1
|
Debat H, Gomez-Talquenca S, Bejerman N. RNA Virus Discovery Sheds Light on the Virome of a Major Vineyard Pest, the European Grapevine Moth ( Lobesia botrana). Viruses 2025; 17:95. [PMID: 39861884 PMCID: PMC11768796 DOI: 10.3390/v17010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The European grapevine moth (Lobesia botrana) poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the L. botrana virome, revealing novel and diverse RNA viruses. We characterized four new viral members belonging to distinct families, with evolutionary cues of cypoviruses (Reoviridae), sobemo-like viruses (Solemoviridae), phasmaviruses (Phasmaviridae), and carmotetraviruses (Carmotetraviridae). Phylogenetic analysis of the cypoviruses places them within the genus in affinity with other moth viruses. The bi-segmented and highly divergent sobemo-like virus showed a distinctive evolutionary trajectory of its encoding proteins at the periphery of recently reported invertebrate Sobelivirales. Notably, the presence of a novel phasmavirus, typically associated with mosquitoes, expands the known host range and diversity of this family to moths. Furthermore, the identification of a carmotetravirus branching in the same cluster as the Providence virus, a lepidopteran virus which replicates in plants, raises questions regarding the biological significance of this moth virus to the grapevine host. We further explored viral sequences in several publicly available transcriptomic datasets of the moth, indicating potential prevalence across distinct conditions. These results underscore the existence of a complex virome within L. botrana and lay the foundation for future studies investigating the ecological roles, evolutionary dynamics, and potential biocontrol applications of these viruses in the L. botrana-vineyard ecosystem.
Collapse
Affiliation(s)
- Humberto Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Sebastian Gomez-Talquenca
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA-Mendoza-INTA), San Martín 3853, Luján de Cuyo, Mendoza 5507, Argentina
| | - Nicolas Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas (UFYMA-CONICET), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
2
|
Litov AG, Semenyuk II, Belova OA, Polienko AE, Thinh NV, Karganova GG, Tiunov AV. Extensive Diversity of Viruses in Millipedes Collected in the Dong Nai Biosphere Reserve (Vietnam). Viruses 2024; 16:1486. [PMID: 39339962 PMCID: PMC11437466 DOI: 10.3390/v16091486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Advances in sequencing technologies and bioinformatics have led to breakthroughs in the study of virus biodiversity. Millipedes (Diplopoda, Myriapoda, Arthropoda) include more than 12,000 extant species, yet data on virus diversity in Diplopoda are scarce. This study aimed to explore the virome of the millipedes collected in the Dong Nai Biosphere Reserve in Vietnam. We studied 14 species of millipedes and managed to assemble and annotate the complete coding genomes of 16 novel viruses, the partial coding genomes of 10 more viruses, and several fragmented viral sequences, which may indicate the presence of about 54 more viruses in the studied samples. Among the complete and partial genomes, 27% were putative members of the order Picornavirales. Most of the discovered viruses were very distant from the viruses currently present in the relevant databases. At least eight viruses meet the criteria to be recognized as a new species by the International Committee on Taxonomy of Viruses, and, for two of them, a higher taxonomic status (genus and even family) can be suggested.
Collapse
Affiliation(s)
- Alexander G Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Irina I Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
- Southern Branch, Russian-Vietnamese Tropical Scientific and Technological Center, Ho Chi Minh City 70001, Vietnam
| | - Oxana A Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Nguyen Van Thinh
- Southern Branch, Russian-Vietnamese Tropical Scientific and Technological Center, Ho Chi Minh City 70001, Vietnam
| | - Galina G Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, 119071 Moscow, Russia
| |
Collapse
|
3
|
de Lima JGS, Lanza DCF. 2A and 2A-like Sequences: Distribution in Different Virus Species and Applications in Biotechnology. Viruses 2021; 13:v13112160. [PMID: 34834965 PMCID: PMC8623073 DOI: 10.3390/v13112160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
