1
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
Abstract
Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek’s disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi’s Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek’s disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.
Collapse
|
3
|
Role of DNA Methylation and CpG Sites in the Viral Telomerase RNA Promoter during Gallid Herpesvirus 2 Pathogenesis. J Virol 2020; 94:JVI.01488-20. [PMID: 32967954 PMCID: PMC7654267 DOI: 10.1128/jvi.01488-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis. Gallid herpesvirus type 2 (GaHV-2) is an oncogenic alphaherpesvirus that induces malignant T-cell lymphoma in chicken. GaHV-2 encodes a viral telomerase RNA subunit (vTR) that plays a crucial role in virus-induced tumorigenesis, enhances telomerase activity, and possesses functions independent of the telomerase complex. vTR is driven by a robust viral promoter, highly expressed in virus-infected cells, and regulated by two c-Myc response elements (c-Myc REs). The regulatory mechanisms involved in controlling vTR and other genes during viral replication and latency remain poorly understood but are crucial to understanding this oncogenic herpesvirus. Therefore, we investigated DNA methylation patterns of CpG dinucleotides found in the vTR promoter and measured the impact of methylation on telomerase activity. We demonstrated that telomerase activity was considerably increased following viral reactivation. Furthermore, CpG sites within c-Myc REs showed specific changes in methylation after in vitro reactivation and in infected animals over time. Promoter reporter assays indicated that one of the c-Myc REs is involved in regulating vTR transcription, and that methylation strongly influenced vTR promoter activity. To study the importance of the CpG sites found in c-Myc REs in virus-induced tumorigenesis, we generated recombinant virus containing mutations in CpG sites of c-Myc REs together with the revertant virus by two-step Red-mediated mutagenesis. Introduced mutations in the vTR promoter did not affect the replication properties of the recombinant viruses in vitro. In contrast, replication of the mutant virus in infected chickens was severely impaired, and tumor formation completely abrogated. Our data provides an in-depth characterization of c-Myc oncoprotein REs and the involvement of DNA methylation in transcriptional regulation of vTR. IMPORTANCE Previous studies demonstrated that telomerase RNAs possess functions that promote tumor development independent of the telomerase complex. vTR is a herpesvirus-encoded telomerase RNA subunit that plays a crucial role in virus-induced tumorigenesis and is expressed by a robust viral promoter that is highly regulated by the c-Myc oncoprotein binding to the E-boxes. Here, we demonstrated that the DNA methylation patterns in the functional c-Myc response elements of the vTR promoter change upon reactivation from latency, and that demethylation strongly increases telomerase activity in virus-infected cells. Moreover, the introduction of mutation in the CpG dinucleotides of the c-Myc binding sites resulted in decreased vTR expression and complete abrogation of tumor formation. Our study provides further confirmation of the involvement of specific DNA methylation patterns in the regulation of vTR expression and vTR importance for virus-induced tumorigenesis.
Collapse
|
4
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
5
|
Luo J, Teng M, Zai X, Tang N, Zhang Y, Mandviwala A, Reddy VRAP, Baigent S, Yao Y, Nair V. Efficient Mutagenesis of Marek's Disease Virus-Encoded microRNAs Using a CRISPR/Cas9-Based Gene Editing System. Viruses 2020; 12:E466. [PMID: 32325942 PMCID: PMC7232411 DOI: 10.3390/v12040466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
The virus-encoded microRNAs (miRNAs) have been demonstrated to have important regulatory roles in herpesvirus biology, including virus replication, latency, pathogenesis and/or tumorigenesis. As an emerging efficient tool for gene editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been successfully applied in manipulating the genomes of large DNA viruses. Herein, utilizing the CRISPR/Cas9 system with a double-guide RNAs transfection/virus infection strategy, we have established a new platform for mutagenesis of viral miRNAs encoded by the Marek's disease virus serotype 1 (MDV-1), an oncogenic alphaherpesvirus that can induce rapid-onset T-cell lymphomas in chickens. A series of miRNA-knocked out (miR-KO) mutants with deletions of the Meq- or the mid-clustered miRNAs, namely RB-1B∆Meq-miRs, RB-1B∆M9-M2, RB-1B∆M4, RB-1B∆M9 and RB-1B∆M11, were generated from vvMDV strain RB-1B virus. Interestingly, mutagenesis of the targeted miRNAs showed changes in the in vitro virus growth kinetics, which is consistent with that of the in vivo proliferation curves of our previously reported GX0101 mutants produced by the bacterial artificial chromosome (BAC) clone and Rec E/T homologous recombination techniques. Our data demonstrate that the CRISPR/Cas9-based gene editing is a simple, efficient and relatively nondisruptive approach for manipulating the small non-coding genes from the genome of herpesvirus and will undoubtedly contribute significantly to the future progress in herpesvirus biology.
