1
|
Dutta AK, Gazi MS, Uddin SJ. A systemic review on medicinal plants and their bioactive constituents against avian influenza and further confirmation through in-silico analysis. Heliyon 2023; 9:e14386. [PMID: 36925514 PMCID: PMC10011005 DOI: 10.1016/j.heliyon.2023.e14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background Avian influenza or more commonly known as bird flu is a widespread infectious disease in poultry. This review aims to accumulate information of different natural plant sources that can aid in combating this disease. Influenza virus (IV) is known for its ability to mutate and infect different species (including humans) and cause fatal consequences. Methods Total 33 plants and 4 natural compounds were identified and documented. Molecular docking was performed against the target viral protein neuraminidase (NA), with some plant based natural compounds and compared their results with standard drugs Oseltamivir and Zanamivir to obtain novel drug targets for influenza in chickens. Results It was seen that most extracts exhibit their action by interacting with viral hemagglutinin or neuraminidase and inhibit viral entry or release from the host cell. Some plants also interacted with the viral RNA replication or by reducing proinflammatory cytokines. Ethanol was mostly used for extraction. Among all the plants Theobroma cacao, Capparis Sinaica Veil, Androgarphis paniculate, Thallasodendron cillatum, Sinularia candidula, Larcifomes officinalis, Lenzites betulina, Datronia molis, Trametes gibbose exhibited their activity with least concentration (below 10 μg/ml). The dockings results showed that some natural compounds (5,7- dimethoxyflavone, Aloe emodin, Anthocyanins, Quercetin, Hemanthamine, Lyocrine, Terpenoid EA showed satisfactory binding affinity and binding specificity with viral neuraminidase compared to the synthetic drugs. Conclusion This review clusters up to date information of effective herbal plants to bolster future influenza treatment research in chickens. The in-silico analysis also suggests some potential targets for future drug development but these require more clinical analysis.
Collapse
Affiliation(s)
- Ashit Kumar Dutta
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
3
|
Gaide N, Lucas MN, Delpont M, Croville G, Bouwman KM, Papanikolaou A, van der Woude R, Gagarinov IA, Boons GJ, De Vries RP, Volmer R, Teillaud A, Vergne T, Bleuart C, Le Loc’h G, Delverdier M, Guérin JL. Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015–2016. Vet Res 2022; 53:11. [PMID: 35164866 PMCID: PMC8842868 DOI: 10.1186/s13567-022-01028-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
In late 2015, an epizootic of Highly Pathogenic Avian Influenza (H5Nx) was registered in Southwestern France, including more than 70 outbreaks in commercial poultry flocks. Phylogenetic analyses suggested local emergence of H5 viruses which differed from A/goose/Guangdong/1/1996 clade 2.3.4.4b lineage and shared a unique polybasic cleavage site in their hemagglutinin protein. The present work provides an overview of the pathobiological picture associated with this epizootic in naturally infected chickens, guinea fowls and ducks. Upon necropsy examination, selected tissues were sampled for histopathology, immunohistochemistry and quantitative Real Time Polymerase Chain Reaction. In Galliformes, HPAIVs infection manifested as severe acute systemic vasculitis and parenchymal necrosis and was associated with endothelial expression of viral antigen. In ducks, lesions were mild and infrequent, with sparse antigenic detection in respiratory and digestive mucosae and leukocytes. Tissue quantifications of viral antigen and RNA were higher in chickens and guinea fowls compared to duck. Subsequently, recombinant HA (rHA) was generated from a H5 HPAIV isolated from an infected duck to investigate its glycan-binding affinity for avian mucosae. Glycan-binding analysis revealed strong affinity of rHA for 3’Sialyl-LacNAc and low affinity for Sialyl-LewisX, consistent with a duck-adapted virus similar to A/Duck/Mongolia/54/2001 (H5N2). K222R and S227R mutations on rHA sequence shifted affinity towards Sialyl-LewisX and led to an increased affinity for chicken mucosa, confirming the involvement of these two mutations in the glycan-binding specificity of the HA. Interestingly, the rHA glycan binding pattern of guinea fowl appeared intermediate between duck and chicken. The present study presents a unique pathobiological description of the H5 HPAIVs outbreaks that occurred in 2015–2016 in Southwestern France.
