1
|
Chan P, Ye ZW, Zhao W, Ong CP, Sun XY, Cheung PHH, Jin DY. Mpox virus poxin-schlafen fusion protein suppresses innate antiviral response by sequestering STAT2. Emerg Microbes Infect 2025; 14:2477639. [PMID: 40066622 PMCID: PMC11921170 DOI: 10.1080/22221751.2025.2477639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Mpox virus (MPXV) has to establish efficient interferon (IFN) antagonism for effective replication. MPXV-encoded IFN antagonists have not been fully elucidated. In this study, the IFN antagonism of poxin-schlafen (PoxS) fusion gene of MPXV was characterized. MPXV PoxS was capable of decreasing cGAS-produced 2'3'-cGAMP, like its ortholog poxin of vaccinia virus, which is the first known cytosolic nuclease that hydrolyses the 3'-5' bond of 2'3'-cyclic GMP-AMP (cGAMP). However, MPXV PoxS did not suppress cGAS-STING-mediated type I IFN production. Instead, MPXV PoxS antagonized basal and type I IFN-induced expression of IFN-stimulated genes such as OAS1, SAMD9, SAMD9L, ISG15, ISG56 and IFIT3. Consistently, MPXV PoxS inhibited both basal and type I IFN-stimulated activity of interferon-stimulated response elements, but did not affect activation of IFN-γ-activated sites. Mechanistically, MPXV PoxS interacted with STAT2 and sequestered it in the cytoplasm. Both the viral schlafen fusion and the active site of 2'3'-cGAMP nuclease were required for STAT2 sequestration and consequent suppression of IFN-stimulated gene expression. MPXV PoxS conferred resistance to the suppression of MPXV replication by type I IFN. Taken together, our findings suggested that MPXV PoxS counteracts host antiviral response by sequestering STAT2 to circumvent basal and type I IFN-induced expression of antiviral genes.
Collapse
Affiliation(s)
- Pearl Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wenlong Zhao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chon-Phin Ong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Yu Sun
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
2
|
Fu L, Liu Z, Liu Y. Fibrinogen-like protein 2 in inflammatory diseases: A future therapeutic target. Int Immunopharmacol 2023; 116:109799. [PMID: 36764282 DOI: 10.1016/j.intimp.2023.109799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen family, exists as a membrane-bound protein with immune-associated coagulation activity and a soluble form possessing immunosuppressive functions. The immunomodulatory role of FGL2 is evident in fibrin deposition-associated inflammatory diseases and cancer, suggesting that FGL2 expression could be exploited as a disease biomarker and a therapeutic target. Recently, in vitro studies and knockout and transgenic animal FGL2 models have been used by us and others to reveal the involvement of FGL2 in the pathogenesis of various inflammatory diseases. This review summarizes our current knowledge of the immunomodulatory role of FGL2 in inflammatory diseases and examines the role of FGL2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Li Fu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| |
Collapse
|
3
|
Gutierrez Amezcua JM, Jain R, Kleinman G, Muh CR, Guzzetta M, Folkerth R, Snuderl M, Placantonakis DG, Galetta SL, Hochman S, Zagzag D. COVID-19-Induced Neurovascular Injury: a Case Series with Emphasis on Pathophysiological Mechanisms. SN COMPREHENSIVE CLINICAL MEDICINE 2020; 2:2109-2125. [PMID: 33106782 PMCID: PMC7577845 DOI: 10.1007/s42399-020-00598-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with a high inflammatory burden that can induce severe respiratory disease among other complications; vascular and neurological damage has emerged as a key threat to COVID-19 patients. Risk of severe infection and mortality increases with age, male sex, and comorbidities including cardiovascular disease, hypertension, obesity, diabetes, and chronic pulmonary disease. We review clinical and neuroradiological findings in five patients with COVID-19 who suffered severe neurological disease and illustrate the pathological findings in a 7-year-old boy with COVID-19-induced encephalopathy whose brain tissue sample showed angiocentric mixed mononuclear inflammatory infiltrate. We summarize the structural and functional properties of the virus including the molecular processes that govern the binding to its membrane receptors and cellular entry. In addition, we review clinical and experimental evidence in patients and animal models that suggests coronaviruses enter into the central nervous system (CNS), either via the olfactory bulb or through hematogenous spread. We discuss suspected pathophysiological mechanisms including direct cellular infection and associated recruitment of immune cells and neurovirulence, at least in part, mediated by cytokine secretion. Moreover, contributing to the vascular and neurological injury, coagulopathic disorders play an important pathogenic role. We survey the molecular events that contribute to the thrombotic microangiopathy. We describe the neurological complications associated with COVID-19 with a focus on the potential mechanisms of neurovascular injury. Our thesis is that following infection, three main pathophysiological processes-inflammation, thrombosis, and vascular injury-are responsible for the neurological damage and diverse pathology seen in COVID-19 patients.