Collapse
Affiliation(s)
- Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Key Laboratory of Animal Immunology, Ministry of Agriculture & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xusheng Zai
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou 225009, China
| | - Na Tang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- Binzhou Animal Science and Veterinary Medicine Academy & UK-China Centre of Excellence for Research on Avian Diseases, Binzhou 256600, China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ahmedali Mandviwala
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Vishwanatha R. A. P. Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Susan Baigent
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK; (M.T.); (X.Z.); (N.T.); (Y.Z.); (A.M.); (V.R.A.P.R.); (S.B.); (Y.Y.)
| |
Collapse
|
6
|
Bondada MS, Yao Y, Nair V. Multifunctional miR-155 Pathway in Avian Oncogenic Virus-Induced Neoplastic Diseases. Noncoding RNA 2019; 5:ncrna5010024. [PMID: 30871221 PMCID: PMC6468363 DOI: 10.3390/ncrna5010024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that fine-tune the responses of the cell by modulating the cell transcriptome and gene expression. MicroRNA 155 (miR-155) is a conserved multifunctional miRNA involved in multiple roles including the modulation of the immune responses. When deregulated, miR-155 can also contribute to cancer as has been demonstrated in several human malignancies such as diffuse large B cell lymphoma, chronic lymphocytic leukemia, as well as in Epstein⁻Barr virus (EBV)-induced B cell transformation. Avian oncogenic viruses such as Marek's disease virus (MDV), avian leukosis virus (ALV), and reticuloendotheliosis virus (REV) that account for more than 90% of cancers in avian species, also make use of the miR-155 pathway during oncogenesis. While oncogenic retroviruses, such as ALV, activate miR-155 by insertional activation, acutely transforming retroviruses use transduced oncogenes such as v-rel to upregulate miR-155 expression. MDV on the other hand, encodes a functional miR-155 ortholog mdv1-miR-M4, similar to the miR-155 ortholog kshv-miR-K11 present in Kaposi's sarcoma-associated herpesvirus (KSHV). We have shown that mdv1-miR-M4 is critical for the induction of MDV-induced lymphomas further demonstrating the oncogenic potential of miR-155 pathway in cancers irrespective of the diverse etiology. In this review, we discuss on our current understanding of miR-155 function in virus-induced lymphomas focusing primarily on avian oncogenic viruses.
Collapse
Affiliation(s)
- Megha Sravani Bondada
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yongxiu Yao
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Venugopal Nair
- Avian Oncogenic Viruses, The Pirbright Institute and the UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom..
| |
Collapse
|
7
|
Boumart I, Figueroa T, Dambrine G, Muylkens B, Pejakovic S, Rasschaert D, Dupuy C. GaHV-2 ICP22 protein is expressed from a bicistronic transcript regulated by three GaHV-2 microRNAs. J Gen Virol 2018; 99:1286-1300. [PMID: 30067174 DOI: 10.1099/jgv.0.001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpesviruses have a lifecycle consisting of successive lytic, latent and reactivation phases. Only three infected cell proteins (ICPs) have been described for the oncogenic Marek's disease virus (or Gallid herpes virus 2, GaHV-2): ICP4, ICP22 and ICP27. We focus here on ICP22, confirming its cytoplasmic location and showing that ICP22 is expressed during productive phases of the lifecycle, via a bicistronic transcript encompassing the US10 gene. We also identified the unique promoter controlling ICP22 expression, and its core promoter, containing functional responsive elements including E-box, ETS-1 and GATA elements involved in ICP22 transactivation. ICP22 gene expression was weakly regulated by DNA methylation and activated by ICP4 or ICP27 proteins. We also investigated the function of GaHV-2 ICP22. We found that this protein repressed transcription from its own promoter and from those of IE ICP4 and ICP27, and the late gK promoter. Finally, we investigated posttranscriptional ICP22 regulation by GaHV-2 microRNAs. We found that mdv1-miR-M5-3p and -M1-5p downregulated ICP22 mRNA expression during latency, whereas, unexpectedly, mdv1-miR-M4-5p upregulated the expression of the protein ICP22, indicating a tight regulation of ICP22 expression by microRNAs.