Collapse
|
4
|
Gaide N, Foret-Lucas C, Figueroa T, Vergne T, Lucas MN, Robertet L, Souvestre M, Croville G, Le Loc'h G, Delverdier M, Guérin JL. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci Rep 2021; 11:5928. [PMID: 33723295 PMCID: PMC7960704 DOI: 10.1038/s41598-021-85109-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Highly Pathogenic Avian Influenza viruses (HPAIVs) display a tissue pantropism, which implies a possible spread in feathers. HPAIV detection from feathers had been evaluated for H5N1 or H7N1 HPAIVs. It was suggested that viral RNA loads could be equivalent or higher in samples of immature feather compared to tracheal (TS) or cloacal swabs (CS). We investigated the suitability of feathers for the detection of clade 2.3.4.4b H5N8 HPAIV in ducks and geese field samples. In the six H5N8 positive flocks that were included in this study, TS, CS and immature wing feathers were taken from at least 10 birds. Molecular loads were then estimated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) targetting H5 and M genes. In all flocks, viral loads were at least equivalent between feather and swab samples and in most cases up to 103 higher in feathers. Bayesian modelling confirmed that, in infected poultry, RT-qPCR was much more likely to be positive when applied on a feather sample only (estimated sensitivity between 0.89 and 0.96 depending on the positivity threshold) than on a combination of a tracheal and a cloacal swab (estimated sensitivity between 0.45 and 0.68 depending on the positivity threshold). Viral tropism and lesions in feathers were evaluated by histopathology and immunohistochemistry. Epithelial necrosis of immature feathers and follicles was observed concurrently with positive viral antigen detection and leukocytic infiltration of pulp. Accurate detection of clade 2.3.4.4b HPAIVs in feather samples were finally confirmed with experimental H5N8 infection on 10-week-old mule ducks, as viral loads at 3, 5 and 7 days post-infection were higher in feathers than in tracheal or cloacal swabs. However, feather samples were associated with lower viral loads than tracheal swabs at day 1, suggesting better detectability of the virus in feathers in the later course of infection. These results, based on both field cases and experimental infections, suggest that feather samples should be included in the toolbox of samples for detection of clade 2.3.4.4b HPAI viruses, at least in ducks and geese.
Collapse
Affiliation(s)
- Nicolas Gaide
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Charlotte Foret-Lucas
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Thomas Figueroa
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Timothée Vergne
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Marie-Noëlle Lucas
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Luc Robertet
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Marie Souvestre
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Guillaume Croville
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Guillaume Le Loc'h
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Maxence Delverdier
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Jean-Luc Guérin
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France.
| |
Collapse
|
5
|
Sriwilaijaroen N, Suzuki Y. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Vaccines (Basel) 2020; 8:E587. [PMID: 33036202 PMCID: PMC7712180 DOI: 10.3390/vaccines8040587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and βCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in βIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in βCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of βSARS-CoV in 2002-2004 and βMERS-CoV from 2012 to present. βSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yasuo Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
6
|
Seekings AH, Howard WA, Nuñéz A, Slomka MJ, Banyard AC, Hicks D, Ellis RJ, Nuñéz-García J, Hartgroves LC, Barclay WS, Banks J, Brown IH. The Emergence of H7N7 Highly Pathogenic Avian Influenza Virus from Low Pathogenicity Avian Influenza Virus Using an in ovo Embryo Culture Model. Viruses 2020; 12:v12090920. [PMID: 32839404 PMCID: PMC7552004 DOI: 10.3390/v12090920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Outbreaks of highly pathogenic avian influenza virus (HPAIV) often result in the infection of millions of poultry, causing up to 100% mortality. HPAIV has been shown to emerge from low pathogenicity avian influenza virus (LPAIV) in field outbreaks. Direct evidence for the emergence of H7N7 HPAIV from a LPAIV precursor with a rare di-basic cleavage site (DBCS) was identified in the UK in 2008. The DBCS contained an additional basic amino acid compared to commonly circulating LPAIVs that harbor a single-basic amino acid at the cleavage site (SBCS). Using reverse genetics, outbreak HPAIVs were rescued with a DBCS (H7N7DB), as seen in the LPAIV precursor or an SBCS representative of common H7 LPAIVs (H7N7SB). Passage of H7N7DB in chicken embryo tissues showed spontaneous evolution to a HPAIV. In contrast, deep sequencing of extracts from embryo tissues in which H7N7SB was serially passaged showed retention of the LPAIV genotype. Thus, in chicken embryos, an H7N7 virus containing a DBCS appears naturally unstable, enabling rapid evolution to HPAIV. Evaluation in embryo tissue presents a useful approach to study AIV evolution and allows a laboratory-based dissection of molecular mechanisms behind the emergence of HPAIV.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- Correspondence:
| | - Wendy A. Howard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Alejandro Nuñéz
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - Daniel Hicks
- Pathology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (A.N.); (D.H.)
