1
|
Liu YG, Peng HR, Ren RW, Zhao P, Zhao LJ. CD11b maintains West Nile virus replication through modulation of immune response in human neuroblastoma cells. Virol J 2024; 21:158. [PMID: 39004752 PMCID: PMC11247799 DOI: 10.1186/s12985-024-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) is a rapidly spreading mosquito-borne virus accounted for neuroinvasive diseases. An insight into WNV-host factors interaction is necessary for development of therapeutic approaches against WNV infection. CD11b has key biological functions and been identified as a therapeutic target for several human diseases. The purpose of this study was to determine whether CD11b was implicated in WNV infection. METHODS SH-SY5Y cells with and without MEK1/2 inhibitor U0126 or AKT inhibitor MK-2206 treatment were infected with WNV. CD11b mRNA levels were assessed by real-time PCR. WNV replication and expression of stress (ATF6 and CHOP), pro-inflammatory (TNF-α), and antiviral (IFN-α, IFN-β, and IFN-γ) factors were evaluated in WNV-infected SH-SY5Y cells with CD11b siRNA transfection. Cell viability was determined by MTS assay. RESULTS CD11b mRNA expression was remarkably up-regulated by WNV in a time-dependent manner. U0126 but not MK-2206 treatment reduced the CD11b induction by WNV. CD11b knockdown significantly decreased WNV replication and protected the infected cells. CD11b knockdown markedly increased TNF-α, IFN-α, IFN-β, and IFN-γ mRNA expression induced by WNV. ATF6 mRNA expression was reduced upon CD11b knockdown following WNV infection. CONCLUSION These results demonstrate that CD11b is involved in maintaining WNV replication and modulating inflammatory as well as antiviral immune response, highlighting the potential of CD11b as a target for therapeutics for WNV infection.
Collapse
Affiliation(s)
- Yan-Gang Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China
| | - Hao-Ran Peng
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China
| | - Rui-Wen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China.
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Faculty of Naval Medicine, Naval Medical University, 800 Xiang-Yin Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Yao M, Cheng Z, Li X, Li Y, Ye W, Zhang H, Liu H, Zhang L, Lei Y, Zhang F, Lv X. N6-methyladenosine modification positively regulate Japanese encephalitis virus replication. Virol J 2024; 21:23. [PMID: 38243270 PMCID: PMC10799421 DOI: 10.1186/s12985-023-02275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
N6-methyladenosine (m6A) is present in diverse viral RNA and plays important regulatory roles in virus replication and host antiviral innate immunity. However, the role of m6A in regulating JEV replication has not been investigated. Here, we show that the JEV genome contains m6A modification upon infection of mouse neuroblast cells (neuro2a). JEV infection results in a decrease in the expression of m6A writer METTL3 in mouse brain tissue. METTL3 knockdown by siRNA leads to a substantial decrease in JEV replication and the production of progeny viruses at 48 hpi. Mechanically, JEV triggered a considerable increase in the innate immune response of METTL3 knockdown neuro2a cells compared to the control cells. Our study has revealed the distinctive m6A signatures of both the virus and host in neuro2a cells infected with JEV, illustrating the positive role of m6A modification in JEV infection. Our study further enhances understanding of the role of m6A modification in Flaviviridae viruses.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhirong Cheng
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xueyun Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
- College of Basic Medicine, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yuexiang Li
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xin Lv
- Department of Microbiology, Airforce Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
3
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
4
|
Zhang B, He Y, Xu Y, Mo F, Mi T, Shen QS, Li C, Li Y, Liu J, Wu Y, Chen G, Zhu W, Qin C, Hu B, Zhou G. Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death Dis 2018; 9:719. [PMID: 29915260 PMCID: PMC6006338 DOI: 10.1038/s41419-018-0763-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) poses a serious threat to the world’s public health yet without a cure. Certain JEV-infected neural cells express a subset of previously identified intrinsic antiviral interferon stimulated genes (ISGs), indicating brain cells retain autonomous antiviral immunity. However, whether this happens in composited brain remains unclear. Human pluripotent stem cell (hPSC)-derived organoids can model disorders caused by human endemic pathogens such as Zika virus, which may potentially address this question and facilitate the discovery of a cure for JE. We thus generated telencephalon organoid and infected them with JEV. We found JEV infection caused significant decline of cell proliferation and increase of cell death in brain organoid, resulting in smaller organoid spheres. JEV tended to infect astrocytes and neural progenitors, especially the population representing outer radial glial cells (oRGCs) of developing human brain. In addition, we revealed variable antiviral immunity in brain organoids of different stages of culture. In organoids of longer culture (older than 8 weeks), but not of early ones (less than 4 weeks), JEV infection caused typical activation of interferon signaling pathway. Preferential infection of oRGCs and differential antiviral response at various stages might explain the much more severe outcomes of JEV infection in the younger, which also provide clues to develop effective therapeutics of such diseases.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200032, PR China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yangzhige He