Collapse
Affiliation(s)
- Jose Manuel Gutierrez Amezcua
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rajan Jain
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Radiology, Division of Neuroradiology, NYU Langone Health, New York, NY USA
- Department of Neurosurgery, NYU Langone Health, New York, NY USA
| | - George Kleinman
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY USA
| | - Carrie R Muh
- Department of Neurosurgery, Maria Fareri Children's Hospital, Westchester Medical Center, New York Medical College, Valhalla, NY USA
| | - Melissa Guzzetta
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Rebecca Folkerth
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Forensic Medicine, City of New York Office of the Chief Medical Examiner, New York, NY USA
| | - Matija Snuderl
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Laura and Isaac Perlmutter Cancer Center, Brain and Spine Tumor Center, Neuroscience Institute, New York, NY USA
| | - Dimitris G Placantonakis
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Neurosurgery, NYU Langone Health, New York, NY USA
- Laura and Isaac Perlmutter Cancer Center, Brain and Spine Tumor Center, Neuroscience Institute, New York, NY USA
- Kimmel Center for Stem Cell Biology, NYU Langone Health, New York, NY USA
| | - Steven L Galetta
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Neurology, NYU Langone Health, New York, NY USA
| | - Sarah Hochman
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Infection Prevention and Control, Department of Medicine, Division of Infectious Diseases, NYU Langone Health, New York, NY USA
| | - David Zagzag
- Department of Pathology, Division of Neuropathology, NYU Langone Health, 550 First Avenue, New York, NY 10016 USA
- New York University Grossman School of Medicine, New York, NY 10016 USA
- Department of Neurosurgery, NYU Langone Health, New York, NY USA
- Laura and Isaac Perlmutter Cancer Center, Brain and Spine Tumor Center, Neuroscience Institute, New York, NY USA
- Microvascular and Molecular Neuro-Oncology Laboratory, NYU Grossman School of Medicine, New York, NY USA
| |
Collapse
|
4
|
Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020; 127:104362. [PMID: 32305883 PMCID: PMC7195278 DOI: 10.1016/j.jcv.2020.104362] [Citation(s) in RCA: 649] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus strain disease, has recently emerged in China and rapidly spread worldwide. This novel strain is highly transmittable and severe disease has been reported in up to 16% of hospitalized cases. More than 600,000 cases have been confirmed and the number of deaths is constantly increasing. COVID-19 hospitalized patients, especially those suffering from severe respiratory or systemic manifestations, fall under the spectrum of the acutely ill medical population, which is at increased venous thromboembolism risk. Thrombotic complications seem to emerge as an important issue in patients infected with COVID-19. Preliminary reports on COVID-19 patients' clinical and laboratory findings include thrombocytopenia, elevated D-dimer, prolonged prothrombin time, and disseminated intravascular coagulation. As the pandemic is spreading and the whole picture is yet unknown, we highlight the importance of coagulation disorders in COVID-19 infected patients and review relevant data of previous coronavirus epidemics caused by the severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and the Middle East Respiratory Syndrome coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; Surgery Working Group, Society of Junior Doctors, Athens, Greece.
| | - Ioannis A Ziogas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece; Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Ulm 89070, Germany.
