1
|
Ghaznavi G, Vosough P, Ghasemian A, Tabar MMM, Tayebi L, Taghizadeh S, Savardashtaki A. Engineering bacteriophages for targeted superbug eradication. Mol Biol Rep 2025; 52:221. [PMID: 39934535 DOI: 10.1007/s11033-025-10332-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The rise of antibiotic-resistant bacteria, termed "superbugs," presents a formidable challenge to global health. These pathogens, often responsible for persistent nosocomial infections, threaten the effectiveness of conventional antibiotic therapies. This review delves into the potential of bacteriophages, viruses specifically targeting bacteria, as a powerful tool to combat superbugs. We examined the latest developments in genetic engineering that improve the efficacy of bacteriophages, focusing on modifications in host range, lysis mechanisms, and their ability to overcome bacterial defense systems. This review article highlights the CRISPR-Cas system as a promising method for precisely manipulating phage genomes, enabling the development of novel phage therapies with enhanced efficacy and specificity. Furthermore, we discussed developing novel phage-based strategies, such as phage cocktails and phage-antibiotic combinations. We also analyzed the challenges and ethical considerations associated with phage engineering, emphasizing the need for responsible and rigorous research to ensure this technology's safe and effective deployment to combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Ghazal Ghaznavi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Bulannga RB, Schmidt S. Two Predators, One Prey - the Interaction Between Bacteriophage, Bacterivorous Ciliates, and Escherichia coli. MICROBIAL ECOLOGY 2023; 86:1620-1631. [PMID: 36723682 DOI: 10.1007/s00248-022-02163-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Bacterivorous ciliates and lytic bacteriophages are two major predators in aquatic environments, competing for the same type of prey. This study investigated the possible interaction of these different microorganisms and their influence on the activity of each other. Therefore, two bacterivorous ciliates, Paramecium sp. RB1 and Tetrahymena sp. RB2, were used as representative ciliates; a T4-like Escherichia coli targeting lytic bacteriophage as a model virus; and E. coli ATCC 25922 as a susceptible bacterial host and prey. The growth of the two ciliates with E. coli ATCC 25922 as prey was affected by the presence of phage particles. The grazing activity of the two ciliates resulted in more than a 99% reduction of the phage titer and bacterial cell numbers. However, viable phage particles were recovered from individual washed cells of the two ciliates after membrane filtration. Therefore, ciliates such as Paramecium sp. RB1 and Tetrahymena sp. RB2 can remove bacteriophages present in natural and artificial waters by ingesting the viral particles and eliminating bacterial host cells required for viral replication. The ingestion of phage particles may marginally contribute to the nutrient supply of the ciliates. However, the interaction of phage particles with ciliate cells may contribute to the transmission of bacteriophages in aquatic environments.
Collapse
Affiliation(s)
- Rendani Bridghette Bulannga
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
3
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
4
|
Lisac A, Birsa E, Podgornik A. E. coli biofilm formation and its susceptibility towards T4 bacteriophages studied in a continuously operating mixing - tubular bioreactor system. Microb Biotechnol 2022; 15:2450-2463. [PMID: 35638465 PMCID: PMC9437887 DOI: 10.1111/1751-7915.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
A system consisting of a connected mixed and tubular bioreactor was designed to study bacterial biofilm formation and the effect of its exposure to bacteriophages under different experimental conditions. The bacterial biofilm inside silicone tubular bioreactor was formed during the continuous pumping of bacterial cells at a constant physiological state for 2 h and subsequent washing with a buffer for 24 h. Monitoring bacterial and bacteriophage concentration along the tubular bioreactor was performed via a piercing method. The presence of biofilm and planktonic cells was demonstrated by combining the piercing method, measurement of planktonic cell concentration at the tubular bioreactor outlet, and optical microscopy. The planktonic cell formation rate was found to be 8.95 × 10-3 h-1 and increased approximately four-fold (4×) after biofilm exposure to an LB medium. Exposure of bacterial biofilm to bacteriophages in the LB medium resulted in a rapid decrease of biofilm and planktonic cell concentration, to below the detection limit within < 2 h. When bacteriophages were supplied in the buffer, only a moderate decrease in the concentration of both bacterial cell types was observed. After biofilm washing with buffer to remove unadsorbed bacteriophages, its exposure to the LB medium (without bacteriophages) resulted in a rapid decrease in bacterial concentration: again below the detection limit in < 2 h.
