1
|
Immunological Analysis of Nodavirus Capsid Displaying the Domain III of Japanese Encephalitis Virus Envelope Protein. Pharmaceutics 2021; 13:pharmaceutics13111826. [PMID: 34834244 PMCID: PMC8618745 DOI: 10.3390/pharmaceutics13111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the pathogen that causes Japanese encephalitis (JE) in humans and horses. Lethality of the virus was reported to be between 20–30%, of which, 30–50% of the JE survivors develop neurological and psychiatric sequelae. Attributed to the low effectiveness of current therapeutic approaches against JEV, vaccination remains the only effective approach to prevent the viral infection. Currently, live-attenuated and chimeric-live vaccines are widely used worldwide but these vaccines pose a risk of virulence restoration. Therefore, continuing development of JE vaccines with higher safety profiles and better protective efficacies is urgently needed. In this study, the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (CP) fused with the domain III of JEV envelope protein (JEV-DIII) was produced in Escherichia coli. The fusion protein (MrNV-CPJEV-DIII) assembled into virus-like particles (VLPs) with a diameter of approximately 18 nm. The BALB/c mice injected with the VLPs alone or in the presence of alum successfully elicited the production of anti-JEV-DIII antibody, with titers significantly higher than that in mice immunized with IMOJEV, a commercially available vaccine. Immunophenotyping showed that the MrNV-CPJEV-DIII supplemented with alum triggered proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer (NK) cells. Additionally, cytokine profiles of the immunized mice revealed activities of cytotoxic T-lymphocytes, macrophages, and NK cells, indicating the activation of adaptive cellular and innate immune responses mediated by MrNV-CPJEV-DIII VLPs. Induction of innate, humoral, and cellular immune responses by the MrNV-CPJEV-DIII VLPs suggest that the chimeric protein is a promising JEV vaccine candidate.
Collapse
|
2
|
Chauhan S, Rathore DK, Sachan S, Lacroix-Desmazes S, Gupta N, Awasthi A, Vrati S, Kalia M. Japanese Encephalitis Virus Infected Human Monocyte-Derived Dendritic Cells Activate a Transcriptional Network Leading to an Antiviral Inflammatory Response. Front Immunol 2021; 12:638694. [PMID: 34220803 PMCID: PMC8247639 DOI: 10.3389/fimmu.2021.638694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of the human immune response to virus infection is imperative for developing effective therapies, antivirals, and vaccines. Dendritic cells (DCs) are among the first cells to encounter the virus and are also key antigen-presenting cells that link the innate and adaptive immune system. In this study, we focus on the human immune response to the mosquito-borne Japanese encephalitis virus (JEV), which is the leading cause of virus-induced encephalitis in south-east Asia and has the potential to become a global pathogen. We describe the gene regulatory circuit of JEV infection in human monocyte-derived DCs (moDCs) along with its functional validation. We observe that JEV can productively infect human moDCs leading to robust transcriptional activation of the interferon and NF-κB-mediated antiviral and inflammatory pathways. This is accompanied with DC maturation and release of pro-inflammatory cytokines and chemokines TNFα, IL-6, IL-8, IL-12, MCP-1. and RANTES. JEV-infected moDCs activated T-regulatory cells (Tregs) in allogenic mixed lymphocyte reactions (MLR) as seen by upregulated FOXP3 mRNA expression, suggestive of a host response to reduce virus-induced immunopathology. The virus also downregulated transcripts involved in Peroxisome Proliferator Activated Receptor (PPAR) signalling and fatty acid metabolism pathways suggesting that changes in cellular metabolism play a crucial role in driving the DC maturation and antiviral responses. Collectively, our data describe and corroborate the human DC transcriptional network that is engaged upon JEV sensing.