2A is an oligopeptide sequence that mediates a ribosome “skipping” effect and can mediate a co-translation cleavage of polyproteins. These sequences are widely distributed from insect to mammalian viruses and could act by accelerating adaptive capacity. These sequences have been used in many heterologous co-expression systems because they are versatile tools for cleaving proteins of biotechnological interest. In this work, we review and update the occurrence of 2A/2A-like sequences in different groups of viruses by screening the sequences available in the National Center for Biotechnology Information database. Interestingly, we reported the occurrence of 2A-like for the first time in 69 sequences. Among these, 62 corresponded to positive single-stranded RNA species, six to double stranded RNA viruses, and one to a negative-sense single-stranded RNA virus. The importance of these sequences for viral evolution and their potential in biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Juliana G. S. de Lima
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
| | - Daniel C. F. Lanza
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
- Correspondence: ; Tel.: +55-84-3215-3416; Fax: +55-84-3215-3415
| |
Collapse
|
4
|
Hause BM, Nelson E, Christopher-Hennings J. Identification of a novel statovirus in a faecal sample from a calf with enteric disease. J Gen Virol 2021; 102. [PMID: 34554084 DOI: 10.1099/jgv.0.001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel clade of RNA viruses was identified in the mammalian gastrointestinal tract by next-generation sequencing. Phylogenetically, these viruses are related to the genera Tombusviridae (plant viruses) and Flaviviridae, which includes mammalian, avian and insect hosts. Named in line with their characterization as stool-associated Tombus-like viruses, it is unclear if statoviruses infect mammals or are dietary in origin. Here, metagenomic sequencing of faecal material collected from a 10-week-old calf with enteric disease found that 20 % of the reads mapped to a de novo-assembled 4 kb contig with homology to statoviruses. Phylogenetic analysis of the statovirus genome found a clear evolutionary relationship with statovirus A, but, with only 47 % similarity, we propose that the statovirus sequence presents a novel species, statovirus F. A TaqMan PCR targeting statovirus F performed on faecal material found a cycle threshold of 11, suggesting a high titre of virus shed from the calf with enteric disease. A collection of 48 samples from bovine enteric disease diagnostic submissions were assayed by PCR to investigate statovirus F prevalence and 6 of 48 (12.5 %) were positive. An ELISA to detect antibodies to the coat protein found that antibodies to statovirus F were almost ubiquitous in bovine serum. Combined, the PCR and ELISA results suggest that statovirus F commonly infects cattle. Further research is needed to elucidate the aetiological significance of statovirus infection.
Collapse
Affiliation(s)
- Ben M Hause
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Jane Christopher-Hennings
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, 57007, USA
| |
Collapse
|
5
|
Reuter G, Várallyay É, Baráth D, Földvári G, Szekeres S, Boros Á, Kapusinszky B, Delwart E, Pankovics P. Analysis of a novel RNA virus in a wild northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol 2019; 164:3065-3071. [PMID: 31549303 PMCID: PMC6823297 DOI: 10.1007/s00705-019-04414-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/23/2019] [Indexed: 11/02/2022]
Abstract
Tombusviruses are generally considered plant viruses. A novel tombus-/carmotetravirus-like RNA virus was identified in a faecal sample and blood and muscle tissues from a wild northern white-breasted hedgehog (Erinaceus roumanicus). The complete genome of the virus, called H14-hedgehog/2015/HUN (GenBank accession number MN044446), is 4,118 nucleotides in length with a readthrough stop codon of type/group 1 in ORF1 and lacks a poly(A) tract at the 3' end. The predicted ORF1-RT (RdRp) and the capsid proteins had low (31-33%) amino acid sequence identity to unclassified tombus-/noda-like viruses (Hubei tombus-like virus 12 and Beihai noda-like virus 10), respectively, discovered recently in invertebrate animals. An in vivo experimental plant inoculation study showed that an in vitro-transcribed H14-hedgehog/2015/HUN viral RNA did not replicate in Nicotiana benthamiana, Chenopodium quinoa, or Chenopodium murale, the most susceptible hosts for plant-origin tombusviruses.
Collapse
Affiliation(s)
- Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary.