Collapse
Affiliation(s)
- Imane Boumart
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Thomas Figueroa
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.,†Present address: Interactions Hôtes Agents Pathogènes, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Ginette Dambrine
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Benoit Muylkens
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejakovic
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Denis Rasschaert
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Catherine Dupuy
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
8
|
Rasschaert P, Gennart I, Boumart I, Dambrine G, Muylkens B, Rasschaert D, Laurent S. Specific transcriptional and post-transcriptional regulation of the major immediate early ICP4 gene of GaHV-2 during the lytic, latent and reactivation phases. J Gen Virol 2018; 99:355-368. [PMID: 29458534 DOI: 10.1099/jgv.0.001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcriptional and post-transcriptional mechanisms are involved in the switch between the lytic, latent and reactivation phases of the viral cycle in herpesviruses. During the productive phases, herpesvirus gene expression is characterized by a temporally regulated cascade of immediate early (IE), early (E) and late (L) genes. In alphaherpesviruses, the major product of the IE ICP4 gene is a transcriptional regulator that initiates the cascade of gene expression that is essential for viral replication. In this study, we redefine the infected cell protein 4 (ICP4) gene of the oncogenic Marek's disease virus (MDV or gallid herpesvirus 2) as a 9438 nt gene ended with four alternative poly(A) signals and controlled by two alternative promoters containing essentially ubiquitous functional response elements (GC, TATA and CCAAT boxes). The distal promoter is associated with ICP4 gene expression during the lytic and the latent phases, whereas the proximal promoter is associated with the expression of this gene during the reactivation phase. Both promoters are regulated by DNA methylation during the viral cycle and are hypermethylated during latency. Transcript analyses showed ICP4 to consist of three exons and two introns, the alternative splicing of which is associated with five predicted nested ICP4ORFs. We show that the ICP4 gene is highly and specifically regulated by transcriptional and post-transcriptional mechanisms during the three phases of the GaHV-2 viral cycle, with a clear difference in expression between the lytic phase and reactivation from latency in our model.
Collapse
Affiliation(s)
- Perrine Rasschaert
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Imane Boumart
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Ginette Dambrine
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Benoit Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Denis Rasschaert
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Sylvie Laurent
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
- INRA, Département de Santé Animale, Centre de Recherches de Tours, 37380 Nouzilly, France
| |
Collapse
|
9
|
Fang Y, Zhou Y, Zhang Y, He L, Xue C, Cao Y. Design of miRNA sponges for MDV-1 as a therapeutic strategy against lymphomas. Oncotarget 2017; 9:3842-3852. [PMID: 29423087 PMCID: PMC5790504 DOI: 10.18632/oncotarget.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023] Open
Abstract
Lymphomas are solid-type tumors containing lymphoid cells. Some of latent herpesvirus infections established in B and/or T-lymphocytes could result in the formation of lymphomas. Marek's disease virus serotype 1 (MDV-1) is an avian herpes virus causing to lymphoproliferative tumors in birds, known as Marek’s disease (MD). MD has often been used as an ideal biological model for studying the pathogenesis of lymphoma diseases caused by viruses. Therefore, we used it as a research subject to study the effect of miRNA sponges on its tumorigenicity, and to develop the theoretical basis for a new anti-tumor small molecule. The miRNA sponges designed in this study specifically bind to and degrade the miRNAs of meq gene cluster of MDV-1, including miR-M2-3p, miR-M3-5p, miR-M5-3p, miR-M9-5p and miR-M12-3p.qPCR results showed that the knockdown efficiency was 85.03%, 74.97%, 47.06%, 75.33% and 62.55%, respectively. EDU staining and CCK-8 results showed that miRNA sponges inhibited the proliferation of MDV-1 transformed MSB-1 cells in vitro, and the proliferation rate of miRNA sponges-treated cells was about 50% of the control group. DAPI staining and Annxin V-FITC/PI double staining showed that miRNA sponges induced apoptosis in MSB-1 cells, and the apoptotic rate was increased by about 27.87% compared with the control group. The results of transwell showed that miRNA sponges could inhibit the invasion of MSB-1 cells in vitro, and the inhibitory rate was about 64.52%. The soft agar assay showed that miRNA sponges could inhibit the tumorigenic ability of MSB-1 cells in vitro, and the inhibitory rate was about 66.44%.The 60-days animal study showed that miRNA sponges could alleviate the growth inhibition of MSB-1 cells (about 14.78%) and reduce the mortality (about 16.00%). In addition, the tumor formation rate was 0 (8–12% in the control group).This study suggests that miRNA sponges can serve as an effective anti-tumor small molecule for the tumors caused by herpesvirus, with potential clinical implications.