Collapse
Affiliation(s)
| | | | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sebastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Awasthi
- Translational Health Science & Technology Institute, Faridabad, India
| | - Sudhanshu Vrati
- Translational Health Science & Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Manjula Kalia
- Translational Health Science & Technology Institute, Faridabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
3
|
Gore MM. Vaccines Against Dengue and West Nile Viruses in India: The Need of the Hour. Viral Immunol 2020; 33:423-433. [PMID: 32320353 DOI: 10.1089/vim.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of flaviviruses, dengue (DEN), Japanese encephalitis (JE) and West Nile (WN) viruses, and others, is generating a major concern in many countries. Both JE along with DEN have been endemic in large regions of India. WN virus infection, although circulating in southern regions for many years, in recent years, WN encephalitis patients have been demonstrated. While vaccines against JE have been developed and decrease outbreaks, in case of DEN and WN, vaccines are still in developing level, especially, it has been difficult to achieve the long-term protective immune response. The first licensed DEN vaccine, which is a live attenuated vaccine, was administered in countries where the virus is endemic, and has a potential to cause serious side effects, especially when administered to younger population as observed in the Philippines vaccination drive. In the case of WN, although the purified inactivated virion-based vaccine worked effectively as a veterinary vaccine for horses, no effective vaccine has yet been licensed for humans. The induction of CD4+ and CD8+ T cell responses is essential to complete protection by these viruses, as evidenced by responses to asymptomatic infections. Many studies have shown that neutralizing antibody (NAb) response is against surface structural proteins; CD4+ and CD8+ responses are mainly directed against nonstructural proteins rather than NAb response. New data suggest that encapsulating virus vaccines in nanoparticles (NPs) will direct antigen in cytoplasmic compartment by antigen-presenting cells, which will improve presentation to CD4+ and CD8+ T cells. Since tissue culture-derived, purified inactivated viruses are easier to manufacture and safer than developing live virus vaccines, inclusion of NP provides an attractive alternative for generating robust flaviviral vaccines that are affordable with long-lived protection.
Collapse
Affiliation(s)
- Milind M Gore
- Emeritus Scientist, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
4
|
Abstract
Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.
Collapse
|
5
|
In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep 2018. [PMID: 29311619 DOI: 10.1038/s41598‐017‐17765‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.
Collapse
|
6
|
Azevedo RSS, de Sousa JR, Araujo MTF, Martins Filho AJ, de Alcantara BN, Araujo FMC, Queiroz MGL, Cruz ACR, Vasconcelos BHB, Chiang JO, Martins LC, Casseb LMN, da Silva EV, Carvalho VL, Vasconcelos BCB, Rodrigues SG, Oliveira CS, Quaresma JAS, Vasconcelos PFC. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep 2018; 8:1. [PMID: 29311619 PMCID: PMC5758755 DOI: 10.1038/s41598-017-17765-5] [Citation(s) in RCA: 2414] [Impact Index Per Article: 344.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.
Collapse
Affiliation(s)
- Raimunda S S Azevedo
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Jorge R de Sousa
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Marialva T F Araujo
- Departamento de Patologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | - Bianca N de Alcantara
- Programa de Pós-Graduação em Virologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Fernanda M C Araujo
- Laboratório Central de Saúde Pública, SES do Ceará, Fortaleza, Ceará, Brazil
| | - Maria G L Queiroz
- Laboratório Central de Saúde Pública, SES do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ana C R Cruz
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Universidade do Estado do Pará, Belém, Pará, Brazil
| | | | - Jannifer O Chiang
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Lívia C Martins
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Livia M N Casseb
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Eliana V da Silva
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Valéria L Carvalho
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | - Sueli G Rodrigues
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Consuelo S Oliveira
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Universidade do Estado do Pará, Belém, Pará, Brazil
| | - Juarez A S Quaresma
- Universidade do Estado do Pará, Belém, Pará, Brazil.,Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Pedro F C Vasconcelos
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil. .,Universidade do Estado do Pará, Belém, Pará, Brazil.
| |
Collapse
|
7
|
Zia A, Singh D, Saxena S, Umrao J, Baluni M, Ghildiyal S, Fatima T, Shukla M, Agarwal V, Dhole TN. Detection of long term cellular immune response to Japanese encephalitis vaccination using IFN-γ ELIspot assay. J Med Virol 2017; 89:2235-2238. [PMID: 28671301 DOI: 10.1002/jmv.24893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/15/2017] [Indexed: 11/09/2022]
Abstract
Vaccine is the most effective preventive measure against Japanese Encephalitis infection. Role of IFN-γ expressing T cells for JE virus clearance has been described as a part of cellular immunity. Vaccine induced immunity also involve the cellular immune response, therefore the study was aimed to observe induction and persistence of IFN-γ expressing T cells by IFN-γ ELISpot assay. The cell count increased significantly after 28 (P < 0.0001) days post vaccination, and remained higher at all time points (day 28, day 180, day 360) when compared with prevaccination. This study will be helpful for designing future vaccination strategy and improving vaccine efficacy.