| | - Éva Várallyay
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Dániel Baráth
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Gábor Földvári
- Evolutionary Systems Research Group MTA Centre for Ecological Research, Tihany, Hungary.,Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Szigeti út 12, Pecs, 7624, Hungary
| |
Collapse
|
6
|
Jia H, Gong P. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. Front Microbiol 2019; 10:1945. [PMID: 31507560 PMCID: PMC6713929 DOI: 10.3389/fmicb.2019.01945] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023] Open
Abstract
The RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses are a unique class of nucleic acid polymerases. Each viral RdRP contains a 500–600 residue catalytic module with palm, fingers, and thumb domains forming an encircled human right hand architecture. Seven polymerase catalytic motifs are located in the RdRP palm and fingers domains, comprising the most conserved parts of the RdRP and are responsible for the RNA-only specificity in catalysis. Functional regions are often found fused to the RdRP catalytic module, resulting in a high level of diversity in RdRP global structure and regulatory mechanism. In this review, we surveyed all 46 RdRP-sequence available virus families of the positive-strand RNA viruses listed in the 2018b collection of the International Committee on Virus Taxonomy (ICTV) and chose a total of 49 RdRPs as representatives. By locating hallmark residues in RdRP catalytic motifs and by referencing structural and functional information in the literature, we were able to estimate the N- and C-terminal boundaries of the catalytic module in these RdRPs, which in turn serve as reference points to predict additional functional regions beyond the catalytic module. Interestingly, a large number of virus families may have additional regions fused to the RdRP N-terminus, while only a few of them have such regions on the C-terminal side of the RdRP. The current knowledge on these additional regions, either in three-dimensional (3D) structure or in function, is quite limited. In the five RdRP-structure available virus families in the positive-strand RNA viruses, only the Flaviviridae family has the 3D structural information resolved for such regions. Hence, future efforts to solve full-length RdRP structures containing these regions and to dissect the functional contribution of them are necessary to improve the overall understanding of the RdRP proteins as an evolutionarily integrated group, and our analyses here may serve as a guideline for selecting representative RdRP systems in these studies.
Collapse
Affiliation(s)
- Hengxia Jia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Jiwaji M, Matcher GF, de Bruyn MM, Awando JA, Moodley H, Waterworth D, Jarvie RA, Dorrington RA. Providence virus: An animal virus that replicates in plants or a plant virus that infects and replicates in animal cells? PLoS One 2019; 14:e0217494. [PMID: 31163039 PMCID: PMC6548363 DOI: 10.1371/journal.pone.0217494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Emerging viral diseases, most of which are zoonotic, pose a significant threat to global health. There is a critical need to identify potential new viral pathogens and the challenge is to identify the reservoirs from which these viruses might emerge. Deep sequencing of invertebrate transcriptomes has revealed a plethora of viruses, many of which represent novel lineages representing both plant and animal viruses and little is known about the potential threat that these viruses pose. Methods Providence virus, an insect virus, was used to establish a productive infection in Vigna unguiculata (cowpea) plants. Providence virus particles purified from these cowpea plants were used to infect two mammalian cell lines. Findings Here, we present evidence that Providence virus, a non-enveloped insect RNA virus, isolated from a lepidopteran midgut cell line can establish a productive infection in plants as well as in animal cells. The observation that Providence virus can readily infect both plants and mammalian cell culture lines demonstrates the ability of an insect RNA virus to establish productive infections across two kingdoms, in plants and invertebrate and vertebrate animal cell lines. Conclusions The study highlights the potential of phytophagous insects as reservoirs for viral re-assortment and that plants should be considered as reservoirs for emerging viruses that may be potentially pathogenic to humans.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- * E-mail:
| | | | - Mart-Mari de Bruyn
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Janet Awino Awando
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Holisha Moodley
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Dylan Waterworth
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Rachel Anne Jarvie
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | | |
Collapse
|
8
|
Jiwaji M, Short JR, Dorrington RA. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line. J Gen Virol 2016; 97:2763-2768. [PMID: 27521161 DOI: 10.1099/jgv.0.000578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.
Collapse
Affiliation(s)
- Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - James Roswell Short
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| | - Rosemary Ann Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
9
|
Genetic Characterization of Providence Virus Isolated from Bat Guano in Hungary. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00403-16. [PMID: 27198029 PMCID: PMC4888983 DOI: 10.1128/genomea.00403-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report the complete genome sequence and genetic characterization of a novel strain of Providence virus, detected in Barbastella barbastellus bat guano, collected in Hungary in 2014. Our data may facilitate the understanding of the evolutionary processes of this unique viral family of Carmotetraviridae.