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuqi Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liangliang He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Trimpert J, Groenke N, Jenckel M, He S, Kunec D, Szpara ML, Spatz SJ, Osterrieder N, McMahon DP. A phylogenomic analysis of Marek's disease virus reveals independent paths to virulence in Eurasia and North America. Evol Appl 2017; 10:1091-1101. [PMID: 29151863 PMCID: PMC5680632 DOI: 10.1111/eva.12515] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/01/2017] [Indexed: 12/28/2022] Open
Abstract
Virulence determines the impact a pathogen has on the fitness of its host, yet current understanding of the evolutionary origins and causes of virulence of many pathogens is surprisingly incomplete. Here, we explore the evolution of Marek's disease virus (MDV), a herpesvirus commonly afflicting chickens and rarely other avian species. The history of MDV in the 20th century represents an important case study in the evolution of virulence. The severity of MDV infection in chickens has been rising steadily since the adoption of intensive farming techniques and vaccination programs in the 1950s and 1970s, respectively. It has remained uncertain, however, which of these factors is causally more responsible for the observed increase in virulence of circulating viruses. We conducted a phylogenomic study to understand the evolution of MDV in the context of dramatic changes to poultry farming and disease control. Our analysis reveals evidence of geographical structuring of MDV strains, with reconstructions supporting the emergence of virulent viruses independently in North America and Eurasia. Of note, the emergence of virulent viruses appears to coincide approximately with the introduction of comprehensive vaccination on both continents. The time‐dated phylogeny also indicated that MDV has a mean evolutionary rate of ~1.6 × 10−5 substitutions per site per year. An examination of gene‐linked mutations did not identify a strong association between mutational variation and virulence phenotypes, indicating that MDV may evolve readily and rapidly under strong selective pressures and that multiple genotypic pathways may underlie virulence adaptation in MDV.
Collapse
Affiliation(s)
- Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Nicole Groenke
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Maria Jenckel
- Institute of Diagnostic Virology Friedrich-Loeffler-Institut Greifswald-Insel Riems Germany
| | - Shulin He
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| | - Dusan Kunec
- Institut für Virologie Freie Universität Berlin Berlin Germany
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences Pennsylvania State University University Park PA USA
| | - Stephen J Spatz
- United States Department of Agriculture US National Poultry Research Center Athens GA USA
| | | | - Dino P McMahon
- Institut für Biologie Freie Universität Berlin Berlin Germany.,Department for Materials and Environment BAM Federal Institute for Materials Research and Testing Berlin Germany
| |
Collapse
|
11
|
Zhuang G, Sun A, Teng M, Luo J. A Tiny RNA that Packs a Big Punch: The Critical Role of a Viral miR-155 Ortholog in Lymphomagenesis in Marek's Disease. Front Microbiol 2017; 8:1169. [PMID: 28694799 PMCID: PMC5483433 DOI: 10.3389/fmicb.2017.01169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have been identified in animals, plants, and viruses. These small RNAs play important roles in post-transcriptional regulation of various cellular processes, including development, differentiation, and all aspects of cancer biology. Rapid-onset T-cell lymphoma of chickens, namely Marek’s disease (MD), induced by Gallid alphaherpesvirus 2 (GaHV2), could provide an ideal natural animal model for herpesvirus-related cancer research. GaHV2 encodes 26 mature miRNAs derived from 14 precursors assembled in three distinct gene clusters in the viral genome. One of the most highly expressed GaHV2 miRNAs, miR-M4-5p, shows high sequence similarity to the cellular miR-155 and the miR-K12-11 encoded by Kaposi’s sarcoma-associated herpesvirus, particularly in the miRNA “seed region.” As with miR-K12-11, miR-M4-5p shares a common set of host and viral target genes with miR-155, suggesting that they may target the same regulatory cellular networks; however, differences in regulatory function between miR-155 and miR-M4-5p may distinguish non-viral and viral mediated tumorigenesis. In this review, we focus on the functions of miR-M4-5p as the viral ortholog of miR-155 to explore how the virus mimics a host pathway to benefit the viral life cycle and trigger virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Guoqing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College StationTX, United States
| | - Aijun Sun
