1
|
Sangeet S, Sinha A, Nair MB, Mahata A, Sarkar R, Roy S. EVOLVE: A Web Platform for AI-Based Protein Mutation Prediction and Evolutionary Phase Exploration. J Chem Inf Model 2025; 65:4293-4310. [PMID: 40309917 DOI: 10.1021/acs.jcim.5c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
While predicting structure-function relationships from sequence data is fundamental in biophysical chemistry, identifying prospective single-point and collective mutation sites in proteins can help us stay ahead in understanding their potential effects on protein structure and function. Addressing the challenges of large sequence-space analysis, we present EVOLVE, a web tool enabling researchers to explore prospective mutation sites and their collective behavior. EVOLVE integrates a statistical mechanics-guided machine learning algorithms to predict probable mutational sites, with statistical mechanics calculating mutational entropy to accurately identify mutational hotspots. Validation against a number of viral protein sequences confirms its ability to predict mutations and their functional consequences. By leveraging statistical mechanics of phase transition concept, EVOLVE also quantifies mutational entropy fluctuations, offering a quantitative foundation for identifying Variants of Concern (VOC) or Variants under Monitoring (VUM) as per World Health Organization (WHO) guidelines. EVOLVE streamlines data upload and analysis with a user-friendly interface and comprehensive tutorials. Access EVOLVE free at https://evolve-iiserkol.com.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anushree Sinha
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Madhav B Nair
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Arpita Mahata
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| |
Collapse
|
2
|
Khalilzadeh M, Aldrich DJ, Maree HJ, Levy A. Complex interplay: The interactions between citrus tristeza virus and its host. Virology 2025; 603:110388. [PMID: 39787773 DOI: 10.1016/j.virol.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Citrus tristeza virus (CTV) is one of the largest and most economically important RNA viruses infecting plants. CTV's interactions with various citrus hosts can result in three diseases: quick decline, stem pitting, or seedling yellows. Studying CTV poses several challenges owing to its significant genetic diversity and the highly specific occurrence of disease symptoms when different genotypes infect different citrus hosts. Considerable progress has been made to functionally characterize the virus-host interactions involved in the induction of CTV's three diseases, revealing that the four CTV ORFs (p33, p18, p13 and p23) play significant roles in determining the pathogenicity of CTV infections. These ORFs are unique to CTV and are not conserved among other members of the family Closteroviridae. This minireview aims to capture the complexity of the factors that have been shown to be involved in CTV disease induction and highlights recent work that provides novel insights into this pathosystem.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| | - Dirk Jacobus Aldrich
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hans Jacob Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Citrus Research International, PO Box 2201, Matieland, 7602, South Africa
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA; Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Ferreira Sa Antunes T, Huguet-Tapia JC, Elena SF, Folimonova SY. Intra-Host Citrus Tristeza Virus Populations during Prolonged Infection Initiated by a Well-Defined Sequence Variant in Nicotiana benthamiana. Viruses 2024; 16:1385. [PMID: 39339861 PMCID: PMC11437405 DOI: 10.3390/v16091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs-deletions, insertions, and copy- and snap-backs-were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.
Collapse
Affiliation(s)
| | - José C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Valencia, Spain;
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| |
Collapse
|
4
|
Zindović J, Čizmović M, Vučurović A, Margaria P, Škorić D. Increased Diversity of Citrus Tristeza Virus in Europe. PLANT DISEASE 2024; 108:1344-1352. [PMID: 37990525 DOI: 10.1094/pdis-09-23-1718-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study investigated the genetic diversity of Citrus tristeza virus (CTV) isolates from Montenegro and Croatia, European countries with the northernmost citrus-growing regions situated on the Eastern Adriatic coast. Fifteen complete or nearly complete CTV genomes were reconstructed by high-throughput sequencing of samples collected in distinct municipalities in Montenegro and Opuzen municipality in Croatia. Phylogenetic analyses assigned some of the sequences to VT and T30 strains, previously recorded in Europe, while remarkably other isolates were placed in S1 and RB groups, which have not been reported in Europe so far. In addition, a new phylogenetic lineage comprising only isolates from Montenegro was delineated and tentatively proposed as the MNE cluster. Recombination analysis revealed evidence of 11 recombination events in the sequences obtained in this study, between isolates of related strains, within isolates of the same strain, and between distant strains. These findings show that CTV diversity in Europe is higher than reported before and calls for the reevaluation of management strategies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jelena Zindović
- Department for Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro
| | - Miroslav Čizmović
- Department for Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Paolo Margaria
- Plant Virus Department, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | - Dijana Škorić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Ghosh DK, Kokane A, Kokane S, Mukherjee K, Tenzin J, Surwase D, Deshmukh D, Gubyad M, Biswas KK. A Comprehensive Analysis of Citrus Tristeza Variants of Bhutan and Across the World. Front Microbiol 2022; 13:797463. [PMID: 35464978 PMCID: PMC9024366 DOI: 10.3389/fmicb.2022.797463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Mandarin orange is economically one of the most important fruit crops in Bhutan. However, in recent years, orange productivity has dropped due to severe infection of citrus tristeza virus (CTV) associated with the gradual decline of citrus orchards. Although the disease incidence has been reported, very limited information is available on genetic variability among the Bhutanese CTV variants. This study used reverse transcription PCR (RT-PCR) to detect CTV in collected field samples and recorded disease incidence up to 71.11% in Bhutan’s prominent citrus-growing regions. To elucidate the extent of genetic variabilities among the Bhutanese CTV variants, we targeted four independent genomic regions (5′ORF1a, p25, p23, and p18) and analyzed a total of 64 collected isolates. These genomic regions were amplified and sequenced for further comparative bioinformatics analysis. Comprehensive phylogenetic reconstructions of the GenBank deposited sequences, including the corresponding genomic locations from 53 whole-genome sequences, revealed unexpected and rich diversity among Bhutanese CTV variants. A resistant-breaking (RB) variant was also identified for the first time from the Asian subcontinent. Our analyses unambiguously identified five (T36, T3, T68, VT, and HA16-5) major, well-recognized CTV strains. Bhutanese CTV variants form two additional newly identified distinct clades with higher confidence, B1 and B2, named after Bhutan. The origin of each of these nine clades can be traced back to their root in the north-eastern region of India and Bhutan. Together, our study established a definitive framework for categorizing global CTV variants into their distinctive clades and provided novel insights into multiple genomic region-based genetic diversity assessments, including their pathogenicity status.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
- *Correspondence: Dilip Kumar Ghosh,
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Krishanu Mukherjee
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Jigme Tenzin
- National Citrus Program, Department of Agriculture, Royal Government of Bhutan, Thimpu, Bhutan
| | - Datta Surwase
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dhanshree Deshmukh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Kajal Kumar Biswas
- Department of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Moreno P, López C, Ruiz-Ruiz S, Peña L, Guerri J. From the smallest to the largest subcellular plant pathogen: Citrus tristeza virus and its unique p23 protein. Virus Res 2022; 314:198755. [PMID: 35341876 DOI: 10.1016/j.virusres.2022.198755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Knowledge on diseases caused by Citrus tristeza virus (CTV) has greatly increased in last decades after their etiology was demonstrated in the past seventies. Professor Ricardo Flores substantially contributed to these advances in topics like: i) improvement of virus purification to obtain biologically active virions, ii) sequencing mild CTV isolates for genetic comparisons with sequences of moderate or severe isolates and genetic engineering, iii) analysis of genetic variation of both CTV genomic RNA ends and features of the highly variable 5' end that allow accommodating this variation within a conserved secondary structure, iv) studies on the structure, subcellular localization and biological functions of the CTV-unique p23 protein, and v) potential use of p23 and other 3'-proximal regions of the CTV genome to develop transgenic citrus resistant to the virus. Here we review his main achievements on these topics and how they contributed to deeper understanding of CTV biology and to new potential measures for disease control.