Collapse
|
10
|
Conserved motifs in a tombusvirus polymerase modulate genome replication, subgenomic transcription, and amplification of defective interfering RNAs. J Virol 2015; 89:3236-46. [PMID: 25568204 DOI: 10.1128/jvi.03378-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The replication of plus-strand RNA virus genomes is mediated by virally encoded RNA-dependent RNA polymerases (RdRps). We have investigated the role of the C-proximal region in the RdRp of tomato bushy stunt virus (TBSV) in mediating viral RNA synthesis. TBSV is the prototype species in the genus Tombusvirus, family Tombusviridae, and its RdRp is responsible for replicating the viral genome, transcribing two subgenomic mRNAs, and supporting replication of defective interfering RNAs. Comparative sequence analysis of the RdRps of tombusvirids identified three highly conserved motifs in their C-proximal regions, and these sequences were subsequently targeted for mutational analysis in TBSV. The results revealed that these motifs are important for (i) synthesizing viral genomic RNA and subgenomic mRNAs, (ii) facilitating plus- and/or minus-strand synthesis, and (iii) modulating trans-replication of a defective interfering RNA. These motifs were also found to be conserved in other plant viruses as well as in a fungal and insect virus. The collective findings are discussed in relation to viral RNA synthesis and taxonomy. IMPORTANCE Little is currently known about the structure and function of the viral polymerases that replicate the genomes of RNA plant viruses. Tombusviruses, the prototype of the tombusvirids, have been used as model plus-strand RNA plant viruses for understanding many of the steps in the infectious process; however, their polymerases remain poorly characterized. To help address this issue, the function of the C-terminal region of the polymerase of a tombusvirus was investigated. Three conserved motifs were identified and targeted for mutational analysis. The results revealed that these polymerase motifs are important for determining what type of viral RNA is produced, facilitating different steps in viral RNA production, and amplifying subgenomic RNA replicons. Accordingly, the C-terminal region of the tombusvirus polymerase is needed for a variety of fundamental activities. Furthermore, as these motifs are also present in distantly related viruses, the significance of these results extends beyond tombusvirids.
Collapse
|
11
|
Viral proteins originated de novo by overprinting can be identified by codon usage: application to the "gene nursery" of Deltaretroviruses. PLoS Comput Biol 2013; 9:e1003162. [PMID: 23966842 PMCID: PMC3744397 DOI: 10.1371/journal.pcbi.1003162] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 06/13/2013] [Indexed: 12/24/2022] Open
Abstract
A well-known mechanism through which new protein-coding genes originate is by modification of pre-existing genes, e.g. by duplication or horizontal transfer. In contrast, many viruses generate protein-coding genes de novo, via the overprinting of a new reading frame onto an existing (“ancestral”) frame. This mechanism is thought to play an important role in viral pathogenicity, but has been poorly explored, perhaps because identifying the de novo frames is very challenging. Therefore, a new approach to detect them was needed. We assembled a reference set of overlapping genes for which we could reliably determine the ancestral frames, and found that their codon usage was significantly closer to that of the rest of the viral genome than the codon usage of de novo frames. Based on this observation, we designed a method that allowed the identification of de novo frames based on their codon usage with a very good specificity, but intermediate sensitivity. Using our method, we predicted that the Rex gene of deltaretroviruses has originated de novo by overprinting the Tax gene. Intriguingly, several genes in the same genomic region have also originated de novo and encode proteins that regulate the functions of Tax. Such “gene nurseries” may be common in viral genomes. Finally, our results confirm that the genomic GC content is not the only determinant of codon usage in viruses and suggest that a constraint linked to translation must influence codon usage. How does novelty originate in nature? It is commonly thought that new genes are generated mainly by modifications of existing genes (the “tinkering” model). In contrast, we have shown recently that in viruses, numerous genes are generated entirely de novo (“from scratch”). The role of these genes remains underexplored, however, because they are difficult to identify. We have therefore developed a new method to detect genes originated de novo in viral genomes, based on the observation that each viral genome has a unique “signature”, which genes originated de novo do not share. We applied this method to analyze the genes of Human T-Lymphotropic Virus 1 (HTLV1), a relative of the HIV virus and also a major human pathogen that infects about twenty million people worldwide. The life cycle of HTLV1 is finely regulated – it can stay dormant for long periods and can provoke blood cancers (leukemias) after a very long incubation. We discovered that several of the genes of HTLV1 have originated de novo. These novel genes play a key role in regulating the life cycle of HTLV1, and presumably its pathogenicity. Our investigations suggest that such “gene nurseries” may be common in viruses.
