or more time points. In the second scenario, naive guinea pigs were exposed to a cagemate that had been coinoculated with wt and var viruses. Here, reassortment occurred in the coinoculated donor host, multiple variants were transmitted, and reassortants were prevalent in the recipient host. Together, these results demonstrate the immense potential for reassortment to generate viral diversity in nature. IMPORTANCE Influenza viruses evolve rapidly under selection due to the generation of viral diversity through two mechanisms. The first is the introduction of random errors into the genome by the viral polymerase, which occurs with a frequency of approximately 10(-5) errors/nucleotide replicated. The second is reassortment, or the exchange of gene segments between viruses. Reassortment is known to occur readily under well-controlled laboratory conditions, but its frequency in nature is not clear. Here, we tested the hypothesis that reassortment efficiency following coinfection through transmission would be reduced compared to that seen with coinoculation. Contrary to this hypothesis, our results indicate that coinfection achieved through transmission supports high levels of reassortment. These results suggest that reassortment is not exquisitely sensitive to stochastic effects associated with transmission and likely occurs in nature whenever a host is infected productively with more than one influenza A virus.
Collapse
|