Collapse
Affiliation(s)
- Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113-Valencia, Spain. (Retired).
| | - Carmelo López
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, 46022-Valencia, Spain
| | - Susana Ruiz-Ruiz
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46022-Valencia, Spain
| | - Leandro Peña
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022-Valencia, Spain
| | - José Guerri
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113-Valencia, Spain. (Retired)
| |
Collapse
|
7
|
In Memoriam of Ricardo Flores: The Career, Achievements, and Legacy of an inspirational plant virologist. Virus Res 2022. [DOI: 10.1016/j.virusres.2022.198718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Kwibuka Y, Bisimwa E, Blouin AG, Bragard C, Candresse T, Faure C, Filloux D, Lett JM, Maclot F, Marais A, Ravelomanantsoa S, Shakir S, Vanderschuren H, Massart S. Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands. Viruses 2021; 13:v13061030. [PMID: 34072594 PMCID: PMC8226816 DOI: 10.3390/v13061030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Cassava is one of the most important staple crops in Africa and its production is seriously damaged by viral diseases. In this study, we identify for the first time and characterize the genome organization of novel ampeloviruses infecting cassava plants in diverse geographical locations using three high-throughput sequencing protocols [Virion-Associated Nucleotide Acid (VANA), dsRNA and total RNA], and we provide a first analysis of the diversity of these agents and of the evolutionary forces acting on them. Thirteen new Closteroviridae isolates were characterized in field-grown cassava plants from the Democratic Republic of Congo (DR Congo), Madagascar, Mayotte, and Reunion islands. The analysis of the sequences of the corresponding contigs (ranging between 10,417 and 13,752 nucleotides in length) revealed seven open reading frames. The replication-associated polyproteins have three expected functional domains: methyltransferase, helicase, and RNA-dependent RNA polymerase (RdRp). Additional open reading frames code for a small transmembrane protein, a heat-shock protein 70 homolog (HSP70h), a heat shock protein 90 homolog (HSP90h), and a major and a minor coat protein (CP and CPd respectively). Defective genomic variants were also identified in some cassava accessions originating from Madagascar and Reunion. The isolates were found to belong to two species tentatively named Manihot esculenta-associated virus 1 and 2 (MEaV-1 and MEaV-2). Phylogenetic analyses showed that MEaV-1 and MEaV-2 belong to the genus Ampelovirus, in particular to its subgroup II. MEaV-1 was found in all of the countries of study, while MEaV-2 was only detected in Madagascar and Mayotte. Recombination analysis provided evidence of intraspecies recombination occurring between the isolates from Madagascar and Mayotte. No clear association with visual symptoms in the cassava host could be identified.
Collapse
Affiliation(s)
- Yves Kwibuka
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
- Correspondence: (Y.K.); (S.M.)
| | - Espoir Bisimwa
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
| | - Arnaud G. Blouin
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Thierry Candresse
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Chantal Faure
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France;
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France;
| | - François Maclot
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Armelle Marais
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | | | - Sara Shakir
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
| | - Hervé Vanderschuren
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, 3000 Leuven, Belgium
| | - Sébastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Correspondence: (Y.K.); (S.M.)
| |
Collapse
|
9
|
Ghosh DK, Kokane AD, Kokane SB, Tenzin J, Gubyad MG, Wangdi P, Murkute AA, Sharma AK, Gowda S. Detection and Molecular Characterization of 'C andidatus Liberibacter asiaticus' and Citrus Tristeza Virus Associated with Citrus Decline in Bhutan. PHYTOPATHOLOGY 2021; 111:870-881. [PMID: 33090079 DOI: 10.1094/phyto-07-20-0266-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus, mainly mandarin (Citrus reticulata Blanco), is an economically important fruit crop in Bhutan. Despite having favorable agroclimatic conditions for citrus cultivation, the early decline of fruit-bearing orchards coupled with low crop productivity is a major concern among citrus growers. During a recent survey, an association of 'Candidatus Liberibacter asiaticus' (citrus greening) and citrus tristeza virus (CTV), either singly or as mixed infections in declined citrus trees, was recorded in all four major citrus-growing districts (Tsirang, Dagana, Zhemgang, and Sarpang). Using PCR-based diagnosis, a higher incidence of citrus greening (27.45%) and tristeza (70.58%) was observed in symptomatic field samples. Detection and characterization of 'Ca. L. asiaticus' was performed based on the 16S ribosomal DNA, prophage gene, 50S ribosomal rplA-rplJ gene, and tandem repeats of the CLIBASIA_01645 locus. Similarly, the coat protein, p23, and p18 genes were used as genetic markers for the detection and characterization of Bhutanese CTV. The 'Ca. L. asiaticus' isolates from Bhutan segregated into classes II and III based on the CLIBASIA_01645 locus, analogous to Indian isolates from the northeast region and Term-A based on the CLIBASIA_05610 locus. CTV isolates of Bhutan were observed as closely related to the VT strain, which is considered to be the most devastating. To the best of our knowledge, this is the first study on molecular characterization of 'Ca. L. asiaticus' and CTV isolates and their association with citrus decline in Bhutan.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Amol D Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Sunil B Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Jigme Tenzin
- National Citrus Program, Department of Agriculture, Royal Government of Bhutan, Thimphu 11001, Bhutan
| | - Mrugendra G Gubyad
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Phuntsho Wangdi
- National Citrus Repository, Department of Agriculture, Royal Government of Bhutan, Tsirang, Bhutan
| | - Ashutosh A Murkute
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee - 247 667, India
| | - Siddarame Gowda
- University of Florida, Citrus Research and Education Centre, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
10
|
Mondal S, Ghanim M, Roberts A, Gray SM. Different potato virus Y strains frequently co-localize in single epidermal leaf cells and in the aphid stylet. J Gen Virol 2021; 102. [PMID: 33709906 DOI: 10.1099/jgv.0.001576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Single aphids can simultaneously or sequentially acquire and transmit multiple potato virus Y (PVY) strains. Multiple PVY strains are often found in the same field and occasionally within the same plant, but little is known about how PVY strains interact in plants or in aphid stylets. Immuno-staining and confocal microscopy were used to examine the spatial and temporal dynamics of PVY strain mixtures (PVYO and PVYNTN or PVYO and PVYN) in epidermal leaf cells of 'Samsun NN' tobacco and 'Goldrush' potato. Virus binding and localization was also examined in aphid stylets following acquisition. Both strains systemically infected tobacco and co-localized in cells of all leaves examined; however, the relative amounts of each virus changed over time. Early in the tobacco infection, when mosaic symptoms were observed, PVYO dominated the infection although PVYNTN was detected in some cells. As the infection progressed and vein necrosis developed, PVYNTN was prevalent. Co-localization of PVYO and PVYN was also observed in epidermal cells of potato leaves with most cells infected with both viruses. Furthermore, two strains could be detected binding to the distal end of aphid stylets following virus acquisition from a plant infected with a strain mixture. These data are in contrast with the traditional belief of spatial separation of two closely related potyviruses and suggest apparent non-antagonistic interaction between PVY strains that could help explain the multitude of emerging recombinant PVY strains discovered in potato in recent years.