Collapse
Affiliation(s)
- Amreen Zia
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Dharamveer Singh
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Swati Saxena
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Jyoti Umrao
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manjari Baluni
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sneha Ghildiyal
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tanzeem Fatima
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukti Shukla
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vikas Agarwal
- Department of Clinical Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function. PLoS Negl Trop Dis 2017; 11:e0005329. [PMID: 28151989 PMCID: PMC5308832 DOI: 10.1371/journal.pntd.0005329] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/14/2017] [Accepted: 01/13/2017] [Indexed: 12/02/2022] Open
Abstract
Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. Japanese encephalitis virus (JEV) commonly infects human beings in developing countries including those in Southeast Asia. While the majority of the infected people suffer from mild illness, a minority suffers from encephalitis which may lead to death. The virus is transmitted by mosquito bites and elimination of mosquitoes is not a practical answer to prevent the disease, therefore, prevention by vaccination is a desired goal. While various vaccines are clinically tried and some are marketed further improvement in vaccines is still possible. In a complex disease like JE many components of the immune system contribute to variable extent in protection. We show here that one subset of T cells called CD8 cells which are capable of killing infected cells are very critical for providing protection against JEV infection in mice. In the absence of T cells we also observed that virus reaches the brain early, unlike in the presence of T cells, and this possibly results in high virus load in the brain leading to worsening of the condition and death. Thus, our data help in identifying the role of CD8 T cells in protection from lethal JEV infection and the information may be useful for modifying and/or developing vaccine for prevention of JEV-mediated disease.
Collapse
|
9
|
Shirai K, Hayasaka D, Kitaura K, Takasaki T, Morita K, Suzuki R, Kurane I. Qualitative differences in brain-infiltrating T cells are associated with a fatal outcome in mice infected with Japanese encephalitis virus. Arch Virol 2015; 160:765-75. [PMID: 25604524 PMCID: PMC4336650 DOI: 10.1007/s00705-014-2154-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/16/2014] [Indexed: 01/15/2023]
Abstract
Japanese encephalitis (JE) is the most important form of viral encephalitis in Asia. The critical factors determining mortality and severity of JE virus (JEV) infection remain unclear. We identified brain-infiltrating T cells associated with a fatal outcome of JEV infection in mice. Dying mice were defined as those that lost more than 25 % of their body weight by day 13 and died by day 21, while surviving mice were defined as those that lost less than 10 % by day 13, based on the result of the survival time course study. Two groups of five mice that demonstrated brain virus titers of >1 × 10(6) pfu/g were randomly selected from the dying and surviving groups and used in the analyses. Cytokine patterns in brains were first examined, revealing a higher ratio of Th1-related cytokine genes in dying mice. The expression levels of CD3, CD8, CD25, and CD69 increased in JEV-infected mice relative to mock-infected mice. However, expression levels of these cell-surface markers did not differ between the two groups. T-cell receptor (TCR) usage and complementary determining region 3 (CDR3) sequences were analyzed in the brain-infiltrating T cells. T cells expressing VA8-1, VA10-1, and VB2-1 increased in both groups. However, the dominant T-cell clones as defined by CDR3 amino acid sequence differed between the two groups. The results indicate that the outcome of JEV infection, death or survival, was determined by qualitative differences in infiltrating T-cell clones with unique CDR3 amino acid sequences.