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College StationTX, United States
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural SciencesZhengzhou, China.,College of Animal Science and Technology, Henan University of Science and TechnologyLuoyang, China
| |
Collapse
|
12
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
13
|
Teng M, Yu ZH, Zhao P, Zhuang GQ, Wu ZX, Dang L, Li HZ, Ma SM, Cui ZZ, Zhang GP, Wu R, Luo J. Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis. J Gen Virol 2017; 98:1097-1112. [PMID: 28510513 PMCID: PMC5656797 DOI: 10.1099/jgv.0.000786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last decade, numerous microRNAs (miRNAs) have been identified in diverse virus families, particularly in herpesviruses. Gallid alphaherpesvirus 2 (GaHV2) is a representative oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts, namely Marek’s disease (MD). In the GaHV2 genome there are 26 mature miRNAs derived from 14 precursors assembled into three clusters, namely the Meq-cluster, Mid-cluster and LAT-cluster. Several GaHV2 miRNAs, especially those in the Meq-cluster (e.g. miR-M4-5p), have been demonstrated to be critical in MD pathogenesis and/or tumorigenesis. Interestingly the downstream Mid-cluster is regulated and transcribed by the same promoter as the Meq-cluster in the latent phase of the infection, but the role of these Mid-clustered miRNAs in GaHV2 biology remains unclear. We have generated the deletion mutants of the Mid-cluster and of its associated individual miRNAs in GX0101 virus, a very virulent GaHV2 strain, and demonstrated that the Mid-clustered miRNAs are not essential for virus replication. Using GaHV2-infected chickens as an animal model, we found that, compared with parental GX0101 virus, the individual deletion of miR-M31 decreased the mortality and gross tumour incidence of infected chickens while the deletion individually of miR-M1 or miR-M11 unexpectedly increased viral pathogenicity or oncogenicity, similarly to the deletion of the entire Mid-cluster region. More importantly, our data further confirm that miR-M11-5p, the miR-M11-derived mature miRNA, targets the viral oncogene meq and suppresses its expression in GaHV2 infection. We report here that members of the Mid-clustered miRNAs, miR-M31-3p and miR-M11-5p, potentially act either as oncogene or tumour suppressor in MD lymphomagenesis.
Collapse
Affiliation(s)
- Man Teng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Zu-Hua Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Pu Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Guo-Qing Zhuang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Zi-Xiang Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lu Dang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Sheng-Ming Ma
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Zhi-Zhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, PR China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Run Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
14
|
Tai SHS, Hearn C, Umthong S, Agafitei O, Cheng HH, Dunn JR, Niikura M. Expression of Marek's Disease Virus Oncoprotein Meq During Infection in the Natural Host. Virology 2017; 503:103-113. [DOI: 10.1016/j.virol.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 01/30/2023]
|
15
|
Figueroa T, Boumart I, Coupeau D, Rasschaert D. Hyperediting by ADAR1 of a new herpesvirus lncRNA during the lytic phase of the oncogenic Marek's disease virus. J Gen Virol 2016; 97:2973-2988. [PMID: 27655063 DOI: 10.1099/jgv.0.000606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Marek's disease virus, or Gallid herpesvirus 2 (GaHV-2), is an avian alphaherpesvirus that induces T-cell lymphoma in chickens. During transcriptomic studies of the RL region of the genome, we characterized the 7.5 kbp gene of the ERL lncRNA (edited repeat-long, long non-coding RNA), which may act as a natural antisense transcript (NAT) of the major GaHV-2 oncogene meq and of two of the three miRNA clusters. During infections in vivo and in vitro, we detected hyperediting of the ERL lncRNA that appeared to be directly correlated with ADAR1 expression levels. The ERL lncRNA was expressed equally during the lytic and latent phases of infection and during viral reactivation, but its hyperediting increased only during the lytic infection of chicken embryo fibroblasts. We also showed that chicken ADAR1 expression was controlled by the JAK/STAT IFN-response pathway, through an inducible promoter containing IFN-stimulated response elements that were functional during stimulation with IFN-α or poly(I:C). Like the human and murine miR-155-5p, the chicken gga-miR-155-5p and the GaHV-2 analogue mdv1-miR-M4-5p deregulated this pathway by targeting and repressing expression of suppressor of cytokine signalling 1, leading to the upregulation of ADAR1. Finally, we hypothesized that the natural antisense transcript role of the ERL lncRNA could be disrupted by its hyperediting, particularly during viral lytic replication, and that the observed deregulation of the innate immune system by mdv1-miR-M4-5p might contribute to the viral cycle.