Collapse
Affiliation(s)
- Shaonpius Mondal
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
- Present address: USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA. 93905, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, P.O Box 155, Bet Dagan 5025001, Israel
| | - Alison Roberts
- Cellular and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, DD2 5DA, UK
| | - Stewart M Gray
- USDA-ARS, Emerging Pests and Pathogen Research Unit, Ithaca, NY 14853-5904, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
| |
Collapse
|
11
|
Bester R, Cook G, Maree HJ. Citrus Tristeza Virus Genotype Detection Using High-Throughput Sequencing. Viruses 2021; 13:168. [PMID: 33498597 PMCID: PMC7910887 DOI: 10.3390/v13020168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The application of high-throughput sequencing (HTS) has successfully been used for virus discovery to resolve disease etiology in many agricultural crops. The greatest advantage of HTS is that it can provide a complete viral status of a plant, including information on mixed infections of viral species or virus variants. This provides insight into the virus population structure, ecology, or evolution and can be used to differentiate among virus variants that may contribute differently toward disease etiology. In this study, the use of HTS for citrus tristeza virus (CTV) genotype detection was evaluated. A bioinformatic pipeline for CTV genotype detection was constructed and evaluated using simulated and real data sets to determine the parameters to discriminate between false positive read mappings and true genotype-specific genome coverage. A 50% genome coverage cut-off was identified for non-target read mappings. HTS with the associated bioinformatic pipeline was validated and proposed as a CTV genotyping assay.
Collapse
Affiliation(s)
- Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Glynnis Cook
- Citrus Research International, P.O. Box 28, Nelspruit 1200, South Africa;
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Citrus Research International, Stellenbosch, P.O. Box 2201, Matieland 7602, South Africa
| |
Collapse
|
12
|
Xuan Z, Li S, Zhang S, Ran W, Zhou Y, Yang F, Zhou C, Cao M. Complete genome sequence of citrus yellow spot virus, a newly discovered member of the family Betaflexiviridae. Arch Virol 2020; 165:2709-2713. [PMID: 32880020 DOI: 10.1007/s00705-020-04794-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/02/2020] [Indexed: 10/23/2022]
Abstract
A novel plant virus with a positive single-stranded (+ss) RNA genome was detected in Taibei pomelo (Citrus grandis (L.) Osbeck cv. Taibeiyou) in China by high-throughput sequencing (HTS). Tentatively named "citrus yellow spot virus" (CiYSV), it has 8,061 nucleotides (nt) excluding the poly(A) tail and contains three open reading frames (ORFs). ORF1 is predicted to encode a replicase polyprotein (RP) with conserved domains typical of members of the family Betaflexiviridae. ORF2 encodes a protein sharing the highest sequence identity with the putative movement protein (MP) found in the negative-stranded RNA virus Trifolium pratense virus B (TpVB, MH982249, genus Cytorhabdovirus). ORF3 overlaps ORF2 by 137 nt and encodes a predicted coat protein (CP) that is distantly related to those of betaflexiviruses. Phylogenetic analysis based on the MP amino acid sequence showed that the CiYSV clustered with cytorhabdoviruses rather than betaflexiviruses, whilst trees based on the whole genome, RP, and CP showed it to belong to the family Betaflexiviridae but to be distinct from any other known betaflexiviruses. These results suggest that the CiYSV should be considered the first member of a tentative new genus in the family Betaflexiviridae.
Collapse
Affiliation(s)
- Zhiyou Xuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shuai Li
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Song Zhang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Wenyi Ran
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangyun Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Peláez A, McLeish MJ, Paswan RR, Dubay B, Fraile A, García-Arenal F. Ecological fitting is the forerunner to diversification in a plant virus with broad host range. J Evol Biol 2020; 34:1917-1931. [PMID: 32618008 DOI: 10.1111/jeb.13672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
The evolution and diversification of ssRNA plant viruses are often examined under reductionist conditions that ignore potentially much wider biotic interactions. The host range of a plant virus is central to interactions at higher levels that are organized by both fitness and ecological criteria. Here we employ a strategy to minimize sampling biases across distinct plant communities and combine it with a high-throughput sequencing approach to examine the influence of four habitats on the evolution of Watermelon mosaic virus (WMV). Local, regional and global levels of genetic diversity that correspond to spatial and temporal extents are used to infer haplotype relationships using network and phylogenetic approaches. We find that the incidence and genetic diversity of WMV were structured significantly by host species and habitat type. A single haplotype that infected 11 host species of a total of 24 showed that few constraints on host species use exist in the crop communities. When the evolution of WMV was examined at broader levels of organization, we found variation in genetic diversity and contrasting host use footprints that broadly corresponded to habitat effects. The findings demonstrated that nondeterministic ecological factors structured the genetic diversity of WMV. Habitat-driven constraints underlie host use preferences.
Collapse
Affiliation(s)
- Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Ricky R Paswan
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Bhumika Dubay
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| |
Collapse
|
14
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
15
|
Adiputra J, Jarugula S, Naidu RA. Intra-species recombination among strains of the ampelovirus Grapevine leafroll-associated virus 4. Virol J 2019; 16:139. [PMID: 31744534 PMCID: PMC6862812 DOI: 10.1186/s12985-019-1243-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/15/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Grapevine leafroll disease is one of the most economically important viral diseases affecting grape production worldwide. Grapevine leafroll-associated virus 4 (GLRaV-4, genus Ampelovirus, family Closteroviridae) is one of the six GLRaV species documented in grapevines (Vitis spp.). GLRaV-4 is made up of several distinct strains that were previously considered as putative species. Currently known strains of GLRaV-4 stand apart from other GLRaV species in lacking the minor coat protein. METHODS In this study, the complete genome sequence of three strains of GLRaV-4 from Washington State vineyards was determined using a combination of high-throughput sequencing, Sanger sequencing and RACE. The genome sequence of these three strains was compared with corresponding sequences of GLRaV-4 strains reported from other grapevine-growing regions. Phylogenetic analysis and SimPlot and Recombination Detection Program (RDP) were used to identify putative recombination events among GLRaV-4 strains. RESULTS The genome size of GLRaV-4 strain 4 (isolate WAMR-4), strain 5 (isolate WASB-5) and strain 9 (isolate WALA-9) from Washington State vineyards was determined to be 13,824 nucleotides (nt), 13,820 nt, and 13,850 nt, respectively. Multiple sequence alignments showed that a 11-nt sequence (5'-GTAATCTTTTG-3') towards 5' terminus of the 5' non-translated region (NTR) and a 10-nt sequence (5'-ATCCAGGACC-3') towards 3' end of the 3' NTR are conserved among the currently known GLRaV-4 strains. LR-106 isolate of strain 4 and Estellat isolate of strain 6 were identified as recombinants due to putative recombination events involving divergent sequences in the ORF1a from strain 5 and strain Pr. CONCLUSION Genome-wide analyses showed for the first time that recombinantion can occur between distinct strains of GLRaV-4 resulting in the emergence of genetically stable and biologically successful chimeric viruses. Although the origin of recombinant strains of GLRaV-4 remains elusive, intra-species recombination could be playing an important role in shaping genetic diversity and evolution of the virus and modulating the biology and epidemiology of GLRaV-4 strains.
Collapse
Affiliation(s)
- Jati Adiputra
- Department of Plant Pathology, Irrigated Agriculture Research and Extension center, Washington State University, Prosser, Washington, 99350, USA.,Present address, Center for Diagnostic Standards of Agricultural Quarantine, Ministry of Agriculture, Indonesia Agricultural Quarantine Agency, Jakarta, Indonesia
| | - Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension center, Washington State University, Prosser, Washington, 99350, USA
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension center, Washington State University, Prosser, Washington, 99350, USA.
| |
Collapse
|
16
|
Komorowska B, Hasiów-Jaroszewska B, Elena SF. Evolving by deleting: patterns of molecular evolution of Apple stem pitting virus isolates from Poland. J Gen Virol 2019; 100:1442-1456. [PMID: 31424379 DOI: 10.1099/jgv.0.001290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, 267 coat protein gene (CP) sequences from 48 Polish isolates of Apple stem pitting virus (ASPV) were determined. The genetic structure of the virus population was analysed and possible mechanisms of molecular evolution explored. We found evidence of recombination within the ASPV population and the presence of 17 ASPV molecular variants that differ in the length, number and arrangement of deletions in the CP. Population genetic analyses showed significant variation among isolates from pear and apple trees, between isolates from the same host species and, more interestingly, within isolates, supporting the existence of significant levels of variability within individual hosts, as expected by a quasispecies population structure. In addition, different tests support that selection might have been an important force driving diversification within isolates: positive selection was found acting upon certain amino acids. Phylogenetic analyses also showed that isolates did not classify according to the host species (pear or apple trees) but according to the pattern of deletions, suggesting a possible role for deletions during clade diversification.