Collapse
Affiliation(s)
- Kenji Shirai
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, 252-0392 Japan
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, 305-8575 Japan
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, GCOE program, Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kazutaka Kitaura
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, 252-0392 Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, GCOE program, Nagasaki University, Nagasaki, 852-8523 Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, 252-0392 Japan
| | - Ichiro Kurane
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, 305-8575 Japan
| |
Collapse
|
10
|
Gupta N, Hegde P, Lecerf M, Nain M, Kaur M, Kalia M, Vrati S, Bayry J, Lacroix-Desmazes S, Kaveri SV. Japanese encephalitis virus expands regulatory T cells by increasing the expression of PD-L1 on dendritic cells. Eur J Immunol 2014; 44:1363-74. [PMID: 24643627 DOI: 10.1002/eji.201343701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 01/09/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022]
Abstract
The mechanisms underlying Japanese encephalitis virus (JEV) pathogenesis need to be thoroughly explored to delineate therapeutic approaches. It is believed that JEV manipulates the innate and adaptive compartments of the host's immune system to evade immune response and cross the blood-brain barrier. The present study was thus designed to investigate the functional modulation of DCs after exposure to JEV and to assess the consequences on CD4(+) T-lymphocyte functions. Human monocyte-derived DCs were either infected with 1 MOI of live virus, UV-inactivated virus, or were mock-infected. Replication-competent JEV induced a significant increase in the expression of maturation markers 48 h postinfection, along with that of programmed cell death 1 ligand 1 (PD-L1; also called B7-H1 and CD274). JEV-infected DCs expanded the Treg cells in allogenic mixed lymphocyte reactions. The expansion of Treg cells by JEV-infected DCs was significantly reduced upon blocking PD-L1 using an antagonist. In addition, JEV-infected DCs significantly altered the proliferation and reduced the polarization of Th cells toward the Th1-cell phenotype. The results, for the first time, suggest that JEV evades the host's immune system by modulating the crosstalk between DCs and T lymphocytes via the PD-L1 axis.
Collapse
Affiliation(s)
- Nimesh Gupta
- Centre de Recherche des Cordeliers, INSERM, UMR S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Paris Descartes, UMR S 1138, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee HJ, Min KI, Park KH, Choi HJ, Kim MK, Ahn CY, Hong YJ, Kim YB. Comparison of JEV neutralization assay using pseudotyped JEV with the conventional plaque-reduction neutralization test. J Microbiol 2014; 52:435-40. [PMID: 24610332 PMCID: PMC7090846 DOI: 10.1007/s12275-014-3529-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
Abstract
We previously reported the development of a neutralization assay system for evaluating Japanese Encephalitis Virus (JEV) neutralizing antibody (NAb) using pseudotyped-JEV (JEV-PV). JEV-PV-based neutralization assay offers several advantages compared with the current standard plaque-reduction neutralization test (PRNT), including simplicity, safety, and speed. To evaluate the suitability of the JEV-PV assay as new replacement neutralization assay, we compared its repeatability, reproducibility, specificity, and correlated its results with those obtained using the PRNT. These analyses showed a close correlation between the results obtained with the JEV-PV assay and the PRNT, using the 50% plaque reduction method as a standard for measuring NAb titers to JEV. The validation results met all analytical acceptance criteria. These results suggest that the JEV-PV assay could serve as a safe and simple method for measuring NAb titer against JEV and could be used as an alternative approach for assaying the potency of JEV neutralization.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Bio-industrial technologies, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ong RY, Lum FM, Ng LFP. The fine line between protection and pathology in neurotropic flavivirus and alphavirus infections. Future Virol 2014. [DOI: 10.2217/fvl.14.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Flavivirus and alphavirus are two families of medically important arboviruses known to cause devastating neurologic disease. Exciting knowledge regarding epidemiology, disease and host immune responses are constantly unraveling. In this review, we aim to piece existing knowledge of neurotropic flavi- and alpha-viruses into a general, coherent picture of host–pathogen interactions. Special interest lies in the protective and pathologic host immunity to flavi- and alpha-viral infections, with a strong focus on West Nile virus, Japanese Encephalitis virus and Venezuelan equine encephalitis virus as representatives of their family.