| | - Richard J. Ellis
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | - Javier Nuñéz-García
- Surveillance and Laboratory Services Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (R.J.E.); (J.N.-G.)
| | | | - Wendy S. Barclay
- Virology Department, Imperial College, London W2 1NY, UK; (L.C.H.); (W.S.B.)
| | - Jill Banks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey KT15 3NB, UK; (W.A.H.); (M.J.S.); (A.C.B.); (J.B.); (I.H.B.)
| |
Collapse
|
7
|
Wang F, Liu G, Lu Y, Hlasny M, Liu Q, Zhou Y. Acquisition of Avian-Origin PB1 Facilitates Viral RNA Synthesis by the 2009 Pandemic H1N1 Virus Polymerase. Viruses 2020; 12:v12030266. [PMID: 32121117 PMCID: PMC7150768 DOI: 10.3390/v12030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
The constant crosstalk between the large avian reservoir of influenza A viruses (IAV) and its mammalian hosts drives viral evolution and facilitates their host switching. Direct adaptation of an avian strain to human or reassortment between avian-origin gene segments with that of human strains are the two mechanisms for the emergence of pandemic viruses. While it was suggested that the 1918 pandemic virus is of avian origin, reassortment of 1918 human isolates and avian influenza viruses led to the generation of 1957 and 1968 pandemic viruses. Interestingly, the avian PB1 segment, which encodes the catalytic subunit of IAV polymerase, is present in the 1957 and 1968 pandemic viruses. The biological consequence and molecular basis of such gene exchange remain less well understood. Using the 2009 pandemic H1N1 virus as a model, whose polymerase contains a human-origin PB1 subunit, we demonstrate that the acquisition of an avian PB1 markedly enhances viral RNA synthesis. This enhancement is also effective in the absence of PB2 adaptive mutations, which are key determinants of host switching. Mechanistically, the avian-origin PB1 does not appear to affect polymerase assembly but imparts the reassorted pandemic polymerase-augmented viral primary transcription and replication. Moreover, compared to the parental pandemic polymerase, the reassorted polymerase displays comparable complementary RNA (cRNA)-stabilizing activity but is specifically enhanced in progeny viral RNA (vRNA) synthesis from cRNA in a trans-activating manner. Overall, our results provide the first insight into the mechanism via which avian-origin PB1 enhances viral RNA synthesis of the 2009 pandemic virus polymerase.
Collapse
Affiliation(s)
- Fangzheng Wang
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (F.W.); (G.L.); (Y.L.); (M.H.); (Q.L.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Guanqun Liu
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (F.W.); (G.L.); (Y.L.); (M.H.); (Q.L.)
| | - Yao Lu
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (F.W.); (G.L.); (Y.L.); (M.H.); (Q.L.)
| | - Magda Hlasny
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (F.W.); (G.L.); (Y.L.); (M.H.); (Q.L.)