Collapse
Affiliation(s)
- Beata Komorowska
- Research Institute of Horticulture, Department of Phytopathology, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wł. Węgorka 20, 60-318 Poznań, Poland
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
17
|
Biswas KK, Palchoudhury S, Chakraborty P, Bhattacharyya UK, Ghosh DK, Debnath P, Ramadugu C, Keremane ML, Khetarpal RK, Lee RF. Codon Usage Bias Analysis of Citrus tristeza Virus: Higher Codon Adaptation to Citrus reticulata Host. Viruses 2019; 11:v11040331. [PMID: 30965565 PMCID: PMC6521185 DOI: 10.3390/v11040331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Citrus tristeza virus (CTV), a member of the aphid-transmitted closterovirus group, is the causal agent of the notorious tristeza disease in several citrus species worldwide. The codon usage patterns of viruses reflect the evolutionary changes for optimization of their survival and adaptation in their fitness to the external environment and the hosts. The codon usage adaptation of CTV to specific citrus hosts remains to be studied; thus, its role in CTV evolution is not clearly comprehended. Therefore, to better explain the host–virus interaction and evolutionary history of CTV, the codon usage patterns of the coat protein (CP) genes of 122 CTV isolates originating from three economically important citrus hosts (55 isolate from Citrus sinensis, 38 from C. reticulata, and 29 from C. aurantifolia) were studied using several codon usage indices and multivariate statistical methods. The present study shows that CTV displays low codon usage bias (CUB) and higher genomic stability. Neutrality plot and relative synonymous codon usage analyses revealed that the overall influence of natural selection was more profound than that of mutation pressure in shaping the CUB of CTV. The contribution of high-frequency codon analysis and codon adaptation index value show that CTV has host-specific codon usage patterns, resulting in higheradaptability of CTV isolates originating from C. reticulata (Cr-CTV), and low adaptability in the isolates originating from C. aurantifolia (Ca-CTV) and C. sinensis (Cs-CTV). The combination of codon analysis of CTV with citrus genealogy suggests that CTV evolved in C. reticulata or other Citrus progenitors. The outcome of the study enhances the understanding of the factors involved in viral adaptation, evolution, and fitness toward their hosts. This information will definitely help devise better management strategies of CTV.
Collapse
Affiliation(s)
- Kajal Kumar Biswas
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Supratik Palchoudhury
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Utpal K Bhattacharyya
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 11012, India.
| | - Dilip K Ghosh
- ICAR-Central Citrus Research Institute, Nagpur 440033, India.
| | - Palash Debnath
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India.
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92507, USA.
| | - Manjunath L Keremane
- National Clonal Germplasm Repository for Citrus & Dates, United States Department of Agriculture-Agricultural Research Service, Riverside, CA 92507, USA.
| | - Ravi K Khetarpal
- Asia-Pacific Association of Agricultural Research Institutions, Bangkok 10100, Thailand.
| | - Richard F Lee
- National Clonal Germplasm Repository for Citrus & Dates, United States Department of Agriculture-Agricultural Research Service, Riverside, CA 92507, USA.
| |
Collapse
|
18
|
Biswas KK, Palchoudhury S, Sharma SK, Saha B, Godara S, Ghosh DK, Keremane ML. Analyses of 3' half genome of citrus tristeza virus reveal existence of distinct virus genotypes in citrus growing regions of India. Virusdisease 2018; 29:308-315. [PMID: 30159365 DOI: 10.1007/s13337-018-0456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 11/29/2022] Open
Abstract
Citrus tristeza virus (CTV, genus Closterovirus) is one of the most serious pathogens responsible for huge loss of citrus trees worldwide. Four Indian CTV isolates, Kat1 (C. reticulata/Central India), D1 (C. sinensis/North India), B5 (Citrus limettoides/South India) and G28 (C. lemon/Northeast India) collected from different regions of India were characterized based on sequencing of 3' half genome (~ 8.4 kb) comprising 10 open reading frames (ORFs2-11) and 3' UTR and the sequences were submitted to NCBI database as Acc. No KJ914662, HQ912022, HQ912023 and KJ914661, respectively. The present and previously reported Indian isolates Kpg3 and B165 were analyzed and compared with other Asian and international CTV isolates. The Indian CTV isolates had 92-99% nt identities among them. The phylogenetic analysis generated overall ten genogroups/lineages. Of them, all the Asian isolates fell into seven genogroups, whereas the Indian isolates into four. Indian isolates Kat1, D1 and Kpg3 grouped together, termed "Kpg3Gr", along with Florida severe isolate T3. The Indian isolates B5, and G28 were found to be two distinct and separate lineages, indicating that these isolates are two new CTV entities. Based on phylogenetic analysis, Kpg3Gr was identified as "Indian VT" subtype which is distinct from the Asian and the Western VT subtype within diversified VT genotype. The recombination detecting-program, RDP4 detected Indian isolates Kat1, B5, B165 and G28 as recombinants, where G28 as strong recombinant. The present study determined the occurrence of at least four CTV genotypes, B5 (distinct), B165 (T68 type) G28 (distinct) and Kpg3Gr in citrus growing regions of India.
Collapse
Affiliation(s)
- Kajal K Biswas
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Supratik Palchoudhury
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Susheel K Sharma
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India.,2ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal, 795004 India
| | - Bikram Saha
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Shruti Godara
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Dilip K Ghosh
- ICAR-Central Citrus Research Institute, Nagpur, 440033 India
| | - Manjunath L Keremane
- 4USDA-ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507 USA
| |
Collapse
|
19
|
Koloniuk I, Thekke-Veetil T, Reynard JS, Mavrič Pleško I, Přibylová J, Brodard J, Kellenberger I, Sarkisova T, Špak J, Lamovšek J, Massart S, Ho T, Postman JD, Tzanetakis IE. Molecular Characterization of Divergent Closterovirus Isolates Infecting Ribes Species. Viruses 2018; 10:E369. [PMID: 30002359 PMCID: PMC6071065 DOI: 10.3390/v10070369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Five isolates of a new member of the family Closteroviridae, tentatively named blackcurrant leafroll-associated virus 1 (BcLRaV-1), were identified in the currant. The 17-kb-long genome codes for 10 putative proteins. The replication-associated polyprotein has several functional domains, including papain-like proteases, methyltransferase, Zemlya, helicase, and RNA-dependent RNA polymerase. Additional open reading frames code for a small protein predicted to integrate into the host cell wall, a heat-shock protein 70 homolog, a heat-shock protein 90 homolog, two coat proteins, and three proteins of unknown functions. Phylogenetic analysis showed that BcLRaV-1 is related to members of the genus Closterovirus, whereas recombination analysis provided evidence of intraspecies recombination.
Collapse
Affiliation(s)
- Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | | | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia.
| | - Jaroslava Přibylová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland.
| | | | - Tatiana Sarkisova
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Josef Špak
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Janja Lamovšek
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia.
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| | - Joseph D Postman
- National Clonal Germplasm Repository, United States Department of Agriculture, Corvallis, OR 97333, USA.
