1
|
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog 2020; 16:e1008307. [PMID: 32069328 PMCID: PMC7048317 DOI: 10.1371/journal.ppat.1008307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/28/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drug-resistant strains of HIV-1 (IC50: ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by ≥ 10-20%), gene expression (0.01-0.46% by ≥ 2-5 fold), and protein abundance (0.02-0.34% by ≥ 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter K. Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qun Pan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J. Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Donald R. Branch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Infection and Immunity Group, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Bukong TN, Cho Y, Iracheta-Vellve A, Saha B, Lowe P, Adejumo A, Furi I, Ambade A, Gyongyosi B, Catalano D, Kodys K, Szabo G. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J Hepatol 2018; 69:1145-1154. [PMID: 30030149 PMCID: PMC6310218 DOI: 10.1016/j.jhep.2018.07.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Neutrophil extracellular traps (NETs) are an important strategy utilized by neutrophils to immobilize and kill invading microorganisms. Herein, we studied NET formation and the process of neutrophil cell death (NETosis), as well as the clearance of NETs by macrophages (MΦ) (efferocytosis) in acute sepsis following binge drinking. METHODS Healthy volunteers consumed 2 ml of vodka/kg body weight, before blood endotoxin and 16 s rDNA were measured. Peripheral neutrophils were isolated and exposed to alcohol followed by phorbol 12-myristate 13-acetate (PMA) stimulation. Mice were treated with three alcohol binges and intraperitoneal lipopolysaccharide (LPS) to assess the dynamics of NET formation and efferocytosis. In vivo, anti-Ly6G antibody (IA8) was used for neutrophil depletion. RESULTS Inducers of NETs (endotoxin and bacterial DNA) significantly increased in the circulation after binge alcohol drinking in humans. Ex vivo, alcohol alone increased NET formation, but upon PMA stimulation alcohol attenuated NET formation. Binge alcohol in mice resulted in a biphasic response to LPS. Initially, binge alcohol reduced LPS-induced NET formation and resulted in a diffuse distribution of neutrophils in the liver compared to alcohol-naïve mice. Moreover, indicators of NET formation including citrullinated histone H3, neutrophil elastase, and neutrophil myeloperoxidase were decreased at an early time point after LPS challenge in mice receiving binge alcohol, suggesting decreased NET formation. However, in the efferocytosis phase (15 h after LPS) citrullinated histone-H3 was increased in the liver in alcohol binge mice, suggesting decreased clearance of NETs. In vitro alcohol treatment reduced efferocytosis and phagocytosis of NETotic neutrophils and promoted expression of CD206 on MΦ. Finally, depletion of neutrophils prior to binge alcohol ameliorated LPS-induced systemic inflammation and liver injury in mice. CONCLUSIONS Dysfunctional NETosis and efferocytosis following binge drinking exacerbate liver injury associated with sepsis. LAY SUMMARY Disease severity in alcoholic liver disease (ALD) is associated with a significant presence of neutrophils (a type of immune cell) in the liver. It remains unknown how alcohol affects the capacity of neutrophils to control infection, a major hallmark of ALD. We found that binge alcohol drinking impaired important strategies used by neutrophils to contain and resolve infection, resulting in increased liver injury during ALD.
Collapse
Affiliation(s)
- Terence Ndonyi Bukong
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Banishree Saha
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adeyinka Adejumo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Barichievy S, Naidoo J, Boullé M, Scholefield J, Parihar SP, Coussens AK, Brombacher F, Sigal A, Mhlanga MM. Viral Apoptosis Evasion via the MAPK Pathway by Use of a Host Long Noncoding RNA. Front Cell Infect Microbiol 2018; 8:263. [PMID: 30123777 PMCID: PMC6086015 DOI: 10.3389/fcimb.2018.00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
An emerging realization of infectious disease is that pathogens can cause a high incidence of genetic instability within the host as a result of infection-induced DNA lesions. These often lead to classical hallmarks of cancer, one of which is the ability to evade apoptosis despite the presence of numerous genetic mutations that should be otherwise lethal. The Human Immunodeficiency Virus type 1 (HIV-1) is one such pathogen as it induces apoptosis in CD4+ T cells but is largely non-cytopathic in macrophages. As a consequence there is long-term dissemination of the pathogen specifically by these infected yet surviving host cells. Apoptosis is triggered by double-strand breaks (DSBs), such as those induced by integrating retroviruses like HIV-1, and is coordinated by the p53-regulated long noncoding RNA lincRNA-p21. As is typical for a long noncoding RNA, lincRNA-p21 mediates its activities in a complex with one of its two protein binding partners, namely HuR and hnRNP-K. In this work, we monitor the cellular response to infection to determine how HIV-1 induces DSBs in macrophages yet evades apoptosis in these cells. We show that the virus does so by securing the pro-survival MAP2K1/ERK2 cascade early upon entry, in a gp120-dependent manner, to orchestrate a complex dysregulation of lincRNA-p21. By sequestering the lincRNA-p21 partner HuR in the nucleus, HIV-1 