Collapse
Affiliation(s)
- Ana Lisac
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
| | - Elfi Birsa
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot113LjubljanaSlovenia
- COBIKMirce 215270AjdovščinaSlovenia
| |
Collapse
|
5
|
Interaction between Phage T4 Protein RIII and Host Ribosomal Protein S1 Inhibits Endoribonuclease RegB Activation. Int J Mol Sci 2022; 23:ijms23169483. [PMID: 36012768 PMCID: PMC9409239 DOI: 10.3390/ijms23169483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.
Collapse
|
6
|
Choi I, Yoo DS, Chang Y, Kim SY, Han J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem 2020; 346:128883. [PMID: 33434864 DOI: 10.1016/j.foodchem.2020.128883] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
Bacteriophages (phages) have been extensively utilized as antibacterial agents in the food industry because of their host-specificity. However, their application in polymer films has been limited because of the lack of a strong attachment method for phage to the surface. We developed an antibacterial film by covalently immobilizing Escherichia coli (E. coli)-specific phage T4 on a polycaprolactone (PCL) film. The chemical bond formation was confirmed by XPS analysis, and the covalent attachment of phage T4 effectively inhibited E. coli growth even after external stimulation of the film by sonication. When applied as a packaging film for raw beef inoculated with E. coli O157:H7, the chemically functionalized PCL film showed approximately 30-fold higher bacterial inhibitory effects than the film with physically adsorbed phage T4. These results indicate the promising application potential of chemically functionalized PCL film with phage T4 as an antibacterial food packaging material against the foodborne pathogen E. coli.
Collapse
Affiliation(s)
- Inyoung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Som Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Huss P, Raman S. Engineered bacteriophages as programmable biocontrol agents. Curr Opin Biotechnol 2019; 61:116-121. [PMID: 31862543 PMCID: PMC7103757 DOI: 10.1016/j.copbio.2019.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/26/2022]
Abstract
Engineered bacteriophages are promising tools for use in food biotechnology. Diverse natural bacteriophages can be leveraged by engineering for specificity and infectivity. Engineered bacteriophages are potent tools for pathogen biocontrol. Engineered bacteriophages can be used for targeted delivery vectors and pathogen detection.
Bacteriophages (or ‘phages’) can be potent biocontrol agents but their potential has not been fully realized due to inherent limitations of natural phages. By leveraging new tools in synthetic biology, natural phages can be engineered to overcome these limitations to markedly improve their efficacy and programmability. Engineered phages can be used for targeted detection and removal of pathogens, in situ microbiome editing, gene delivery and programmable control of phage-bacterial interactions. In this mini review we examine different ways natural phages can be engineered as effective biocontrol agents through a design-build-test-learn platform and identify novel applications of engineered phages in food biotechnology.
Collapse
Affiliation(s)
- Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
8
|
Ben Said M, Ben Saad M, Achouri F, Bousselmi L, Ghrabi A. Detection of active pathogenic bacteria under stress conditions using lytic and specific phage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:282-289. [PMID: 31537764 DOI: 10.2166/wst.2019.271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we have monitored the potential activity of a foodborne and waterborne pathogenic bacterium, Salmonella typhi, under starvation conditions. The interaction between lytic phage and starved-VBNC pathogenic bacteria was studied to establish reliable methods for the detection of active cells before resuscitation. The analysis of phage kinetic parameters has demonstrated the flexibility of lytic with the quantity and mainly the quality of host cells. After 2 h of phage-starved-VBNC bacteria interaction, the reduction of phage amplification rate can reveal the ability of specific-lytic phage to recognize and to attach to their host cells with a probability of burst and release of infectious phages by active bacteria. After an extension of the latent period, the boost of the phage amplification rate was directly related to the positive interaction between potential intracellular 'engaged' phages and potential active bacteria. Furthermore, the modeling of the Salmonella-specific phage growth cycle in relationship with starved host cells can highlight the impact of the viability and the activity state of the host cells on the phage's growth cycle.
Collapse
Affiliation(s)
- Myriam Ben Said
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Marwa Ben Saad
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Faouzi Achouri
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Latifa Bousselmi
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Ahmed Ghrabi
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| |
Collapse
|
9
|
Latino L, Midoux C, Vergnaud G, Pourcel C. Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. PLoS One 2019; 14:e0215456. [PMID: 30990839 PMCID: PMC6467409 DOI: 10.1371/journal.pone.0215456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria and their bacteriophages coexist and coevolve for the benefit of both in a mutualistic association. Multiple mechanisms are used by bacteria to resist phages in a trade-off between survival and maintenance of fitness. In vitro studies allow inquiring into the fate of virus and host in different conditions aimed at mimicking natural environment. We analyse here the mutations emerging in a clinical Pseudomonas aeruginosa strain in response to infection by Ab09, a N4-like lytic podovirus and describe a variety of chromosomal deletions and mutations conferring resistance. Some deletions result from illegitimate recombination taking place during long-term maintenance of the phage genome. Phage variants with mutations in a tail fiber gene are selected during pseudolysogeny with the capacity to infect resistant cells and produce large plaques. These results highlight the complex host/phage association and suggest that phage Ab09 promotes bacterial chromosome rearrangements. Finally this study points to the possible role of two bacterial genes in Ab09 phage adhesion to the cell, rpsB encoding protein S2 of the 30S ribosomal subunit and ORF1587 encoding a Wzy-like membrane protein involved in LPS biosynthesis.