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA.
| |
Collapse
|
20
|
Development of a simple and rapid reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for sensitive detection of Citrus tristeza virus. J Virol Methods 2017; 250:6-10. [DOI: 10.1016/j.jviromet.2017.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022]
|
21
|
Molecular variation and expansion of a rice black-streaked dwarf virus population based on analysis of segment 1 in Jining, China. Arch Virol 2016; 161:3435-3443. [DOI: 10.1007/s00705-016-3052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/04/2016] [Indexed: 11/25/2022]
|
22
|
Bergua M, Phelan DM, Bak A, Bloom DC, Folimonova SY. Simultaneous visualization of two Citrus tristeza virus genotypes provides new insights into the structure of multi-component virus populations in a host. Virology 2016; 491:10-9. [PMID: 26874013 DOI: 10.1016/j.virol.2016.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/20/2022]
Abstract
Complex Citrus tristeza virus (CTV) populations composed of mixtures of different strains of the virus are commonly found in citrus trees in the field. At present, little is known about how these populations are formed, maintained, and how they are structured within a host. Here we used a novel in situ hybridization approach allowing simultaneous visualization of two different RNA targets with high sensitivity and specificity to examine the distribution of two isolates, T36 and T68-1, representing phylogenetically distinct strains of CTV, in a citrus host in single and mixed infections. Remarkably, in doubly inoculated plants the two virus variants appeared to be well mixed within the infected tissue and showed no spatial segregation. In addition, both CTV variants were often found occupying the same cells. Possible mechanisms involved in shaping CTV populations and the biological significance of the observed lack of structural separation of the individual components are discussed.
Collapse
Affiliation(s)
- María Bergua
- University of Florida, Department of Plant Pathology, Gainesville, FL 32611, USA
| | - Dane M Phelan
- University of Florida, Department of Molecular Genetics and Microbiology, FL 32603, USA
| | - Aurélie Bak
- University of Florida, Department of Plant Pathology, Gainesville, FL 32611, USA
| | - David C Bloom
- University of Florida, Department of Molecular Genetics and Microbiology, FL 32603, USA
| | | |
Collapse
|
23
|
Benítez-Galeano MJ, Rubio L, Bertalmío A, Maeso D, Rivas F, Colina R. Phylogenetic Studies of the Three RNA Silencing Suppressor Genes of South American CTV Isolates Reveal the Circulation of a Novel Genetic Lineage. Viruses 2015; 7:4152-68. [PMID: 26205407 PMCID: PMC4517143 DOI: 10.3390/v7072814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Citrus Tristeza Virus (CTV) is the most economically important virus of citrus worldwide. Genetic diversity and population structure of CTV isolates from all citrus growing areas from Uruguay were analyzed by RT-PCR and cloning of the three RNA silencing suppressor genes (p25, p20 and p23). Bayesian phylogenetic analysis revealed the circulation of three known genotypes (VT, T3, T36) in the country, and the presence of a new genetic lineage composed by isolates from around the world, mainly from South America. Nucleotide and amino acid identity values for this new genetic lineage were both higher than 97% for the three analyzed regions. Due to incongruent phylogenetic relationships, recombination analysis was performed using Genetic Algorithms for Recombination Detection (GARD) and SimPlot software. Recombination events between previously described CTV isolates were detected. High intra-sample variation was found, confirming the co-existence of different genotypes into the same plant. This is the first report describing: (1) the genetic diversity of Uruguayan CTV isolates circulating in the country and (2) the circulation of a novel CTV genetic lineage, highly present in the South American region. This information may provide assistance to develop an effective cross-protection program.
Collapse
Affiliation(s)
- María José Benítez-Galeano
- Laboratorio de Virología Molecular, Centro Universitario Regional Noroeste (CENUR Noroeste), Universidad de la Republica (UdelaR), Rivera 1350, 50000 Salto, Uruguay.
| | - Leticia Rubio
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Ana Bertalmío
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Diego Maeso
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Fernando Rivas
- Programa Nacional de Investigación en Producción Citrícola, Instituto Nacional de Investigación Agropecuaria (INIA), Urguay.
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional Noroeste (CENUR Noroeste), Universidad de la Republica (UdelaR), Rivera 1350, 50000 Salto, Uruguay.
| |
Collapse
|
24
|
Zhou Y, Weng JF, Chen YP, Liu CL, Han XH, Hao ZF, Li MS, Yong HJ, Zhang DG, Zhang SH, Li XH. Phylogenetic and recombination analysis of rice black-streaked dwarf virus segment 9 in China. Arch Virol 2015; 160:1119-23. [PMID: 25633210 DOI: 10.1007/s00705-014-2291-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/16/2014] [Indexed: 11/28/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV) is an economically important virus that causes maize rough dwarf disease and rice black-streaked dwarf disease in East Asia. To study RBSDV variation and recombination, we examined the segment 9 (S9) sequences of 49 RBSDV isolates from maize and rice in China. Three S9 recombinants were detected in Baoding, Jinan, and Jining, China. Phylogenetic analysis showed that Chinese RBSDV isolates could be classified into two groups based on their S9 sequences, regardless of host or geographical origin. Further analysis suggested that S9 has undergone negative and purifying selection.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P. Citrus tristeza virus: making an ally from an enemy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:137-55. [PMID: 25973695 DOI: 10.1146/annurev-phyto-080614-120012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Virus diseases of perennial trees and vines have characteristics not amenable to study using small model annual plants. Unique disease symptoms such as graft incompatibilities and stem pitting cause considerable crop losses. Also, viruses in these long-living plants tend to accumulate complex populations of viruses and strains. Considerable progress has been made in understanding the biology and genetics of Citrus tristeza virus (CTV) and in developing it into a tool for crop protection and improvement. The diseases in tree and vine crops have commonalities for which CTV can be used to develop a baseline. The purpose of this review is to provide a necessary background of systems and reagents developed for CTV that can be used for continued progress in this area and to point out the value of the CTV-citrus system in answering important questions on plant-virus interactions and developing new methods for controlling plant diseases.
Collapse
Affiliation(s)
- William O Dawson
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850; ,
| | | | | | | |
Collapse
|
26
|
Wu GW, Tang M, Wang GP, Jin FY, Yang ZK, Cheng LJ, Hong N. Genetic diversity and evolution of two capsid protein genes of citrus tristeza virus isolates from China. Arch Virol 2014; 160:787-94. [PMID: 25387862 DOI: 10.1007/s00705-014-2281-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
The genetic diversity and population structure of citrus tristeza virus (CTV) isolates from China were investigated based on partial sequences spanning the C-terminal end of p61 and the complete sequences of the CPm and CP genes. Phylogenetic analysis revealed five known groups (RB, T30, T36, HA and VT) and one new group (VI) consisting of only Chinese CTV isolates. Incongruent phylogenetic trees coupled with recombination analysis suggested several recombination events in the CPm gene. Positive selection was detected at codon 9 of CPm and codons 31, 41 and 68 of CP. The widespread CTV subpopulation AT-1 found in China has a unique amino acid insertion at the C-terminus of p61, which could increase CTV population complexity with implications for the evolutionary history of the virus. Our results suggest relevant roles for gene flow, purifying selection and recombination in shaping the CTV population in China.
Collapse
Affiliation(s)
- Guan-Wei Wu
- National Key Laboratory of Agromicrobiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Walia JJ, Willemsen A, Elci E, Caglayan K, Falk BW, Rubio L. Genetic variation and possible mechanisms driving the evolution of worldwide fig mosaic virus isolates. PHYTOPATHOLOGY 2014; 104:108-14. [PMID: 24571394 DOI: 10.1094/phyto-05-13-0145-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.
Collapse
|
28
|
Tromas N, Zwart MP, Poulain M, Elena SF. Estimation of the in vivo recombination rate for a plant RNA virus. J Gen Virol 2013; 95:724-732. [PMID: 24362963 DOI: 10.1099/vir.0.060822-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (rg) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of rg = 7.762 × 10(-8) recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of rg = 3.427 × 10(-5) recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Maïté Poulain
- Genoscreen, 1 Rue du Professeur Calmette, 59000 Lille, France
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| |
Collapse
|
29
|
Tugume AK, Amayo R, Weinheimer I, Mukasa SB, Rubaihayo PR, Valkonen JPT. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species. PLoS One 2013; 8:e81479. [PMID: 24278443 PMCID: PMC3838340 DOI: 10.1371/journal.pone.0081479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was detected. Overall, results provided many novel and important insights into evolutionary biology of SPCSV.