enables lincRNA-p21 degradation. Simultaneously, the virus permits transcription of pro-survival genes by sequestering lincRNA-p21's other protein partner hnRNP-K in the cytoplasm via the MAP2K1/ERK2 pathway. Of particular note, this MAP2K1/ERK2 pro-survival cascade is switched off during T cell maturation and is thus unavailable for similar viral manipulation in mature CD4+ T cells. We show that the introduction of MAP2K1, ERK2, or HDM2 inhibitors in HIV-infected macrophages results in apoptosis, providing strong evidence that the viral-mediated apoptotic block can be released, specifically by restoring the nuclear interaction of lincRNA-p21 and its apoptosis protein partner hnRNP-K. Together, these results reveal a unique example of pathogenic control over mammalian apoptosis and DNA damage via a host long noncoding RNA, and present MAP2K1/ERK2 inhibitors as a novel therapeutic intervention strategy for HIV-1 infection in macrophages.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology ERA, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.,Discovery Sciences, IMED Biotech Unit, AstraZeneca AB R&D, Gothenburg, Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology ERA, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.,Division of Chemical Systems and Synthetic Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mikaël Boullé
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology Berlin, Germany
| | - Janine Scholefield
- Gene Expression and Biophysics Group, Synthetic Biology ERA, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Suraj P Parihar
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicinem University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Anna K Coussens
- Division of Medical Microbiology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicinem University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Alex Sigal
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology Berlin, Germany
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology ERA, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa.,Division of Chemical Systems and Synthetic Biology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
5
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Abstract
OBJECTIVE We investigated whether HIV-1 inhibition by SRC-family kinase inhibitors is through the non-receptor tyrosine kinase pp60 (c-SRC) and its binding partner, protein tyrosine kinase 2 beta (PTK2B). DESIGN CD4 T-lymphocytes were infected with R5 (JR-FL) or X4 (HXB2) HIV-1. We used SRC-family kinase inhibitors or targeted siRNA knockdown of c-SRC and PTK2B, then monitored effects on the early HIV-1 lifecycle. METHODS Four SRC-family kinase inhibitors or targeted siRNA knockdown were used to reduce c-SRC or PTK2B protein expression. Activated CD4 T-lymphocytes were infected with recombinant, nef-deficient, or replication-competent infectious viruses. Knockdown experiments examined early infection by monitoring: luciferase activity, expression of host surface receptors, reverse transcriptase activity, p24 levels and qPCR of reverse transcripts, integrated HIV-1, and two-long terminal repeat (2-LTR) circles. RESULTS All SRC-family kinase inhibitors inhibited R5 and X4 HIV-1 infection. Neither c-SRC nor PTK2B siRNA knockdown had an effect on cell surface receptors (CD4, CXCR4, and CCR5) nor on reverse transcriptase activity. However, using JR-FL both decreased luciferase activity while increasing late reverse transcripts (16-fold) and 2-LTR circles (eight-fold) while also decreasing viral integration (four-fold). With HXB2, c-SRC but not PTK2B siRNA knockdown produced similar results. CONCLUSIONS Our results suggest c-SRC tyrosine kinase is a major regulator of HIV-1 infection, participating in multiple stages of infection post-entry: Reduced proviral integration with increased 2-LTR circles is reminiscent of integrase inhibitors used in combination antiretroviral therapy. Decreasing c-SRC expression and/or activity provides a new target for antiviral intervention and the potential for repurposing existing FDA-approved kinase inhibitors.
Collapse
|
7
|
Bin Hamid F, Kim J, Shin CG. Cellular and viral determinants of retroviral nuclear entry. Can J Microbiol 2015; 62:1-15. [PMID: 26553381 DOI: 10.1139/cjm-2015-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses must integrate their cDNA into the host genome to generate proviruses. Viral DNA-protein complexes interact with cellular proteins and produce pre-integration complexes, which carry the viral genome and cross the nuclear pore channel to enter the nucleus and integrate viral DNA into host chromosomal DNA. If the reverse transcripts fail to integrate, linear or circular DNA species such as 1- and 2-long terminal repeats are generated. Such complexes encounter numerous cellular proteins in the cytoplasm, which restrict viral infection and protect the nucleus. To overcome host cell defenses, the pathogens have evolved several evasion strategies. Viral proteins often contain nuclear localization signals, allowing entry into the nucleus. Among more than 1000 proteins identified as required for HIV infection by RNA interference screening, karyopherins, cleavage and polyadenylation specific factor 6, and nucleoporins have been predominantly studied. This review discusses current opinions about the synergistic relationship between the viral and cellular factors involved in nuclear import, with focus on the unveiled mysteries of the host-pathogen interaction, and highlights novel approaches to pinpoint therapeutic targets.