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yanpeng Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China
| | - Chunfeng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yali Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Guilai Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
6
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
7
|
Yao Y, Yang Y, He X, Wang X. miR-16-1 expression, heat shock protein 70 and inflammatory reactions in astrocytes of mice with epilepsy induced by encephalitis B virus infection. Exp Ther Med 2017; 14:495-498. [PMID: 28672958 PMCID: PMC5488623 DOI: 10.3892/etm.2017.4513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/16/2017] [Indexed: 02/03/2023] Open
Abstract
The upregulation of miR-16-1 expression and heat shock protein 70 (HSP70) and inflammatory reaction mechanism in astrocytes of mice with epilepsy induced by encephalitis B virus infection were studied. Six-to-eight-week-old healthy male C57BL/6 mice received intraperitoneal injection of pilocarpine (320-340 mg/kg, 40 mg/ml) to induce status epilepsy. After 7 days, mice were inoculated with 100 µl Dulbecco's modified Eagle's medium (DMEM) in the neck, including 6.25×23 PFU Japanese encephalitis virus P3 wild strain. The experiment was divided into 4 groups, including, the healthy control group, the epilepsy model group, the model group + negative inoculation group and the virus infection group with 10 mice in each group. The healthy control group received intraperitoneal injection of the same amount of normal saline; the model group + negative inoculation group was injected with the same amount of DMEM without P3. One and three days after infection, 5 mice from each group were sacrificed, hippocampus tissues were obtained and astrocytes were isolated. After purification, glial fibrillary acidic protein was identified by immunohistochemical staining. Infected glial cells were detected by P3 antigen of immunofluorescence staining. RT-PCR method was used to detect the expression of miR-16-1 mRNA in astrocytes. Western blot analysis was used to detect the expression of HSP70. ELISA method was used to detect the levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and nuclear factor-κB (NF-κB) inflammatory factors in tail vein blood. Level of expression of miR-16-1 mRNA, HSP70 as well as IL-6, TNF-α and NF-κB inflammatory factor levels of virus infected mice of 1 and 3 days were significantly higher (P<0.05) than those of model group and negative inoculation group and lowest in control group. In conclusion, the level of expression of miR-16-1 and HSP70 can be increased by the infection of Japanese encephalitis virus on the astrocytes of mice with epilepsy, to promote the expression of IL-6, TNF-α and NF-κB of inflammatory factors.
Collapse
Affiliation(s)
- Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuehua He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Li JR, Wu CC, Chang CY, Ou YC, Lin SY, Wang YY, Chen WY, Raung SL, Liao SL, Chen CJ. Susceptibility of naïve and differentiated PC12 cells to Japanese encephalitis virus infection. IUBMB Life 2017; 69:79-87. [PMID: 28111888 DOI: 10.1002/iub.1595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/10/2016] [Indexed: 11/06/2022]
Abstract
Japanese encephalitis is a mosquito-borne disease caused by Japanese encephalitis virus (JEV) infection. Although JEV infects and replicates in cells with multiple tissue origins, neurons are the preferential cells for JEV infection. Currently, the identities of JEV cell tropism are largely unclear. To gain better insight into the underlying identities of JEV cell tropism, this study was designed to compare the JEV cell tropism with naïve or differentiated PC12 cells. Through nerve growth factor-differentiated PC12 cells, we discovered that JEV efficiently replicated in differentiated PC12 cells rather than naïve cells. Mechanistic studies revealed that viral adsorption/attachment seemed not to be a crucial factor. Supporting data showed that antagonizing postreceptor intracellular signaling of interferons, along with the activation of suppressor of cytokine signaling-3 (SOCS3) expression and protein tyrosine phosphatase activity, were apparent in differentiated PC12 cells after JEV infection. Independent of differentiating inducing agents, the upregulation of SOCS3 expression and protein tyrosine phosphatase activity, as well as preferential JEV tropism, were common in JEV-infected differentiated PC12 cells. Using cultured primary neurons, JEV efficiently replicated in embryonic neurons rather than adult neurons, and the preference was accompanied by higher SOCS3 expression and protein tyrosine phosphatase activity. Given that both SOCS3 and protein tyrosine phosphatases have been implicated in the process of neuronal differentiation, JEV infection seems to not only create an antagonizing strategy to escape host's interferon antiviral response but also takes advantage of cellular machinery to favor its replication. Taken together, current findings imply that dynamic changes within cellular regulators of antiviral machinery could be accompanied by events of neuronal differentiation, thus concurrently playing roles in the control of JEV cell tropism and replication. © 2017 IUBMB Life, 69(2):79-87, 2017.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City, Taiwan
- Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Taichung Veterans General Hospital, Taichung City, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Shue-Ling Raung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| |
Collapse
|