Collapse
Affiliation(s)
- Arthur K. Tugume
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Biological Sciences, School of Biosciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Robert Amayo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- NARO-NaSARRI, Serere, Soroti, Uganda
- Department of Agriculture, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Isabel Weinheimer
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Settumba B. Mukasa
- Department of Agriculture, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Patrick R. Rubaihayo
- Department of Agriculture, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Genetic variability and evolution of broad bean wilt virus 1: role of recombination, selection and gene flow. Arch Virol 2013; 159:779-84. [DOI: 10.1007/s00705-013-1868-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
31
|
Yin X, Zheng FQ, Tang W, Zhu QQ, Li XD, Zhang GM, Liu HT, Liu BS. Genetic structure of rice black-streaked dwarf virus populations in China. Arch Virol 2013; 158:2505-15. [DOI: 10.1007/s00705-013-1766-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/06/2013] [Indexed: 01/21/2023]
|
32
|
Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 2013; 4:151. [PMID: 23805130 PMCID: PMC3693128 DOI: 10.3389/fmicb.2013.00151] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | | | |
Collapse
|
33
|
Davino S, Willemsen A, Panno S, Davino M, Catara A, Elena SF, Rubio L. Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS One 2013; 8:e66700. [PMID: 23818960 PMCID: PMC3688570 DOI: 10.1371/journal.pone.0066700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
Citrus tristeza virus (CTV) outbreaks were detected in Sicily island, Italy for the first time in 2002. To gain insight into the evolutionary forces driving the emergence and phylogeography of these CTV populations, we determined and analyzed the nucleotide sequences of the p20 gene from 108 CTV isolates collected from 2002 to 2009. Bayesian phylogenetic analysis revealed that mild and severe CTV isolates belonging to five different clades (lineages) were introduced in Sicily in 2002. Phylogeographic analysis showed that four lineages co-circulated in the main citrus growing area located in Eastern Sicily. However, only one lineage (composed of mild isolates) spread to distant areas of Sicily and was detected after 2007. No correlation was found between genetic variation and citrus host, indicating that citrus cultivars did not exert differential selective pressures on the virus. The genetic variation of CTV was not structured according to geographical location or sampling time, likely due to the multiple introduction events and a complex migration pattern with intense co- and re-circulation of different lineages in the same area. The phylogenetic structure, statistical tests of neutrality and comparison of synonymous and nonsynonymous substitution rates suggest that weak negative selection and genetic drift following a rapid expansion may be the main causes of the CTV variability observed today in Sicily. Nonetheless, three adjacent amino acids at the p20 N-terminal region were found to be under positive selection, likely resulting from adaptation events.
Collapse
Affiliation(s)
| | | | | | | | - Antonino Catara
- Parco Scientifico e Tecnologico della Sicilia, Cataia, Italy
| | - Santiago F. Elena
- IBMCP, CSIC-UPV, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | | |
Collapse
|
34
|
Harper SJ. Citrus tristeza virus: Evolution of Complex and Varied Genotypic Groups. Front Microbiol 2013; 4:93. [PMID: 23630519 PMCID: PMC3632782 DOI: 10.3389/fmicb.2013.00093] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
Amongst the Closteroviridae, Citrus tristeza virus (CTV) is almost unique in possessing a number of distinct and characterized strains, isolates of which produce a wide range of phenotype combinations among its different hosts. There is little understanding to connect genotypes to phenotypes, and to complicate matters more, these genotypes are found throughout the world as members of mixed populations within a single host plant. There is essentially no understanding of how combinations of genotypes affect symptom expression and disease severity. We know little about the evolution of the genotypes that have been characterized to date, little about the biological role of their diversity and particularly, about the effects of recombination. Additionally, genotype grouping has not been standardized. In this study we utilized an extensive array of CTV genomic information to classify the major genotypes, and to determine the major evolutionary processes that led to their formation and subsequent retention. Our analyses suggest that three major processes act on these genotypes: (1) ancestral diversification of the major CTV lineages, followed by (2) conservation and co-evolution of the major functional domains within, though not between CTV genotypes, and (3) extensive recombination between lineages that have given rise to new genotypes that have subsequently been retained within the global population. The effects of genotype diversity and host-interaction are discussed, as is a proposal for standardizing the classification of existing and novel CTV genotypes.
Collapse
Affiliation(s)
- S J Harper
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida Lake Alfred, FL, USA
| |
Collapse
|
35
|
Folimonova SY. Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol 2013; 4:76. [PMID: 23577008 PMCID: PMC3616238 DOI: 10.3389/fmicb.2013.00076] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
Abstract
Citrus tristeza virus (CTV) causes two citrus diseases that have caused devastating losses in global citrus production. The first disease is quick decline of trees propagated on the sour orange rootstock. The second disease is stem pitting, which severely affects a number of economically important citrus varieties regardless of the rootstock used and results in reduced tree growth and vigor as well as in reduced fruit size and quality. Both diseases continue to invade new areas. While quick decline could be effectively managed by the use of resistant and/or tolerant rootstocks, the only means to protect commercial citrus against endemic stem pitting isolates of CTV has been cross-protection with mild isolates of the virus. In some citrus areas cross-protection has been successful and allowed production of certain citrus cultivars despite the presence of severe stem pitting isolates in those regions. However, many other attempts to find isolates that would provide sustained protection against aggressive isolates of the virus had failed. In general, there has been no understanding why some mild isolates were effective and others failed to protect. We have been working on the mechanism of cross-protection by CTV. Recent considerable progress has significantly advanced our understanding of how cross-protection may work in the citrus/CTV pathosystem. As we demonstrated, only isolates that belong to the same strain of the virus cross protect against each other, while isolates from different strains do not. We believe that the results of our research could now make finding protecting isolates relatively straightforward. This review discusses some of the history of CTV cross-protection along with the recent findings and our "recipe" for selection of protecting isolates.
Collapse
|
36
|
Matos LA, Hilf ME, Cayetano XA, Feliz AO, Harper SJ, Folimonova SY. Dramatic Change in Citrus tristeza virus Populations in the Dominican Republic. PLANT DISEASE 2013; 97:339-345. [PMID: 30722356 DOI: 10.1094/pdis-05-12-0421-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus tristeza virus (CTV) is the most destructive viral pathogen of citrus and has been an important concern for the citrus industry in the Dominican Republic. Earlier studies documented widespread distribution of mild isolates of the T30 genotype, which caused no disease in the infected trees, and a low incidence of isolates of the VT and T3 genotypes, which were associated with economically damaging decline and stem-pitting symptoms in sweet orange and Persian lime, the two major citrus varieties grown in the Dominican Republic. In light of the dramatic increase in the number of severely diseased citrus trees throughout the country over the last decade, suggesting that field populations of CTV have changed, we examined the CTV pathosystem in the Dominican Republic to assess the dynamics of virus populations. In this work, we characterized the molecular composition of 163 CTV isolates from different citrus-growing regions. Our data demonstrate a dramatic change in CTV populations, with the VT genotype now widely disseminated throughout the different regions and with the presence of two new virus genotypes, T36 and RB. Multiple infections of trees resulted in development of complex virus populations composed of different genotypes.
