1
|
Sobhy NM, Refaai W, Kumar R, Bottros Youssef CR, Goyal SM. Molecular Characterization of Bovine Deltapapillomavirus in Equine Sarcoids in Egypt. Vet Med Int 2025; 2025:9773642. [PMID: 39803352 PMCID: PMC11724032 DOI: 10.1155/vmi/9773642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Bovine papillomaviruses (BPVs) commonly cause sarcoids in equines worldwide. Equine sarcoids (ESs) reduce the working ability of draft animals and produce untoward cosmetic changes in racing and dancing equine. In this study, nine horses and 16 donkeys with sarcoids were presented to Zagazig University Veterinary Clinic, Zagazig, Egypt. Of these, eight horses and six donkeys were found to be infected with BPV. On sequencing, all 14 viruses were found to be BPV1, which were distributed in two clades without specific differentiation among papillomaviruses (PVs) of donkeys, horses, and cattle. Comparison of 135 aa (319-454) of the sequenced L1 gene with reference strains revealed three conservative mutations (D346N, Q398E, and F441Y) and two nonconservative mutations (T348N and K351T). Illumina sequencing revealed that PVs of donkeys and horses were identical and had 98.5% identity with the closest reference sequence (KX907623) of BPV1. In addition, there was high identity among all genes except E5 and L2. The substitution ranged between 0.5% (nt) and 0.89% (aa) in E4 and 5.18% (nt) and 6.81% (aa) in E5. These results indicate that BPV1 is the main cause of ESs in Egypt without marked phylogenetic variation among PVs of cattle, horses, and donkeys.
Collapse
Affiliation(s)
- Nader Maher Sobhy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Walid Refaai
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Rahul Kumar
- Tennessee Department of Agriculture, C. E. Kord Animal Health Diagnostic Laboratory, Nashville, Tennessee 37220, USA
| | | | - Sagar Mal Goyal
- Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
2
|
Daraban Bocaneti F, Altamura G, Corteggio A, Tanase OI, Dascalu MA, Pasca SA, Hritcu O, Mares M, Borzacchiello G. Expression of collagenases (matrix metalloproteinase-1, -8, -13) and tissue inhibitor of metalloproteinase-3 (TIMP-3) in naturally occurring bovine cutaneous fibropapillomas. Front Vet Sci 2023; 9:1072672. [PMID: 36713871 PMCID: PMC9878699 DOI: 10.3389/fvets.2022.1072672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Bovine cutaneous fibropapillomas are among the most common skin tumors in cattle; their etiology is associated with infection by bovine papillomavirus (BPV) types-1/-2 which are considered oncogenic. Degradation of the extracellular matrix (ECM), especially collagenolysis, is a key event during a series of relevant physiological processes, including tissue remodeling and repair. Various types of proteins are implicated in the regulation of ECM degradation: among these, matrix metalloproteinases (MMPs), a group of zinc-dependent endoenzymes, and tissue inhibitors of matrix metalloproteinases (TIMPs) are known to play a major role. Previous studies reported that aberrant expression of collagenolytic MMPs (MMP-1/-8/-13) and unbalancing between MMPs and TIMPs represent a critical step in tumor growth and invasion; however, studies regarding this topic in bovine cutaneous fibropapillomas are lacking. The aim of this study was to investigate the expression of the collagenases MMP-1/-8/-13 and TIMP-3 in naturally occurring fibropapillomas harboring BPV-2 DNA and normal skin samples. Here, by immunohistochemistry and western blotting analysis, we demonstrated overexpression of MMP-8/-13 along with a down-regulation of MMP-1, associated with a decrease in TIMP-3 levels in tumor compared with normal skin samples. This is the first study describing MMP-1/-8/-13 and TIMP-3 expression in bovine cutaneous fibropapillomas and our results suggest that an impaired expression of collagenases along with an imbalance between MMPs/TIMPs may contribute to an increased collagenolytic activity, which in turn could be important in ECM changes and tumors development.