Collapse
Affiliation(s)
- Thomas Figueroa
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| | - Imane Boumart
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| | - Damien Coupeau
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| | - Denis Rasschaert
- Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS/Université François Rabelais de Tours, Tours, France
| |
Collapse
|
16
|
Strassheim S, Gennart I, Muylkens B, André M, Rasschaert D, Laurent S. Oncogenic Marek's disease herpesvirus encodes an isoform of the conserved regulatory immediate early protein ICP27 generated by alternative promoter usage. J Gen Virol 2016; 97:2399-2410. [PMID: 27411695 DOI: 10.1099/jgv.0.000547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesvirus gene expression is temporally regulated, with immediate early (IE), early (E) and late (L) genes. ICP27, which is involved in post-transcriptional regulation, is the only IE gene product conserved in all herpesviruses. We show here that the ICP27 transcript of the oncogenic Marek's disease virus shares the same polyadenylation signal as the bicistronic glycoprotein K-ICP27 transcript and is regulated by alternative promoter usage, with transcription from its own promoter (pICP27) or that of gK (pgK). The pgK can generate a spliced ICP27 transcript yielding an N-terminal-deleted ICP27 isoform (ICP27ΔN) that, like ICP27, co-localizes with the SR protein in infected cells, but with a diffuse nuclear distribution. The pICP27 includes functional responsive elements (REs) for SP1, AP1 and CREB, is essentially active during the lytic phase and leads to exclusive expression of the native form of ICP27. The alternative promoter, pgK, including active REs for GATA, P53 and CREB, preferentially generates the gK transcript during the lytic phase and the spliced ICP27 transcript (ICP27ΔN) during the latent phase. An analysis of the DNA methylation marks of each promoter showed that pgK was systematically demethylated, whereas pICP27 was methylated during latency and demethylated during the lytic stage. Thus, MDV ICP27 gene expression is dependent on alternative promoters, the usage of which is regulated by DNA methylation, which differs between viral stages.
Collapse
Affiliation(s)
- Swantje Strassheim
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Benoït Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Marjolaine André
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Denis Rasschaert
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Sylvie Laurent
- Equipe TLVI, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.,INRA, Département de Santé Animale, Centre de Recherches de Tours, 37380 Nouzilly, France
| |
Collapse
|
17
|
Gennart I, Coupeau D, Pejaković S, Laurent S, Rasschaert D, Muylkens B. Marek's disease: Genetic regulation of gallid herpesvirus 2 infection and latency. Vet J 2015; 205:339-48. [PMID: 26067852 DOI: 10.1016/j.tvjl.2015.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Gallid herpesvirus-2 (GaHV-2) is an oncogenic α-herpesvirus that causes Marek's disease (MD), a T cell lymphosarcoma (lymphoma) of domestic fowl (chickens). The GaHV-2 genome integrates by homologous recombination into the host genome and, by modulating expression of viral and cellular genes, induces transformation of latently infected cells. MD is a unique model of viral oncogenesis. Mechanisms implicated in the regulation of viral and cellular genes during GaHV-2 infection operate at transcriptional, post-transcriptional and post-translational levels, with involvement of viral and cellular transcription factors, along with epigenetic modifications, alternative splicing, microRNAs and post-translational modifications of viral proteins. Meq, the major oncogenic protein of GaHV-2, is a viral transcription factor that modulates expression of viral genes, for example by binding to the viral bidirectional promoter of the pp38-pp24/1.8 kb mRNA, and also modulates expression of cellular genes, such as Bcl-2 and matrix metalloproteinase 3. GaHV-2 expresses viral telomerase RNA subunit (vTR), which forms a complex with the cellular telomerase reverse transcriptase (TERT), thus contributing to tumorigenesis, while vTR independent of telomerase activity is implicated in metastasis. Expression of a viral interleukin 8 homologue may contribute to lymphomagenesis. Inhibition of expression of the pro-apoptotic factors JARID2 and SMAD2 by viral microRNAs may promote the survival and proliferation of GaHV-2 latently infected cells, thus enhancing tumorigenesis, while inhibition of interleukin 18 by viral microRNAs may be involved in evasion of immune surveillance. Viral envelope glycoproteins derived from glycoprotein B (gp60 and gp49), as well as glycoprotein C, may also play a role in immune evasion.