Collapse
Affiliation(s)
- Libera Latino
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cédric Midoux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: ,
| |
Collapse
|
10
|
Bárdy P, Hrebík D, Pantůček R, Plevka P. Future prospects of structural studies to advance our understanding of phage biology. MICROBIOLOGY AUSTRALIA 2019. [DOI: 10.1071/ma19009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages, being the most abundant biological entities on the Earth, play a major role in regulating populations of bacteria and thus influence the evolution and stability of ecosystems. Phage infections of pathogenic bacteria can both exacerbate and alleviate the severity of the disease. The structural characterisations of phage particles and individual proteins have enabled the understanding of many aspects of phage biology. Due to methodological limitations, most of the structures were determined from purified samples in vitro. However, studies performed outside the cellular context cannot capture the complex and dynamic interactions of the macromolecules that are required for their biological functions. Current developments in structural biology, in particular cryo-electron microscopy, allow in situ high-resolution studies of phage-infected cells. Here we discuss open questions in phage biology that could be addressed by structural biology techniques and their potential to enable the use of tailed phages in industrial applications and human therapy.
Collapse
|
11
|
Zaburlin D, Quiberoni A, Mercanti D. Changes in Environmental Conditions Modify Infection Kinetics of Dairy Phages. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:270-276. [PMID: 28391509 DOI: 10.1007/s12560-017-9296-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Latent period, burst time, and burst size, kinetic parameters of phage infection characteristic of a given phage/host system, have been measured for a wide variety of lactic acid bacteria. However, most studies to date were conducted in optimal growth conditions of host bacteria and did not consider variations due to changes in external factors. In this work, we determined the effect of temperature, pH, and starvation on kinetic parameters of phages infecting Lactobacillus paracasei, Lactobacillus plantarum, and Leuconostoc mesenteroides. For kinetics assessment, one-step growth curves were carried out in MRS broth at optimal conditions (control), lower temperature, pH 6.0 and 5.0 (MRS6 and MRS5, respectively), or in medium lacking carbon (MRSN) or nitrogen (MRSC) sources. Phage infection was progressively impaired as environmental conditions were modified from optimal. At lower temperature or pH, infection was delayed, as perceived by longer latent and burst times. Burst size, however, was lower, equal or higher than for controls, but this effect was highly dependent on the particular phage-host system studied. Phage infection was strongly inhibited in MRSC, but only mildly impaired in MRSN. Nevertheless, growth of all the bacterial strains tested was severely compromised by starvation, without significant differences between MRSC and MRSN, indicating that nitrogen compounds are specifically required for a successful phage infection, beyond their influence on bacterial growth.
Collapse
Affiliation(s)
- Delfina Zaburlin
- Instituto de Lactología Industrial, (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santa Fe, Argentina
| | - Andrea Quiberoni
- Instituto de Lactología Industrial, (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santa Fe, Argentina
| | - Diego Mercanti
- Instituto de Lactología Industrial, (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santa Fe, Argentina.
| |
Collapse
|
12
|
Phage adsorption and lytic propagation in Lactobacillus plantarum: could host cell starvation affect them? BMC Microbiol 2015; 15:273. [PMID: 26627203 PMCID: PMC4667525 DOI: 10.1186/s12866-015-0607-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/26/2015] [Indexed: 12/03/2022] Open
Abstract
Background Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result First, cell growth kinetics of L. plantarum ATCC 8014 were determined in MRS, limiting carbon (S-N), limiting nitrogen (S-C) and limiting carbon/nitrogen (S) broth. L. plantarum ATCC 8014 strain showed reduced growth rate under starvation conditions in comparison to the one obtained in MRS broth. Adsorption efficiencies of > 99 % were observed on the starved L. plantarum ATCC 8014 cells. Finally, the influence of cell starvation conditions in phage propagation was investigated through one-step growth curves. In this regard, production of phage progeny was studied when phage infection began before or after cell starvation. When bacterial cells were starved after phage infection, phage B1 was able to propagate in L. plantarum ATCC 8014 strain in a medium devoid of carbon source (S-N) but not when nitrogen (S-C broth) or nitrogen/carbon (S broth) sources were removed. However, addition of nitrogen and carbon/nitrogen compounds to starved infected cells caused the restoration of phage production. When bacterial cells were starved before phage infection, phage B1 propagated in either nitrogen or nitrogen/carbon starved cells only when the favorable conditions of culture (MRS) were used as a propagation medium. Regarding carbon starved cells, phage propagation in either MRS or S-N broth was evidenced. Conclusions These results demonstrated that phage B1 could propagate in host cells even in unfavorable culture conditions, becoming a hazardous source of phages that could disseminate to industrial environments.