Collapse
Affiliation(s)
- Faysal Bin Hamid
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea.,Department of Systems Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| |
Collapse
|
8
|
Yuan J, Xue B. Role of structural flexibility in the evolution of emerin. J Theor Biol 2015; 385:102-11. [PMID: 26319992 DOI: 10.1016/j.jtbi.2015.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023]
Abstract
Emerin is a short inner nuclear membrane protein with an LEM-domain at the N-terminal end and a transmembrane domain at the C-terminal end. The middle region of human emerin contains multiple binding motifs. Since emerin is often found in evolutionarily newer species, the functional conservation of emerin becomes an interesting topic. In this study, we have demonstrated that most of the functional motifs of emerin are intrinsically disordered or highly flexible. Many post-translational modification sites and mutation sites are associated with these disordered regions. The averaged substitution rates of most functional motifs between species correlate positively with the averaged disorder scores of those functional motifs. Human emerin sequence may have acquired new functions on protein-protein interaction through the formation of hydrophobic motifs in the middle region, which is resulted from accumulated mutations during the evolution process.
Collapse
Affiliation(s)
- Jia Yuan
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL 33620, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL 33620, USA.
| |
Collapse
|
9
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
10
|
Koch AJ, Holaska JM. Emerin in health and disease. Semin Cell Dev Biol 2013; 29:95-106. [PMID: 24365856 DOI: 10.1016/j.semcdb.2013.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/02/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the genes encoding emerin, lamins A and C and FHL1. Additional EDMD-like syndromes are caused by mutations in nesprins and LUMA. This review will specifically focus on emerin function and the current thinking for how loss or mutations in emerin cause EDMD. Emerin is a well-conserved, ubiquitously expressed protein of the inner nuclear membrane. Emerin has been shown to have diverse functions, including the regulation of gene expression, cell signaling, nuclear structure and chromatin architecture. This review will focus on the relationships between these functions and the EDMD disease phenotype. Additionally it will highlight open questions concerning emerin's roles in cell and nuclear biology and disease.
Collapse
Affiliation(s)
- Adam J Koch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - James M Holaska
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Developmental, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Cummins NW, Badley AD. Anti-apoptotic mechanisms of HIV: lessons and novel approaches to curing HIV. Cell Mol Life Sci 2013; 70:3355-63. [PMID: 23275944 PMCID: PMC3753464 DOI: 10.1007/s00018-012-1239-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/18/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022]
Abstract
Past efforts at curing infection with the human immunodeficiency virus (HIV) have been blocked by the resistance of some infected cells to viral cytopathic effects and the associated development of a latent viral reservoir. Furthermore, current efforts to clear the viral reservoir by means of reactivating latent virus are hampered by the lack of cell death in the newly productively infected cells. The purpose of this review is to describe the many anti-apoptotic mechanisms of HIV, as well as the current limitations in the field. Only by understanding how infected cells avoid HIV-induced cell death can an effective strategy to kill infected cells be developed.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
12
|
Abstract
Emerin, a conserved LEM-domain protein, is among the few nuclear membrane proteins for which extensive basic knowledge—biochemistry, partners, functions, localizations, posttranslational regulation, roles in development and links to human disease—is available. This review summarizes emerin and its emerging roles in nuclear “lamina” structure, chromatin tethering, gene regulation, mitosis, nuclear assembly, development, signaling and mechano-transduction. We also highlight many open questions, exploration of which will be critical to understand how this intriguing nuclear membrane protein and its “family” influence the genome.
Collapse
Affiliation(s)
- Jason M Berk
- Department of Cell Biology; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | | | | |
Collapse
|
13
|
Iordanskiy S, Santos S, Bukrinsky M. Nature, nurture and HIV: The effect of producer cell on viral physiology. Virology 2013; 443:208-13. [PMID: 23747196 DOI: 10.1016/j.virol.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/23/2013] [Accepted: 05/15/2013] [Indexed: 01/13/2023]
Abstract
Macrophages and CD4-positive T lymphocytes are the major targets and producers of HIV-1. While the molecular details underlying HIV replication in macrophages and T cells become better understood, it remains unclear whether viruses produced by these target cells differ in their biological properties. Recent reports suggest that HIV virions incorporate a large number of producer cell proteins and lipids which have an effect on subsequent viral replication in newly infected cells. The identity and abundance of these incorporated factors varies between different types of producer cells, suggesting that they may influence the replication capacity and pathogenic activity of the virions produced by T cells and macrophages.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA.
| | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Macrophages play an important role in HIV-1 pathogenesis and contribute to the establishment of the viral reservoir responsible for continuous virus production. This review will discuss new insights into HIV-1 infection in macrophages and the effect of infection on immune function and pathology. RECENT FINDINGS New cellular factors interacting with various steps of the HIV-1 replication cycle, such as entry, integration, transcription, and assembly of new viral progeny, have been identified. Cellular and viral microRNAs have been shown to regulate virus replication, promote viral latency, and prolong cell survival. Interference with innate immune functions, like phagocytosis, autophagy, cytokine production, and T-cell activation by HIV-1 has been found to contribute to virus replication and latency. Growing evidence indicates an important role of infected macrophages in a variety of HIV-1-associated diseases, including neurocognitive disorders. SUMMARY Under combined antiretroviral therapy (cART), HIV-1 continues to persist in macrophages. Better understanding of HIV-1 infection in macrophages may lead to new adjunctive therapies to improve cART, specifically targeting the viral reservoir and ameliorating tissue-specific diseases.
Collapse
|
15
|
Gupta P, Singhal PK, Rajendrakumar P, Padwad Y, Tendulkar AV, Kalyanaraman VS, Schmidt RE, Srinivasan A, Mahalingam S. Mechanism of host cell MAPK/ERK-2 incorporation into lentivirus particles: characterization of the interaction between MAPK/ERK-2 and proline-rich-domain containing capsid region of structural protein Gag. J Mol Biol 2011; 410:681-97. [PMID: 21762808 DOI: 10.1016/j.jmb.2011.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 01/11/2023]
Abstract
The characteristic event that follows infection of a cell by retroviruses Including human immunodeficiency virus (HIV)/ simian immunodeficiency virus (SIV) is the formation of a reverse transcription complex in which viral nucleic acids are synthesized. Nuclear transport of newly synthesized viral DNA requires phosphorylation of proteins in the reverse transcription complex by virion-associated cellular kinases. Recently, we demonstrated that disruption of cellular mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 2 (ERK-2) incorporation into SIV virions inhibits virus replication in nonproliferating target cells, indicating that MAPK/ERK-2 plays an important role in HIV /SIV replication. The mechanism of incorporation of MAPK/ERK-2 into virus particles is not defined. In this regard, we hypothesized that a likely interaction of MAPK/ERK-2 with Gag(p55) may enable its packaging into virus particles. In the present investigation, we provided evidence for the first time that MAPK/ERK-2 interacts with the structural Gag polyprotein p55 using a combination of mutagenesis and protein-protein interaction analysis. We further show that MAPK/ERK-2 interacts specifically with the poly-proline motif present in the capsid region of Gag(p55). Utilizing virus-like particles directed by Gag, we have shown that the exchange of conserved proline residues within capsid of Gag(p55) resulted in impaired incorporation of MAPK/ERK-2. In addition, the deletion of a domain comprising amino acids 201 to 255 within host cell MAPK/ERK-2 abrogates its interaction with Gag(p55). The relevance of the poly-proline motif is further evident by its conservation in diverse retroviruses, as noted from the sequence analysis and structural modeling studies of predicted amino acid sequences of the corresponding Gag proteins. Collectively, these data suggest that the interaction of MAPK/ERK-2 with Gag polyprotein results in its incorporation into virus particles and may be essential for retroviral replication.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Giroud C, Chazal N, Briant L. Cellular kinases incorporated into HIV-1 particles: passive or active passengers? Retrovirology 2011; 8:71. [PMID: 21888651 PMCID: PMC3182982 DOI: 10.1186/1742-4690-8-71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022] Open
Abstract
Phosphorylation is one of the major mechanisms by which the activities of protein factors can be regulated. Such regulation impacts multiple key-functions of mammalian cells, including signal transduction, nucleo-cytoplasmic shuttling, macromolecular complexes assembly, DNA binding and regulation of enzymatic activities to name a few. To ensure their capacities to replicate and propagate efficiently in their hosts, viruses may rely on the phosphorylation of viral proteins to assist diverse steps of their life cycle. It has been known for several decades that particles from diverse virus families contain some protein kinase activity. While large DNA viruses generally encode for viral kinases, RNA viruses and more precisely retroviruses have acquired the capacity to hijack the signaling machinery of the host cell and to embark cellular kinases when budding. Such property was demonstrated for HIV-1 more than a decade ago. This review summarizes the knowledge acquired in the field of HIV-1-associated kinases and discusses their possible function in the retroviral life cycle.
Collapse
Affiliation(s)
- Charline Giroud
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, UMR5236 CNRS - Université Montpellier 1-Montpellier 2, Montpellier, France
| | | | | |
Collapse
|