| | - Qiang Liu
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (F.W.); (G.L.); (Y.L.); (M.H.); (Q.L.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (F.W.); (G.L.); (Y.L.); (M.H.); (Q.L.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Correspondence: ; Tel.: +1-306-966-7716
| |
Collapse
|
8
|
Kingstad-Bakke BA, Chandrasekar SS, Phanse Y, Ross KA, Hatta M, Suresh M, Kawaoka Y, Osorio JE, Narasimhan B, Talaat AM. Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine 2019; 37:5051-5058. [PMID: 31300285 DOI: 10.1016/j.vaccine.2019.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
Avian influenza virus (AIV) is an extraordinarily diverse pathogen that causes significant morbidity in domesticated poultry populations and threatens human life with looming pandemic potential. Controlling avian influenza in susceptible populations requires highly effective, economical and broadly reactive vaccines. Several AIV vaccines have proven insufficient despite their wide use, and better technologies are needed to improve their immunogenicity and broaden effectiveness. Previously, we developed a "mosaic" H5 subtype hemagglutinin (HA) AIV vaccine and demonstrated its broad protection against diverse highly pathogenic H5N1 and seasonal H1N1 virus strains in mouse and non-human primate models. There is a significant interest in developing effective and safe vaccines against AIV that cannot contribute to the emergence of new strains of the virus once circulating in poultry. Here, we report on the development of an H5 mosaic (H5M) vaccine antigen formulated with polyanhydride nanoparticles (PAN) that provide sustained release of encapsulated antigens. H5M vaccine constructs were immunogenic whether delivered by the modified virus Ankara (MVA) strain or encapsulated within PAN. Both humoral and cellular immune responses were generated in both specific-pathogen free (SPF) and commercial chicks. Importantly, chicks vaccinated by H5M constructs were protected in terms of viral shedding from divergent challenge with a low pathogenicity avian influenza (LPAI) strain at 8 weeks post-vaccination. In addition, protective levels of humoral immunity were generated against highly pathogenic avian influenza (HPAI) of the similar H5N1 and genetically dissimilar H5N2 viruses. Overall, the developed platform technologies (MVA vector and PAN encapsulation) were safe and provided high levels of sustained protection against AIV in chickens. Such approaches could be used to design more efficacious vaccines against other important poultry infections.
Collapse
Affiliation(s)
- Brock A Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA
| | - Shaswath S Chandrasekar
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA.
| |
Collapse
|
9
|
Naguib MM, Verhagen JH, Samy A, Eriksson P, Fife M, Lundkvist Å, Ellström P, Järhult JD. Avian influenza viruses at the wild-domestic bird interface in Egypt. Infect Ecol Epidemiol 2019; 9:1575687. [PMID: 30815236 PMCID: PMC6383604 DOI: 10.1080/20008686.2019.1575687] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Wild birds of the orders Anseriformes (mainly ducks, geese and swans) and Charadriiformes (mainly gulls, terns and waders) constitute the natural reservoir for low pathogenic avian influenza (LPAI) viruses. In Egypt, highly pathogenic avian influenza (HPAI) H5N1 and LPAI H9N2 viruses are endemic in domestic poultry, forming a threat to animal and human health and raising questions about the routes of introduction and mechanisms of persistence. Recently, HPAI H5N8 virus was also introduced into Egyptian domestic birds. Here we review the literature on the role of wild birds in the introduction and endemicity of avian influenza viruses in Egypt. Dabbling ducks in Egypt harbor an extensive LPAI virus diversity and may constitute the route of introduction for HPAI H5N1 and HPAI H5N8 viruses into Egypt through migration, however their role in the endemicity of HPAI H5N1, LPAI H9N2 and potentially other avian influenza virus (AIV) strains - by means of reassortment of viral genes - is less clear. Strengthened surveillance programs, in both domestic and wild birds, that include all LPAI virus subtypes and full genome sequencing are needed to better assess the wild-domestic bird interface and form a basis for evidence-based measures to limit and prevent AIV transmission between wild and domestic birds.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Josanne H. Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Ahmed Samy
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
- Genetics and Genomics, The Pirbright Institute, Surrey, UK
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mark Fife
- Genetics and Genomics, The Pirbright Institute, Surrey, UK
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Ramey AM, DeLiberto TJ, Berhane Y, Swayne DE, Stallknecht DE. Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology 2018; 518:55-63. [PMID: 29453059 DOI: 10.1016/j.virol.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/19/2022]