Collapse
|
13
|
Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains. PLoS One 2015; 10:e0140140. [PMID: 26451916 PMCID: PMC4599942 DOI: 10.1371/journal.pone.0140140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/22/2015] [Indexed: 02/03/2023] Open
Abstract
Aim of Study The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. Material and Methods The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Results Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. Conclusions The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages, including sequence analysis of selected fragments. Moreover, standardization of methods for obtaining them in order to eliminate M. haemolytica bacteria involved in the etiopathogenesis of BRDC is essential.
Collapse
|
14
|
Siringan P, Connerton PL, Cummings NJ, Connerton IF. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni. Open Biol 2014; 4:130200. [PMID: 24671947 PMCID: PMC3971406 DOI: 10.1098/rsob.130200] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/28/2014] [Indexed: 01/23/2023] Open
Abstract
Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.
Collapse
Affiliation(s)
| | | | | | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
15
|
Golec P, Karczewska-Golec J, Łoś M, Węgrzyn G. Bacteriophage T4 can produce progeny virions in extremely slowly growingEscherichia colihost: comparison of a mathematical model with the experimental data. FEMS Microbiol Lett 2014; 351:156-61. [DOI: 10.1111/1574-6968.12372] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/01/2014] [Accepted: 01/01/2014] [Indexed: 12/19/2022] Open
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk); Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Gdańsk Poland
| | | | - Marcin Łoś
- Department of Molecular Biology; University of Gdańsk; Gdańsk Poland
- Institute of Physical Chemistry; Polish Academy of Sciences; Warsaw Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology; University of Gdańsk; Gdańsk Poland
| |
Collapse
|
16
|
Golec P, Karczewska-Golec J, Voigt B, Albrecht D, Schweder T, Hecker M, Węgrzyn G, Łoś M. Proteomic profiles and kinetics of development of bacteriophage T4 and its rI and rIII mutants in slowly growing Escherichia coli. J Gen Virol 2012; 94:896-905. [PMID: 23239571 DOI: 10.1099/vir.0.048686-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T4 survival in its natural environment requires adjustment of phage development to the slow bacterial growth rate or the initiation of mechanisms of pseudolysogeny or lysis inhibition (LIN). While phage-encoded RI and probably RIII proteins seem to be crucial players in pseudolysogeny and LIN phenomena, the identity of proteins involved in the regulation of T4 development in slowly growing bacteria has remained unknown. In this work, using a chemostat system, we studied the development of wild-type T4 (T4wt) and its rI (T4rI) and rIII (T4rIII) mutants in slowly growing bacteria, where T4 did not initiate LIN or pseudolysogeny. We determined eclipse periods, phage propagation times, latent periods and burst sizes of T4wt, T4rI and T4rIII. We also compared intracellular proteomes of slowly growing Escherichia coli infected with either T4wt or the mutants. Using two-dimensional PAGE analyses we found 18 differentially expressed proteins from lysates of infected cells. Proteins whose amounts were different in cells harbouring T4wt and the mutants are involved in processes of replication, phage-host interactions or they constitute virion components. Our data indicate that functional RI and RIII proteins - apart from their already known roles in LIN and pseudolysogeny - are also necessary for the regulation of phage T4 development in slowly growing bacteria. This regulation may be more complicated than previously anticipated, with many factors influencing T4 development in its natural habitat.
Collapse
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Karczewska-Golec
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Birgit Voigt
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Dirk Albrecht
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Felix-Hausdorff-Str. 3, 17489 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, 17489 Greifswald, Germany
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marcin Łoś
- Phage Consultants, Partyzantów10/18, 80-254 Gdańsk, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
17
|
Garneau JE, Moineau S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 2011; 10 Suppl 1:S20. [PMID: 21995802 PMCID: PMC3231927 DOI: 10.1186/1475-2859-10-s1-s20] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed.
Collapse
Affiliation(s)
- Josiane E Garneau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec city, Québec, G1V 0A6, Canada
| | | |
Collapse
|