Collapse
Affiliation(s)
- Ruo-Yan Ong
- Laboratory of Chikungunya Virus Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04–06 Immunos Biopolis, 138648, Singapore
| | - Fok-Moon Lum
- Laboratory of Chikungunya Virus Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04–06 Immunos Biopolis, 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Lisa FP Ng
- Laboratory of Chikungunya Virus Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04–06 Immunos Biopolis, 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| |
Collapse
|
13
|
Griffiths MJ, Turtle L, Solomon T. Japanese encephalitis virus infection. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:561-76. [PMID: 25015504 DOI: 10.1016/b978-0-444-53488-0.00026-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Michael J Griffiths
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | - Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; Walton Centre NHS Foundation Trust, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| |
Collapse
|
14
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
15
|
Evaluation of Japanese encephalitis virus polytope DNA vaccine candidate in BALB/c mice. Virus Res 2012; 170:118-25. [DOI: 10.1016/j.virusres.2012.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/26/2022]
|
16
|
Han YW, Singh SK, Eo SK. The Roles and Perspectives of Toll-Like Receptors and CD4(+) Helper T Cell Subsets in Acute Viral Encephalitis. Immune Netw 2012; 12:48-57. [PMID: 22740790 PMCID: PMC3382664 DOI: 10.4110/in.2012.12.2.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Acute viral encephalitis caused by neurotrophic viruses, such as mosquito-borne flaviviruses, is an emerging and re-emerging disease that represents an immense global health problem. Considerable progression has been made in understanding the pathogenesis of acute viral encephalitis, but the immune-pathological processes occurring during the progression of encephalitis and the roles played by various molecules and cellular components of the innate and adaptive systems still remain undefined. Recent findings reveal the significant contribution of Toll-like receptors (TLRs) and regulatory CD4+ T cells in the outcomes of infectious diseases caused by neurotrophic viruses. In this review, we discuss the ample evidence focused on the roles of TLRs and CD4+ helper T cell subsets on the progression of acute viral encephalitis. Finally, we draw attention to the importance of these molecules and cellular components in defining the pathogenesis of acute viral encephalitis, thereby providing new therapeutic avenues for this disease.
Collapse
Affiliation(s)
- Young Woo Han
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju 561-756, Korea
| | | | | |
Collapse
|
17
|
Abstract
The genus Flavivirus, family Flaviviridae, contains some of the most important arboviral pathogens of man. The genus includes several aetiological agents of encephalitis, the most significant being Japanese encephalitis virus, West Nile virus and tick-borne encephalitis virus. In each case, the majority of exposed individuals will not develop disease, but a minority will develop a severe illness with a significant chance of permanent neurological damage or death. The factors that determine this are numerous, involving complex interactions between virus and host and are still being actively uncovered. In many cases it appears that the immune response, while crucial to containing the virus and limiting spread to the brain, is also responsible for causing neurological damage. Innate responses can limit viral replication but may also be responsible for generating pathological levels of inflammation. Neutralizing antibody responses are protective but take time to develop. The role of T cells is less clear, and may be either protective or pathogenic. This review summarizes recent developments in the understanding of the pathogenesis of encephalitis caused by flaviviruses.
Collapse
Affiliation(s)
- L Turtle
- Institute of Infection & Global Health, The University of Liverpool, The Apex Building, 8 West Derby Street, Liverpool L69 7BE, UK.
| | | | | |
Collapse
|
18
|
Ahsan MF, Gore MM. Comparison of immune response generated against Japanese encephalitis virus envelope protein expressed by DNA vaccines under macrophage associated versus ubiquitous expression promoters. Virol J 2011; 8:382. [PMID: 21806845 PMCID: PMC3161000 DOI: 10.1186/1743-422x-8-382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/02/2011] [Indexed: 12/25/2022] Open
Abstract
Background Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis, with ~50,000 cases reported annually worldwide. Vaccination is the only measure for prevention. Recombinant vaccines are an efficient and safe alternative for formalin inactivated or live attenuated vaccines. Nowadays, incorporation of molecular adjuvants has been the main strategy for melioration of vaccines. Our attempt of immunomodulation is based on targeting antigen presenting cells (APC) "majorly macrophages" by using macrosialin promoter. We have compared the immune response of the constructed plasmids expressing JEV envelope (E) protein under the control of aforesaid promoter and cytomegalovirus (CMV) immediate early promoter in mouse model. Protection of immunized mice from lethal challenge with JEV was also studied. Results The E protein was successfully expressed in the macrophage cell line and was detected using immunofluorescence assay (IFA) and Western blotting. APC expressing promoter showed comparable expression to CMV promoter. Immunization of mice with either of the plasmids exhibited induction of variable JEV neutralizing antibody titres and provided protection from challenge with a lethal dose of JEV. Immune splenocytes showed proliferative response after stimulation with the JEV antigen (Ag), however, it was higher for CMV promoter. The magnitude of immunity provided by APC dominant promoter was non-significantly lower in comparison to CMV promoter. More importantly, immune response directed by APC promoter was skewed towards Th1 type in comparison to CMV promoter, this was evaluated by cytokine secretion profile of immune splenocytes stimulated with JEV Ag. Conclusions Thus, our APC-expressing DNA vaccination approach induces comparable immunity in comparison to ubiquitous promoter construct. The predominant Th1 type immune responses provide opportunities to further test its potency suitable for response in antiviral or anticancer vaccines.