Collapse
Affiliation(s)
- Luis A Matos
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, and Instituto Dominicano de Investigaciones Agropecuarias y Forestales (IDIAF), Santo Domingo, Dominican Republic
| | - Mark E Hilf
- United States Department of Agriculture-Agricultural Research Service USHRL, Fort Pierce, FL 34945
| | | | - Andrea O Feliz
- IDIAF and Departamento de Sanidad Vegetal-Ministerio de Agricultura, Santo Domingo, Dominican Republic
| | - Scott J Harper
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | | |
Collapse
|
37
|
Singh JK, Tarafdar A, Sharma SK, Biswas KK. Evidence of Recombinant Citrus tristeza virus Isolate Occurring in Acid Lime cv. Pant Lemon Orchard in Uttarakhand Terai Region of Northern Himalaya in India. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 24:35-41. [PMID: 24426255 DOI: 10.1007/s13337-012-0118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
The present study for the first time describes biological and molecular characterization of Citrus tristeza virus (CTV) occurring in the Terai area of Uttarakhand State in Northern Himalaya region of India. Direct antigen coated-ELISA and reverse transcriptase-polymerase chain reaction (RT-PCR) detected the CTV infection in Acid lime cv. Pant lemon (Citrus aurantifolia) orchards of Pantnagar with an estimated disease incidence of 16.6-20.5 %. To know the biological and genetic properties, an isolate, CTV Pant 4 was characterized. Isolate Pant 4 could be graft transmitted to Kinnow, Nagpur and Darjeeling mandarins, Mosambi sweet orange, Kagzi lime, Sweet lime, Sour orange but not to Rough lemon. The sequence analyses of the 5'ORF1a (3038 nucleotides) of LPro domain and 3'end (2058 nt) covering ORF7-ORF10 regions of the CTV genome revealed that Pant 4 was closely related to the previously reported Indian CTV isolate, Kpg3 from Northeastern Himalaya region with 97 and 98 % sequence identity, respectively. Whereas, it differed from the previously reported CTV isolate B165 from Southern India with 79 and 92 % identity, respectively for 5'ORF1a and 3' end regions. Recombination and SplitsTree decomposition analyses indicated that CTV isolate Pant 4 was a recombinant isolate originating from Kpg3 as a major and B165 as a minor donor.
Collapse
Affiliation(s)
- Jaywant Kumar Singh
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Avijit Tarafdar
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Susheel Kumar Sharma
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kajal Kumar Biswas
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
38
|
Population structure of Blackberry yellow vein associated virus, an emerging crinivirus. Virus Res 2012; 169:272-5. [DOI: 10.1016/j.virusres.2012.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022]
|
39
|
High codon adaptation in citrus tristeza virus to its citrus host. Virol J 2012; 9:113. [PMID: 22698086 PMCID: PMC3416656 DOI: 10.1186/1743-422x-9-113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 06/14/2012] [Indexed: 01/29/2023] Open
Abstract
Background Citrus tristeza virus (CTV), a member of the genus Closterovirus within the family Closteroviridae, is the causal agent of citrus tristeza disease. Previous studies revealed that the negative selection, RNA recombination and gene flow were the most important forces that drove CTV evolution. However, the CTV codon usage was not studied and thus its role in CTV evolution remains unknown. Results A detailed comparative analysis of CTV codon usage pattern was done in this study. Results of the study show that although in general CTV does not have a high degree of codon usage bias, the codon usage of CTV has a high level of resemblance to its host codon usage. In addition, our data indicate that the codon usage resemblance is only observed for the woody plant-infecting closteroviruses but not the closteroviruses infecting the herbaceous host plants, suggesting the existence of different virus-host interactions between the herbaceous plant-infecting and woody plant-infecting closteroviruses. Conclusion Based on the results, we suggest that in addition to RNA recombination, negative selection and gene flow, host plant codon usage selection can also affect CTV evolution.
Collapse
|
40
|
Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L. Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:597-608. [PMID: 22405601 DOI: 10.1111/j.1467-7652.2012.00691.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Citrus tristeza virus (CTV), the causal agent of the most devastating viral disease of citrus, has evolved three silencing suppressor proteins acting at intra- (p23 and p20) and/or intercellular level (p20 and p25) to overcome host antiviral defence. Previously, we showed that Mexican lime transformed with an intron-hairpin construct including part of the gene p23 and the adjacent 3' untranslated region displays partial resistance to CTV, with a fraction of the propagations from some transgenic lines remaining uninfected. Here, we transformed Mexican lime with an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20 and p23 from CTV strain T36 to silence the expression of these critical genes in CTV-infected cells. Three transgenic lines presented complete resistance to viral infection, with all their propagations remaining symptomless and virus-free after graft inoculation with CTV-T36, either in the nontransgenic rootstock or in the transgenic scion. Accumulation of transgene-derived siRNAs was necessary but not sufficient for CTV resistance. Inoculation with a divergent CTV strain led to partially breaking the resistance, thus showing the role of sequence identity in the underlying mechanism. Our results are a step forward to developing transgenic resistance to CTV and also show that targeting simultaneously by RNA interference (RNAi) the three viral silencing suppressors appears critical for this purpose, although the involvement of concurrent RNAi mechanisms cannot be excluded.
Collapse
Affiliation(s)
- Nuria Soler
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias-IVIA, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Distribution, genetic diversity and recombination analysis of Citrus tristeza virus of India. Virus Genes 2012; 45:139-48. [PMID: 22562224 DOI: 10.1007/s11262-012-0748-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Citrus tristeza virus (CTV) isolates representing all the citrus-growing geographical zones of India were analyzed for nucleotide sequence of the 5'ORF1a fragments of the partial LProI domain and for the coat protein (CP) gene. The nucleotide sequences were compared with previously reported Indian and CTV genotypes from GenBank. The Indian isolates had 80-99 % sequence identity for the 5'ORF1a and 89-99 % identity for the CP genes. In phylogenetic tree analysis, all the Indian and previously reported isolates segregated into eight clades or groups for the 5'ORF1a region. Indian CTV isolates were clustered in all the clades, four of which, D13, K5, BAN-1, and B165, consisted of only Indian isolates. Phylogenetic tree analysis of the CP genes resulted in seven clades. Indian CTV isolates clustered in six of them, and clades I and VI consisted of only Indian isolates. In the phylogenetic tree the Indian CTV isolates clustered in different groups regardless their geographical origin. Diversities in CTV isolates within individual citrus farms were highlighted. Because incongruent phylogenetic relationships were observed for both of the genomic regions, 5'ORF1a and CP gene, recombination analysis was performed using program RDP3. This analysis detected potential recombination events among the CTV isolates which involved exchange of sequences between divergent CTV variants. The SplitsTree analysis showed evidence of phylogenetic conflicts in evolutionary relationships among CTV isolates.
Collapse
|
42
|
Biswas KK, Tarafdar A, Sharma SK. Complete genome sequence of mandarin decline Citrus tristeza virus of the Northeastern Himalayan hill region of India: comparative analyses determine recombinant. Arch Virol 2011; 157:579-83. [DOI: 10.1007/s00705-011-1165-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022]
|
43
|
Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. PHYTOPATHOLOGY 2011; 101:1136-48. [PMID: 21554186 DOI: 10.1094/phyto-01-11-0017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.
Collapse
|
44
|
Ambrós S, El-Mohtar C, Ruiz-Ruiz S, Peña L, Guerri J, Dawson WO, Moreno P. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1119-31. [PMID: 21899435 DOI: 10.1094/mpmi-05-11-0110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) naturally infects only some citrus species and relatives and within these it only invades phloem tissues. Failure to agroinfect citrus plants and the lack of an experimental herbaceous host hindered development of a workable genetic system. A full-genome cDNA of CTV isolate T36 was cloned in binary plasmids and was used to agroinfiltrate Nicotiana benthamiana leaves, with or without coinfiltration with plasmids expressing different silencing-suppressor proteins. A time course analysis in agroinfiltrated leaves indicated that CTV accumulates and moves cell-to-cell for at least three weeks postinoculation (wpi), and then, it moves systemically and infects the upper leaves with symptom expression. Silencing suppressors expedited systemic infection and often increased infectivity. In systemically infected Nicotiana benthamiana plants, CTV invaded first the phloem, but after 7 wpi, it was also found in other tissues and reached a high viral titer in upper leaves, thus allowing efficient transmission to citrus by stem-slash inoculation. Infected citrus plants showed the symptoms, virion morphology, and phloem restriction characteristic of the wild T36 isolate. Therefore, agroinfiltration of Nicotiana benthamiana provided the first experimental herbaceous host for CTV and an easy and efficient genetic system for this closterovirus.