Collapse
Affiliation(s)
- Florentina Daraban Bocaneti
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania,*Correspondence: Florentina Daraban Bocaneti ✉
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
| | - Oana Irina Tanase
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Mihaela Anca Dascalu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Sorin Aurelian Pasca
- Department of Pathology, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Ozana Hritcu
- Department of Pathology, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Mihai Mares
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Ogłuszka M, Starzyński RR, Pierzchała M, Otrocka-Domagała I, Raś A. Equine Sarcoids-Causes, Molecular Changes, and Clinicopathologic Features: A Review. Vet Pathol 2021; 58:472-482. [PMID: 33461443 DOI: 10.1177/0300985820985114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Equine sarcoid is the most common skin tumor of horses. Clinically, it occurs as a locally invasive, fibroblastic, wart-like lesion of equine skin, which has 6 clinical classes: occult, verrucose, nodular, fibroblastic, mixed, and malignant. Sarcoids may be single but multiple lesions are more frequent. The typical histological feature is increased density of dermal fibroblasts which form interlacing bundles and whorls within the dermis. Lesions are mostly persistent, resist therapy, and tend to recur following treatment. In general, sarcoids are not fatal but their location, size, and progression to the more aggressive form may lead to the withdrawal of a horse from use and serious infringement of their welfare leading to the loss of valuable animals. Bovine papillomavirus (BPV) type 1 and less commonly type 2 contribute to the development of equine sarcoid. The viral genome and proteins are detected in a high percentage of cases. Furthermore, viral oncoprotein activity leads to changes in the fibroblastic tissue similar to changes seen in other types of tumors. Equine sarcoids are characterized by a loss of tumor suppressor activity and changes allowing abnormal formation of the affected tissue, as well as y immune defense abnormalities that weaken the host's immune response. This impaired immune response to BPV infection appears to be crucial for the development of lesions that do not spontaneously regress, as occurs in BPV-infected cows.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Institute of Genetics and Animal Biotechnology of the 49559Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Institute of Genetics and Animal Biotechnology of the 49559Polish Academy of Sciences, Jastrzębiec, Poland
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology of the 49559Polish Academy of Sciences, Jastrzębiec, Poland
| | | | - Andrzej Raś
- 49674University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
4
|
Ramsauer AS, Kubacki J, Favrot C, Ackermann M, Fraefel C, Tobler K. RNA-seq analysis in equine papillomavirus type 2-positive carcinomas identifies affected pathways and potential cancer markers as well as viral gene expression and splicing events. J Gen Virol 2019; 100:985-998. [PMID: 31084699 DOI: 10.1099/jgv.0.001267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Equine papillomavirus type 2 (EcPV2) was discovered only recently, but it is found consistently in the context of genital squamous cell carcinomas (SCCs). Since neither cell cultures nor animal models exist, the characterization of this potential disease agent relies on the analysis of patient materials. To analyse the host and viral transcriptome in EcPV2-affected horses, genital tissue samples were collected from horses with EcPV2-positive lesions as well as from healthy EcPV2-negative horses. It was determined by RNA-seq analysis that there were 1957 differentially expressed (DE) host genes between the SCC and control samples. These genes were most abundantly related to DNA replication, cell cycle, extracellular matrix (ECM)-receptor interaction and focal adhesion. By comparison to other cancer studies, MMP1 and IL8 appeared to be potential marker genes for the development of SCCs. Analysis of the viral reads revealed the transcriptional activity of EcPV2 in all SCC samples. While few reads mapped to the structural viral genes, the majority of reads mapped to the non-structural early (E) genes, in particular to E6, E7 and E2/E4. Within these reads a distinct pattern of splicing events, which are essential for the expression of different genes in PV infections, was observed. Additionally, in one sample the integration of EcPV2 DNA into the host genome was detected by DNA-seq and confirmed by PCR. In conclusion, while host MMP1 and IL8 expression and the presence of EcPV2 may be useful markers in genital SCCs, further research on EcPV2-related pathomechanisms may focus on cell cycle-related genes, the viral genes E6, E7 and E2/E4, and integration events.