Collapse
Affiliation(s)
- Mohammad Feraz Ahsan
- National Institute of Virology, Pashan Campus, 130/1, Sus Road, Pashan, Pune, India
| | | |
Collapse
|
19
|
Neutralization escape variant of West Nile virus associated with altered peripheral pathogenicity and differential cytokine profile. Virus Res 2011; 158:130-9. [DOI: 10.1016/j.virusres.2011.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/19/2022]
|
20
|
Modulation of immune responses by the antimicrobial peptide, epinecidin (Epi)-1, and establishment of an Epi-1-based inactivated vaccine. Biomaterials 2011; 32:3627-36. [DOI: 10.1016/j.biomaterials.2011.01.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/20/2011] [Indexed: 01/12/2023]
|
21
|
Unni SK, Růžek D, Chhatbar C, Mishra R, Johri MK, Singh SK. Japanese encephalitis virus: from genome to infectome. Microbes Infect 2011; 13:312-21. [DOI: 10.1016/j.micinf.2011.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
|
22
|
Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J Virol 2011; 85:5446-55. [PMID: 21450826 DOI: 10.1128/jvi.02611-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The immunological correlates for recovery from primary Japanese encephalitis virus (JEV) infection in humans and experimental animals remain poorly defined. To investigate the relative importance of the adaptive immune responses, we have established a mouse model for Japanese encephalitis in which a low-dose virus inoculum was administered into the footpads of adult C57BL/6 mice. In this model, ~60% of the mice developed a fatal encephalitis and a virus burden in the central nervous system (CNS). Using mice lacking B cells (μMT(-/-) mice) and immune B cell transfer to wild-type mice, we show a critically important role for humoral immunity in preventing virus spread to the CNS. T cell help played an essential part in the maintenance of an effective antibody response necessary to combat the infection, since mice lacking major histocompatibility complex class II showed truncated IgM and blunted IgG responses and uniformly high lethality. JEV infection resulted in extensive CD8(+) T cell activation, judged by upregulation of surface markers CD69 and CD25 and cytokine production after stimulation with a JEV NS4B protein-derived H-2D(b)-binding peptide and trafficking of virus-immune CD8(+) T cells into the CNS. However, no significant effect of CD8(+) T cells on the survival phenotype was found, which was corroborated in knockout mice lacking key effector molecules (Fas receptor, perforin, or granzymes) of cytolytic pathways triggered by T lymphocytes. Accordingly, CD8(+) T cells are mostly dispensable for recovery from infection with JEV. This finding highlights the conflicting role that CD8(+) T cells play in the pathogenesis of JEV and closely related encephalitic flaviviruses such as West Nile virus.
Collapse
|
23
|
Biswas SM, Kar S, Singh R, Chakraborty D, Vipat V, Raut CG, Mishra AC, Gore MM, Ghosh D. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. J Med Virol 2010; 82:304-10. [PMID: 20029807 DOI: 10.1002/jmv.21688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Japanese encephalitis virus (JEV) induces an acute infection of the central nervous system, the pathogenic mechanism of which is not fully understood. To investigate host response to JEV infection, 14-day-old mice were infected via the extraneural route, which resulted in encephalitis and death. Mice that received JEV immune splenocyte transfer were protected from extraneural JEV infection. Pathology and gene expression profiles were then compared in brains of mice that either succumbed to JEV infection or were protected from infection by JEV immune cell transfer. Mice undergoing progressive JEV infection had increased expression of proinflammatory cytokines, chemokines, and signal transducers associated with the interferon (IFN) pathway. In contrast, mice receiving immune cell transfer had increased production of the Th2 cytokine IL-4, and of IL-10, with subdued expression of IFN-gamma. We observed IL-10 to be an important factor in determining clinical outcome in JEV infection. Data obtained by microarray analysis were further confirmed by quantitative RT-PCR. Together, these data suggest that JEV infection causes an unregulated inflammatory response that can be countered by the expression of immunomodulatory cytokines in mice that survive lethal infection.
Collapse
Affiliation(s)
- S M Biswas
- National Institute of Virology, Sus Road Campus, Pashan, Pune, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|