Collapse
Affiliation(s)
- Silvia Ambrós
- Centro de Protección Vegetal y Biotecnologia, IVIA, Moncada, Valencia 46113, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Thompson JR, Fuchs M, Perry KL. Genomic analysis of grapevine leafroll associated virus-5 and related viruses. Virus Res 2011; 163:19-27. [PMID: 21893115 DOI: 10.1016/j.virusres.2011.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
The grapevine leafroll-associated viruses (GLRaVs) (Closteroviridae) represent an emerging threat to world grape production. One group of GLRaVs within the genus Ampelovirus, the GLRaV-4-like viruses (GLRaV-4LVs), contains a fragmented collection of seven viruses only two of which (GLRaV-Pr and GLRaCV) are fully sequenced. Here in reporting the sequence of GLRaV-5, a member of GLRaV-4LVs, we identify genomic elements common to the GLRaV-4LV group. Exclusive properties include a highly conserved p5 gene product and phylogenies for complete genes that, except for the p23 gene, are reliably monophyletic. In comparison with other members of the genus Ampelovirus, GLRaV-4LVs form a tight cluster for all genes analyzed. In addition, they all possess a conserved AlkB domain which is most similar to the more distantly related GLRaV-3, suggesting recombination. In silico RNA structural analyses revealed a conserved five stem-loop structure at the 3' untranslated region that extends to all GLRaV-4LVs, and the ampeloviruses Pineapple mealybug wilt-associated virus 1 and Pineapple mealybug wilt-associated virus 3. A conserved G-U rich stem loop was also found upstream of the ORF1a stop and 1b start codons. Taken together, this work allows for a more thorough contextualization of GLRaV-5 and the GLRaV-4LVs as a group within the genus Ampelovirus.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, 334 Plant Science, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
46
|
Zhang CL, Gao R, Wang J, Zhang GM, Li XD, Liu HT. Molecular variability of Tobacco vein banding mosaic virus populations. Virus Res 2011; 158:188-98. [PMID: 21497622 DOI: 10.1016/j.virusres.2011.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
The incidence of Tobacco vein banding mosaic virus (TVBMV) on tobacco increases dramatically in China recently and it has caused great economic losses. To gain insights into the evolutionary mechanisms of TVBMV, a total of 40 TVBMV isolates were collected from different tobacco production regions in China and their genomic regions encoding helper component-proteinase (HC-Pro), the third protein (P3), the first 6K protein (6K1) and coat protein (CP) were sequenced. Phylogenetic analyses revealed that TVBMV isolates can be divided into two evolutionary divergent groups based on P3, the frame-shifting pipo and 6K1 genes, and three groups on HC-Pro and CP genes. The populations from most parts of mainland China (MC) showed frequent gene flow; those from Yunnan province in south western China always formed a separate group (YN) and also had frequent within-group gene flow. However, the gene flow between groups MC and YN was uncommon. Our results revealed that all the tested TVBMV genes were under negative selection and the HC-Pro gene was under the strongest constraints. Recombination events were identified in 13 of the 42 analyzed isolates. This study suggested that negative selection, gene flow and recombination were important evolutionary factors driving the genetic diversification of TVBMV.
Collapse
Affiliation(s)
- Cheng-Ling Zhang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Genetic variation and evolutionary analysis of broad bean wilt virus 2. Arch Virol 2011; 156:1445-50. [DOI: 10.1007/s00705-011-0990-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
|
48
|
Costa J, Tiago I, Da Costa MS, Veríssimo A. Molecular evolution of Legionella pneumophila dotA gene, the contribution of natural environmental strains. Environ Microbiol 2011; 12:2711-29. [PMID: 20482739 DOI: 10.1111/j.1462-2920.2010.02240.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Given the role of DotA protein in establishing successful infections and the diversity of host cells interacting with Legionella pneumophila in nature, it is possible that this gene product is a target for adaptive evolution. We investigated the influence of L. pneumophila isolates from natural environments with the molecular evolution of this crucial virulence-related gene. The population genetic structure of L. pneumophila was inferred from the partial sequences of rpoB and dotA of 303 worldwide strains. The topology of the two inferred trees was not congruent and in the inferred dotA tree the vast majority of the natural environmental isolates were clustered in a discrete group. The Ka/Ks ratio demonstrated that this group, contrary to all others, has been under strong diversifying selection. The alignment of all DotA sequences allowed the identification of several alleles and the amino acid variations were not randomly distributed. Moreover, from these results we can conclude that dotA from L. pneumophila clinical and man-made environmental strains belong to a sub-set of all genotypes existing in nature. A split graph analysis showed evidence of a network-like organization and several intergenic recombination events were detected within L. pneumophila strains resulting in mosaic genes in which different gene segments exhibited different evolutionary histories. We have determined that the allelic diversity of dotA is predominantly found in L. pneumophila isolates from natural environments, suggesting that niche-specific selection pressures have been operating on this gene. Indeed, the high level of dotA allelic diversity may reflect fitness variation in the persistence of those strains in distinct environmental niches and/or tropism to various protozoan hosts.
Collapse
Affiliation(s)
- Joana Costa
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
49
|
Sztuba-Solińska J, Urbanowicz A, Figlerowicz M, Bujarski JJ. RNA-RNA recombination in plant virus replication and evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:415-43. [PMID: 21529157 DOI: 10.1146/annurev-phyto-072910-095351] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-RNA recombination is one of the strongest forces shaping the genomes of plant RNA viruses. The detection of recombination is a challenging task that prompted the development of both in vitro and in vivo experimental systems. In the divided genome of Brome mosaic virus system, both inter- and intrasegmental crossovers are described. Other systems utilize satellite or defective interfering RNAs (DI-RNAs) of Turnip crinkle virus, Tomato bushy stunt virus, Cucumber necrosis virus, and Potato virus X. These assays identified the mechanistic details of the recombination process, revealing the role of RNA structure and proteins in the replicase-mediated copy-choice mechanism. In copy choice, the polymerase and the nascent RNA chain from which it is synthesized switch from one RNA template to another. RNA recombination was found to mediate the rearrangement of viral genes, the repair of deleterious mutations, and the acquisition of nonself sequences influencing the phylogenetics of viral taxa. The evidence for recombination, not only between related viruses but also among distantly related viruses, and even with host RNAs, suggests that plant viruses unabashedly test recombination with any genetic material at hand.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
50
|
Maminiaina OF, Gil P, Briand FX, Albina E, Keita D, Andriamanivo HR, Chevalier V, Lancelot R, Martinez D, Rakotondravao R, Rajaonarison JJ, Koko M, Andriantsimahavandy AA, Jestin V, Servan de Almeida R. Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV. PLoS One 2010; 5:e13987. [PMID: 21085573 PMCID: PMC2981552 DOI: 10.1371/journal.pone.0013987] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/17/2010] [Indexed: 11/25/2022] Open
Abstract
In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed.
Collapse
Affiliation(s)
| | - Patricia Gil
- CIRAD, BIOS Department, UMR CMAEE, Montpellier, France
| | | | | | - Djénéba Keita
- CIRAD, BIOS Department, UMR CMAEE, Montpellier, France
| | | | | | | | | | | | | | - M. Koko
- Antananarivo University Madagascar, Antananarivo, Madagascar
| | | | - Véronique Jestin
- Anses-Ploufragan Plouzané Laboratory, VIPAC Unit, Ploufragan, France
| | | |
Collapse
|