Collapse
Affiliation(s)
- Anna Sophie Ramsauer
- 2 Dermatology Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,1 Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- 1 Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claude Favrot
- 2 Dermatology Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- 1 Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- 1 Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kurt Tobler
- 1 Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Papillomavirus associated diseases of the horse. Vet Microbiol 2013; 167:159-67. [DOI: 10.1016/j.vetmic.2013.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
|
6
|
Gil da Costa RM, Medeiros R. Bovine papillomavirus: opening new trends for comparative pathology. Arch Virol 2013; 159:191-8. [PMID: 23929231 DOI: 10.1007/s00705-013-1801-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/19/2013] [Indexed: 11/28/2022]
Abstract
For many years, research on bovine papillomavirus (BPV) has contributed to the understanding of papillomavirus-induced pathology in humans and animals. The present review shows how recent studies on BPV keep providing evidence concerning key points in viral infection, such as the expression of viral proteins in lymphocytes and the occurrence of productive infections of the placenta. Studies on BPV-induced tumours also provide important information concerning the mechanisms of oncogenesis and immune evasion, as in the cases of connexin 43 down-regulation with loss of intercellular gap junctions and Toll-like receptor 4 (TLR4) down-regulation in equine sarcoids. The biological functions of viral proteins are also being further clarified, as in the case of E2, which was recently shown to load BPV genomes into host chromosomes during the S phase, a process mediated by the ChlR1 protein. In the near future, the ongoing efforts to characterize and classify additional emerging BPV types are likely to broaden even further the possibilities for research.
Collapse
Affiliation(s)
- Rui M Gil da Costa
- Laboratory for Process, Environmental and Energy Engineering (LEPAE), Chemical Engineering Department, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal,
| | | |
Collapse
|
7
|
Corteggio A, Altamura G, Roperto F, Borzacchiello G. Bovine papillomavirus E5 and E7 oncoproteins in naturally occurring tumors: are two better than one? Infect Agent Cancer 2013; 8:1. [PMID: 23302179 PMCID: PMC3562249 DOI: 10.1186/1750-9378-8-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022] Open
Abstract
Bovine papillomaviruses (BPVs) are oncogenic DNA viruses, which mainly induce benign lesions of cutaneous and/or mucosal epithelia in cattle. Thirteen (BPV 1-13) different viral genotypes have been characterized so far. BPVs are usually species-specific but BPV 1/2 may also infect equids as well as buffaloes and bison and cause tumors in these species. BPV-induced benign lesions usually regress, however occasionally they develop into cancer particularly in the presence of environmental carcinogenic co-factors. The major transforming protein of BPV is E5, a very short hydrophobic, transmembrane protein with many oncogenic activities. E5 contributes to cell transformation through the activation of the cellular β receptor for the platelet-derived growth factor (PDGFβ-r), it also decreases cell surface expression of major histocompatibility complex class I (MHCI) causing viral escape from immunosurveillance, and plays a role in the inhibition of the intracellular communication by means of aberrant connexin expression. E7 is considered as a weak transforming gene, it synergies with E5 in cell transformation during cancer development. E7 expression correlates in vivo with the over-expression of β1-integrin, which plays a role in the regulation of keratinocytes proliferation and differentiation. Additionally, E7 is involved in cell-mediated immune responses leading to tumour rejection, in anoikis process by direct binding to p600, and in invasion process by upregulation of Matrix metalloproteinase1 (MMP-1) expression. Studies on the role of BPV E5 and E7 oncoproteins in naturally occurring tumours are of scientific value, as they may shed new light on the biological role of these two oncogenes in cell transformation.