Collapse
Affiliation(s)
- Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Damien Coupeau
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejaković
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Sylvie Laurent
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Denis Rasschaert
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Benoit Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
18
|
Zhao P, Li XJ, Teng M, Dang L, Yu ZH, Chi JQ, Su JW, Zhang GP, Luo J. In vivo expression patterns of microRNAs of Gallid herpesvirus 2 (GaHV-2) during the virus life cycle and development of Marek's disease lymphomas. Virus Genes 2015; 50:245-52. [PMID: 25666057 PMCID: PMC4381040 DOI: 10.1007/s11262-015-1167-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023]
Abstract
In the past decade, a large number of microRNAs (miRNAs) have been identified in the viral genome of Gallid herpesvirus 2 (GaHV-2), which is historically known as Marek’s disease virus type 1. The biological role of most GaHV-2 miRNAs remains unclear. In the present study, we have performed an overall gene expression profile of GaHV-2 miRNAs during the virus life cycle at each phase of the developing disease, a highly contagious, lymphoproliferative disorder, and neoplastic immunosuppressive disease of poultry known as the Marek’s disease. According to their distinct in vivo expression patterns, the GaHV-2 miRNAs can be divided into three groups: 12 miRNAs in group I, including miR-M4-5p, displayed a typical expression pattern potentially correlated to the latent, late cytolytic, and/or the proliferative phases in the cycle of GaHV-2 pathogenesis; group II consisting of another 12 miRNAs with expression correlated to the early cytolytic and/or latent phases in GaHV-2’s life cycle; while the other two miRNAs in group III showed no identical expression features. Our findings may provide meaningful clues in the search for further potential functions of viral miRNAs in GaHV-2 biology.
Collapse
Affiliation(s)
- Pu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
- Department of Animal Science and Technology, He’nan Institute of Science and Technology, Xinxiang, 453003 People’s Republic of China
| | - Xiu-Jie Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Lu Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 People’s Republic of China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Zu-Hua Yu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
- Present Address: College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003 People’s Republic of China
| | - Jia-Qi Chi
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| | - Jing-Wei Su
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou, 450002 People’s Republic of China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou, 450002 People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 People’s Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|
19
|
Chi JQ, Teng M, Yu ZH, Xu H, Su JW, Zhao P, Xing GX, Liang HD, Deng RG, Qu LH, Zhang GP, Luo J. Marek's disease virus-encoded analog of microRNA-155 activates the oncogene c-Myc by targeting LTBP1 and suppressing the TGF-β signaling pathway. Virology 2014; 476:72-84. [PMID: 25528440 DOI: 10.1016/j.virol.2014.11.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/10/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
Marek's disease virus (MDV) is a representative alpha herpes virus able to induce rapid-onset T-cell lymphoma in its natural host and regarded as an ideal model for the study of virus-induced tumorigenesis. Recent studies have shown that the mdv1-miR-M4-5p, a viral analog of cellular miR-155, is critical for MDV׳s oncogenicity. However, the precise mechanism whereby it was involved in MD lymphomagenesis remained unknown. We have presently identified the host mRNA targets of mdv1-miR-M4-5 and identified the latent TGF-β binding protein 1 (LTBP1) as a critical target for it. We found that during MDV infection, down-regulation of LTBP1 expression by mdv1-miR-M4-5p led to a significant decrease of the secretion and activation of TGF-β1, with suppression of TGF-β signaling and a significant activation of expression of c-Myc, a well-known oncogene which is critical for virus-induced tumorigenesis. Our findings reveal a novel and important mechanism of how mdv1-miR-M4-5p potentially contributes to MDV-induced tumorigenesis.