| |
Collapse
|
5
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
6
|
Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, Chan CP, Tse H, Woo PCY, Yuen KY, Jin DY. Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol 2014; 88:4866-76. [PMID: 24522921 PMCID: PMC3993821 DOI: 10.1128/jvi.03649-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging and highly lethal human pathogen. Why MERS-CoV causes severe disease in human is unclear, and one possibility is that MERS-CoV is particularly efficient in counteracting host immunity, including the sensing of virus invasion. It will therefore be critical to clarify how MERS-CoV cripples the host proteins that sense viruses and to compare MERS-CoV with its ancestral viruses in bats in the counteraction of virus sensing. This work not only provides a new understanding of the abilities of MERS-CoV and closely related bat viruses to subvert virus sensing but also might prove useful in revealing new strategies for the development of vaccines and antivirals.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Man Lung Yeung
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Kit-San Yuen
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Chun Kew
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Pak-Yin Lui
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| | - Herman Tse
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong
| | - Patrick C. Y. Woo
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
7
|
Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P, Jin DY. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 2014; 11:141-9. [PMID: 24509444 PMCID: PMC4003381 DOI: 10.1038/cmi.2013.61] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/13/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses have developed various measures to evade innate immunity. We have previously shown that severe acute respiratory syndrome (SARS) coronavirus M protein suppresses type I interferon (IFN) production by impeding the formation of functional TRAF3-containing complex. In this study, we demonstrate that the IFN-antagonizing activity is specific to SARS coronavirus M protein and is mediated through its first transmembrane domain (TM1) located at the N terminus. M protein from human coronavirus HKU1 does not inhibit IFN production. Whereas N-linked glycosylation of SARS coronavirus M protein has no influence on IFN antagonism, TM1 is indispensable for the suppression of IFN production. TM1 targets SARS coronavirus M protein and heterologous proteins to the Golgi apparatus, yet Golgi localization is required but not sufficient for IFN antagonism. Mechanistically, TM1 is capable of binding with RIG-I, TRAF3, TBK1 and IKKε, and preventing the interaction of TRAF3 with its downstream effectors. Our work defines the molecular architecture of SARS coronavirus M protein required for suppression of innate antiviral response.
Collapse
Affiliation(s)
- Kam-Leung Siu
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Ping Chan
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Dong-Yan Jin
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
8
|
Chan CP, Mak TY, Chin KT, Ng IOL, Jin DY. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci 2010; 123:1438-48. [PMID: 20356926 DOI: 10.1242/jcs.067819] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CREB-H is a liver-enriched bZIP transcription factor of the CREB3 subfamily. CREB-H is activated by intramembrane proteolysis that removes a C-terminal transmembrane domain. Aberrant expression of CREB-H is implicated in liver cancer. In this study we characterized N-linked glycosylation of CREB-H in the luminal domain at the C-terminus. We found that CREB-H is modified at three N-linked glycosylation sites in this region. Disruption of all three sites by site-directed mutagenesis completely abrogated N-linked glycosylation of CREB-H. The unglycosylated mutant of CREB-H was not unstable, unfolded or aggregated. Upon stimulation with an activator of intramembrane proteolysis such as brefeldin A and KDEL-tailed site 1 protease, unglycosylated or deglycosylated CREB-H was largely uncleaved, retained in an inactive form in the endoplasmic reticulum, and less capable of activating transcription driven by unfolded protein response element or C-reactive protein promoter. Taken together, our findings suggest that N-linked glycosylation is required for full activation of CREB-H through intramembrane proteolysis. Our work also reveals a novel mechanism for the regulation of CREB-H-dependent transcription.
Collapse
Affiliation(s)
- Chi-Ping Chan
- Department of Biochemistry, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
9
|
Siu KL, Kok KH, Ng MHJ, Poon VKM, Yuen KY, Zheng BJ, Jin DY. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem 2009; 284:16202-16209. [PMID: 19380580 PMCID: PMC2713514 DOI: 10.1074/jbc.m109.008227] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus is highly pathogenic in humans and
evades innate immunity at multiple levels. It has evolved various strategies to counteract
the production and action of type I interferons, which mobilize the front-line defense
against viral infection. In this study we demonstrate that SARS coronavirus M protein
inhibits gene transcription of type I interferons. M protein potently antagonizes the
activation of interferon-stimulated response element-dependent transcription by
double-stranded RNA, RIG-I, MDA5, TBK1, IKKϵ, and virus-induced signaling adaptor
(VISA) but has no influence on the transcriptional activity of this element when IRF3 or
IRF7 is overexpressed. M protein physically associates with RIG-I, TBK1, IKKϵ, and
TRAF3 and likely sequesters some of them in membrane-associated cytoplasmic compartments.
Consequently, the expression of M protein prevents the formation of
TRAF3·TANK·TBK1/IKKϵ complex and thereby inhibits
TBK1/IKKϵ-dependent activation of IRF3/IRF7 transcription factors. Taken together,
our findings reveal a new mechanism by which SARS coronavirus circumvents the production
of type I interferons.
Collapse
Affiliation(s)
- Kam-Leung Siu
- From the Departments of Biochemistry, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- From the Departments of Biochemistry, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Ming-Him James Ng
- From the Departments of Biochemistry, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Vincent K M Poon
- Microbiology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- Microbiology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Bo-Jian Zheng
- Microbiology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- From the Departments of Biochemistry, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|