Collapse
Affiliation(s)
- Annunziata Corteggio
- Department of Pathology and Animal Health, University of Naples Federico II, Via Veterinaria, Napoli 1 80137, Italy.
| | | | | | | |
Collapse
|
8
|
Finlay M, Yuan Z, Morgan IM, Campo MS, Nasir L. Equine sarcoids: Bovine Papillomavirus type 1 transformed fibroblasts are sensitive to cisplatin and UVB induced apoptosis and show aberrant expression of p53. Vet Res 2012; 43:81. [PMID: 23210796 PMCID: PMC3557224 DOI: 10.1186/1297-9716-43-81] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/23/2012] [Indexed: 01/24/2023] Open
Abstract
Bovine papillomavirus type 1 infects not only cattle but also equids and is a causative factor in the pathogenesis of commonly occurring equine sarcoid tumours. Whilst treatment of sarcoids is notoriously difficult, cisplatin has been shown to be one of the most effective treatment strategies for sarcoids. In this study we show that in equine fibroblasts, BPV-1 sensitises cells to cisplatin-induced and UVB-induced apoptosis, a known cofactor for papillomavirus associated disease, however BPV-1 transformed fibroblasts show increased clonogenic survival, which may potentially limit the therapeutic effects of repeated cisplatin treatment. Furthermore we show that BPV-1 increases p53 expression in sarcoid cell lines and p53 expression can be either nuclear or cytoplasmic. The mechanism and clinical significance of increase/abnormal p53 expression remains to be established.
Collapse
Affiliation(s)
- Margaret Finlay
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, Scotland, G61 1QH, United Kingdom.
| | | | | | | | | |
Collapse
|
9
|
Strazzullo M, Corteggio A, Altamura G, Francioso R, Roperto F, D'Esposito M, Borzacchiello G. Molecular and epigenetic analysis of the fragile histidine triad tumour suppressor gene in equine sarcoids. BMC Vet Res 2012; 8:30. [PMID: 22424615 PMCID: PMC3361464 DOI: 10.1186/1746-6148-8-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/16/2012] [Indexed: 01/14/2023] Open
Abstract
Background Sarcoids are peculiar equine benign tumours. Their onset is associated with Bovine Papillomavirus type -1 or -2 (BPV-1/2) infection. Little is known about the molecular interplay between viral infection and neoplastic transformation. The data regarding papillomavirus infections in human species show the inactivation of a number of tumour suppressor genes as basic mechanism of transformation. In this study the putative role of the tumour suppressor gene Fragile Histidine Triad (FHIT) in sarcoid tumour was investigated in different experimental models. The expression of the oncosuppressor protein was assessed in normal and sarcoid cells and tissue. Results Nine paraffin embedded sarcoids and sarcoid derived cell lines were analysed for the expression of FHIT protein by immunohistochemistry, immunofluorescence techniques and western blotting. These analyses revealed the absence of signal in seven out of nine sarcoids. The two sarcoid derived cell lines too showed a reduced signal of the protein. To investigate the causes of the altered protein expression, the samples were analysed for the DNA methylation profile of the CpG island associated with the FHIT promoter. The analysis of the 32 CpGs encompassing the region of interest showed no significative differential methylation profile between pathological tissues and cell lines and their normal counterparts. Conclusion This study represent a further evidence of the role of a tumour suppressor gene in equine sarcoids and approaches the epigenetic regulation in this well known equine neoplasm. The data obtained in sarcoid tissues and sarcoid derived cell lines suggest that also in horse, as in humans, there is a possible involvement of the tumour suppressor FHIT gene in BPV induced tumours. DNA methylation seems not to be involved in the gene expression alteration. Further studies are needed to understand the basic molecular mechanisms involved in reduced FHIT expression.
Collapse
Affiliation(s)
- Maria Strazzullo
- Department of Pathology and Animal Health, University of Naples Federico II, Via Veterinaria, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|