Collapse
|
12
|
Short JR, Nakayinga R, Hughes GE, Walter CT, Dorrington RA. Providence virus (family: Carmotetraviridae) replicates vRNA in association with the Golgi apparatus and secretory vesicles. J Gen Virol 2013; 94:1073-1078. [PMID: 23343628 DOI: 10.1099/vir.0.047647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Providence virus (PrV) is the sole member of the family Carmotetraviridae (formerly Tetraviridae) sharing the characteristic T=4 capsid architecture with other tetravirus families. Despite significant structural similarities, PrV differs from other tetraviruses in terms of genome organization, non-structural protein sequence and regulation of gene expression. In addition, it is the only tetravirus that infects tissue culture cells. Previous studies showed that in persistently infected Helicoverpa zea MG8 cells, the PrV replicase associates with detergent-resistant membranes in punctate cytosolic structures, which is similar to the distribution of an alpha-like tetravirus replicase (Helicoverpa armigera stunt virus). Here, we demonstrate that the site of PrV vRNA replication coincides with the presence of PrV p40/p104 proteins in infected cells and that these replication proteins associate with the Golgi apparatus and secretory vesicles in transfected cells.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Ritah Nakayinga
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Gareth E Hughes
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Cheryl T Walter
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
13
|
Wang Q, Han Y, Qiu Y, Zhang S, Tang F, Wang Y, Zhang J, Hu Y, Zhou X. Identification and characterization of RNA duplex unwinding and ATPase activities of an alphatetravirus superfamily 1 helicase. Virology 2012; 433:440-8. [PMID: 22995190 PMCID: PMC7111927 DOI: 10.1016/j.virol.2012.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022]
Abstract
Dendrolimus punctatus tetravirus (DpTV) belongs to the genus omegatetravirus of the Alphatetraviridae family. Sequence analysis predicts that DpTV replicase contains a putative helicase domain (Hel). However, the helicase activity in alphatetraviruses has never been formally determined. In this study, we determined that DpTV Hel is a functional RNA helicase belonging to superfamily-1 helicase with 5′–3′ dsRNA unwinding directionality. Further characterization determined the length requirement of the 5′ single-stranded tail on the RNA template and the optimal reaction conditions for the unwinding activity of DpTV Hel. Moreover, DpTV Hel also contains NTPase activity. The ATPase activity of DpTV Hel could be significantly stimulated by dsRNA, and dsRNA could partially rescue the ATPase activity abolishment caused by mutations. Our study is the first to identify an alphatetravirus RNA helicase and further characterize its dsRNA unwinding and NTPase activities in detail and should foster our understanding of DpTV and other alphatetraviruses.
Collapse
Affiliation(s)
- Qinrong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Short JR, Dorrington RA. Membrane targeting of an alpha-like tetravirus replicase is directed by a region within the RNA-dependent RNA polymerase domain. J Gen Virol 2012; 93:1706-1716. [PMID: 22535773 DOI: 10.1099/vir.0.038992-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The members of the family Tetraviridae are small positive-sense insect RNA viruses that exhibit stringent host specificity and a high degree of tissue tropism, suggesting that complex virus-host interactions are likely to occur during infection and viral replication. The alpha-like replicase of Helicoverpa armigera stunt virus (HaSV) (genus Omegatetravirus) has been proposed to associate with membranes of the endocytic pathway, which is similar to Semliki Forest virus, Sindbis virus and rubella virus. Here, we have used replicase-EGFP fusion proteins and recombinant baculovirus expression to demonstrate that the HaSV replicase associates strongly with cellular membranes, including detergent-resistant membranes, and that this association is maintained through a novel membrane targeting domain within the C-terminal region of the RNA-dependent RNA polymerase domain. We show a similar subcellular localization and strong association with detergent-resistant membranes for the carmo-like replicase of another tetravirus, Providence virus, in replicating cells, suggesting a common site of replication for these two tetraviruses.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| |
Collapse
|
15
|
Firth AE, Wills NM, Gesteland RF, Atkins JF. Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Res 2011; 39:6679-91. [PMID: 21525127 PMCID: PMC3159437 DOI: 10.1093/nar/gkr224] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Sindbis, Venezuelan equine encephalitis and related alphaviruses, the polymerase is translated as a fusion with other non-structural proteins via readthrough of a UGA stop codon. Surprisingly, earlier work reported that the signal for efficient readthrough comprises a single cytidine residue 3′-adjacent to the UGA. However, analysis of variability at synonymous sites revealed strikingly enhanced conservation within the ∼150 nt 3′-adjacent to the UGA, and RNA folding algorithms revealed the potential for a phylogenetically conserved stem–loop structure in the same region. Mutational analysis of the predicted structure demonstrated that the stem–loop increases readthrough by up to 10-fold. The same computational analysis indicated that similar RNA structures are likely to be relevant to readthrough in certain plant virus genera, notably Furovirus, Pomovirus, Tobravirus, Pecluvirus and Benyvirus, as well as the Drosophilia gene kelch. These results suggest that 3′ RNA stimulatory structures feature in a much larger proportion of readthrough cases than previously anticipated, and provide a new criterion for assessing the large number of cellular readthrough candidates that are currently being revealed by comparative sequence analysis.
Collapse
Affiliation(s)
- Andrew E Firth
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|