Abstract
Following detections of highly pathogenic (HP) influenza A viruses (IAVs) in wild birds inhabiting East Asia after the turn of the millennium, the intensity of sampling of wild birds for IAVs increased throughout much of North America. The objectives for many research and surveillance efforts were directed towards detecting Eurasian origin HP IAVs and understanding the potential of such viruses to be maintained and dispersed by wild birds. In this review, we highlight five important lessons learned from research and surveillance directed at HP IAVs in wild birds inhabiting North America: (1) Wild birds may disperse IAVs between North America and adjacent regions via migration, (2) HP IAVs can be introduced to wild birds in North America, (3) HP IAVs may cross the wild bird-poultry interface in North America, (4) The probability of encountering and detecting a specific virus may be low, and (5) Population immunity of wild birds may influence HP IAV outbreaks in North America. We review empirical support derived from research and surveillance efforts for each lesson learned and, furthermore, identify implications for future surveillance efforts, biosecurity, and population health. We conclude our review by identifying five additional areas in which we think future mechanistic research relative to IAVs in wild birds in North America are likely to lead to other important lessons learned in the years ahead.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | - Thomas J DeLiberto
- National Wildlife Disease Program, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80521, USA
| | - Yohannes Berhane
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba, Canada R3E 3M4; Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Richard M, Fouchier R, Monne I, Kuiken T. Mechanisms and risk factors for mutation from low to highly pathogenic avian influenza virus. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog 2015; 89:62-72. [PMID: 26344393 DOI: 10.1016/j.micpath.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.
Collapse
|
13
|
Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus. J Virol 2015; 89:8806-15. [PMID: 26085150 DOI: 10.1128/jvi.00653-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health.
Collapse
|
14
|
Abdelwhab EM, Veits J, Mettenleiter TC. Avian influenza virus NS1: A small protein with diverse and versatile functions. Virulence 2013; 4:583-8. [PMID: 24051601 PMCID: PMC3906290 DOI: 10.4161/viru.26360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut; Federal Research Institute for Animal Health; Institute of Molecular Biology; Insel Riems, Germany
| | | | | |
Collapse
|
15
|
Kim IH, Kwon HJ, Choi JG, Kang HM, Lee YJ, Kim JH. Characterization of mutations associated with the adaptation of a low-pathogenic H5N1 avian influenza virus to chicken embryos. Vet Microbiol 2012; 162:471-478. [PMID: 23211427 DOI: 10.1016/j.vetmic.2012.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/21/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Migratory waterfowls are the most common reservoir for avian influenza virus (AIV), thus viral adaptation is required for efficient replication in land fowls. To date, low pathogenic (LP) H5 subtype AIVs have been isolated from migratory waterfowls, and the adaptation of these viruses to land fowls might lead to the generation of highly pathogenic AIVs. Thus, A/wild duck/Korea/50-5/2009 (H5N1) LPAIV was passaged 20 times through embryonated chicken eggs (ECEs), and the resulting genetic and phenotypic changes were investigated. The pathogenicities of the early (50-5-E2) and final passage (50-5-E20) strains to chicken embryos were similarly high, but the 50-5-E20 titer was 100 times higher than that of 50-5-E2. 50-5-E20 showed 8 amino acid changes in PA (1), HA (4), NA (1), M1 (1) and M2 (1), with different frequencies among influenza A viruses (0-99.6%). The relevance of these changes, except H103Y in HA, to viral replication remains unknown. To investigate the roles of internal genes and mutations in HA and NA in viral replication, four recombinant viruses possessing combinations of HA and NA genes of 50-5-E2 and 50-5-E20 with 6 internal genes of PR8 were generated through reverse genetics. The embryo pathogenicities of the H5N1 recombinant viruses carrying internal PR8 genes were reduced, and the titers of the recombinant viruses with 50-5-E20 HA were higher than those with 50-5-E2 HA. Therefore, the identified mutations might be useful as chicken adaptation markers for the generation of high growth H5N1 recombinant viruses in ECEs.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Laboratory of Avian Diseases, Seoul National University, Seoul 151-742, Republic of Korea; College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Jun-Gu Choi
- Avian Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Hyun-Mi Kang
- Avian Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, Seoul National University, Seoul 151-742, Republic of Korea; College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|