Collapse
Affiliation(s)
- Jia-Qi Chi
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People׳s Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Zu-Hua Yu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People׳s Republic of China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People׳s Republic of China
| | - Jing-Wei Su
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Pu Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Guang-Xu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Hong-De Liang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China
| | - Rui-Guang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People׳s Republic of China
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People׳s Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People׳s Republic of China.
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People׳s Republic of China.
| |
Collapse
|
20
|
Teng M, Yu ZH, Sun AJ, Min YJ, Chi JQ, Zhao P, Su JW, Cui ZZ, Zhang GP, Luo J. The significance of the individual Meq-clustered miRNAs of Marek's disease virus in oncogenesis. J Gen Virol 2014; 96:637-649. [PMID: 25502647 DOI: 10.1099/jgv.0.000013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Marek's disease virus (MDV) is an important oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts. The Meq-clustered miRNAs encoded by MDV have been suggested to play potentially critical roles in the induction of lymphomas. Using the technique of bacterial artificial chromosome mutagenesis, we have presently constructed a series of specific miRNA-deleted mutants and demonstrate that these miRNAs are not essential for replication of MDV and have no effects on the early cytolytic or latent phases of the developing disease. However, compared to the parental GX0101, mortality of birds infected with the mutants GXΔmiR-M2, GXΔmiR-M3, GXΔmiR-M5, GXΔmiR-M9 and GXΔmiR-M12 was reduced from 100 % to 18 %, 30 %, 48 %, 24 % and 14 %, coupled with gross tumour incidence reduction from 28 % to 8 %, 4 %, 12 %, 8 % and 0 %, respectively. Our data confirm that except for mdv1-miR-M4, the other Meq-clustered miRNAs also play critical roles in MDV oncogenesis. Further work will be needed to elucidate the miRNA-mediated regulatory mechanisms that trigger the development of MD lymphomas.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Zu-Hua Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ai-Jun Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, PR China
| | - Ya-Jie Min
- Pulike Biological Engineering, Luoyang 471000, PR China
| | - Jia-Qi Chi
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Pu Zhao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Jing-Wei Su
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Zhi-Zhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, PR China
| | - Gai-Ping Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jun Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China.,Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| |
Collapse
|
21
|
Role of virus-encoded microRNAs in Avian viral diseases. Viruses 2014; 6:1379-94. [PMID: 24662606 PMCID: PMC3970156 DOI: 10.3390/v6031379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA) pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs), avirulent Marek’s disease virus-2 (36 miRNAs), herpesvirus of turkeys (28 miRNAs), infectious laryngotracheitis virus (10 miRNAs), duck enteritis virus (33 miRNAs) and avian leukosis virus (2 miRNAs). Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR) miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.
Collapse
|
22
|
Yu ZH, Teng M, Sun AJ, Yu LL, Hu B, Qu LH, Ding K, Cheng XC, Liu JX, Cui ZZ, Zhang GP, Luo J. Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek's disease virus. Virology 2013; 448:55-64. [PMID: 24314636 DOI: 10.1016/j.virol.2013.09.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
The microRNA (miRNA) mdv1-miR-M4, a functional miR-155 ortholog encoded by oncogenic Marek's disease virus (MDV), has previously been suggested to be involved in MDV pathogenesis. Using the technique of bacterial artificial chromosome mutagenesis, we have presently evaluated the potential role of mdv1-miR-M4 in the oncogenesis of the very virulent (vv) MDV strain GX0101. Unexpectedly, deletions of the Meq-cluster or mdv1-miR-M4 alone from the viral genome strongly decreased rather than abolished its oncogenicity. Compared to GX0101, mortalities of mutants GXΔmiR-M4 and GXΔMeq-miRs were reduced from 100% to 18% and 4%, coupled with the gross tumor incidence reduction from 28% to 22% and 8%, respectively. Our data suggests that the mdv1-miR-M4 is possibly an important regulator in the development of Marek's disease (MD) lymphomas but is not essential for the oncogenicity of vvMDV. In addition, some of the other Meq-clustered miRNAs may also play potentially critical roles in vvMDV induction of lymphomas.
Collapse
Affiliation(s)
- Zu-Hua Yu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No.116 Huayuan Road, Zhengzhou 450002, People's Republic of China; College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|