1
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
2
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2023; 42:1207-1234. [PMID: 37608144 PMCID: PMC10511388 DOI: 10.1007/s10096-023-04649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a nosocomial bacterium responsible for variety of infections. Inappropriate use of antibiotics could lead to emergence of multidrug-resistant (MDR) P. aeruginosa strains. Herein, a virulent phage; vB_PaeM_PS3 was isolated and tested for its application as alternative to antibiotics for controlling P. aeruginosa infections. METHODS Phage morphology was observed using transmission electron microscopy (TEM). The phage host range and efficiency of plating (EOP) in addition to phage stability were analyzed. One-step growth curve was performed to detect phage growth kinetics. The impact of isolated phage on planktonic cells and biofilms was assessed. The phage genome was sequenced. Finally, the therapeutic potential of vB_PaeM_PS3 was determined in vivo. RESULTS Isolated phage has an icosahedral head and a contractile tail and was assigned to the family Myoviridae. The phage vB_PaeM_PS3 displayed a broad host range, strong bacteriolytic ability, and higher environmental stability. Isolated phage showed a short latent period and large burst size. Importantly, the phage vB_PaeM_PS3 effectively eradicated bacterial biofilms. The genome of vB_PaeM_PS3 consists of 93,922 bp of dsDNA with 49.39% G + C content. It contains 171 predicted open reading frames (ORFs) and 14 genes as tRNA. Interestingly, the phage vB_PaeM_PS3 significantly attenuated P. aeruginosa virulence in host where the survival of bacteria-infected mice was markedly enhanced following phage treatment. Moreover, the colonizing capability of P. aeruginosa was markedly impaired in phage-treated mice as compared to untreated infected mice. CONCLUSION Based on these findings, isolated phage vB_PaeM_PS3 could be potentially considered for treating of P. aeruginosa infections.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Ning Z, Zhang L, Cai L, Xu X, Chen Y, Wang H. Biofilm removal mediated by Salmonella phages from chicken-related sources. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Baskaran V, Karthik L. Phages for treatment of Salmonella spp infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:241-273. [PMID: 37739557 DOI: 10.1016/bs.pmbts.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Salmonella, is one of the bacterial genera having more than 2500 serogroups is one of the most prominent food borne pathogen that is capable of causing disease out breaks among humans and animals. Recent reports clearly shows that this pathogen is evolved and it developed drug resistant towards most of the commercially available antibiotics. In order to overcome this emerging resistance, Bacteriophage therapy is one of the alternative solutions. It is more pathogen specific, high potency, and thereby highly safe for consumption. This chapter discuss about Rapid screening and Detection Methods Associated with Bacteriophage for Salmonella, commercially available phage products and regulatory status, Salmonella endolysins and future prospects of phage therapy.
Collapse
Affiliation(s)
- V Baskaran
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India
| | - L Karthik
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India.
| |
Collapse
|
5
|
Tung CW, Alvarado-Martínez Z, Tabashsum Z, Aditya A, Biswas D. A Highly Effective Bacteriophage-1252 to Control Multiple Serovars of Salmonella enterica. Foods 2023; 12:foods12040797. [PMID: 36832872 PMCID: PMC9955900 DOI: 10.3390/foods12040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Salmonella enterica (S. enterica) is the most common foodborne pathogen worldwide, leading to massive economic loss and a significant burden on the healthcare system. The primary source of S. enterica remains contaminated or undercooked poultry products. Considering the number of foodborne illnesses with multiple antibiotic resistant S. enterica, new controlling approaches are necessary. Bacteriophage (phage) therapies have emerged as a promising alternative to controlling bacterial pathogens. However, the limitation on the lysis ability of most phages is their species-specificity to the bacterium. S. enterica has various serovars, and several major serovars are involved in gastrointestinal diseases in the USA. In this study, Salmonella bacteriophage-1252 (phage-1252) was isolated and found to have the highest lytic activity against multiple serovars of S. enterica, including Typhimurium, Enteritidis, Newport, Heidelberg, Kentucky, and Gallinarum. Whole-genome sequencing analysis revealed phage-1252 is a novel phage strain that belongs to the genus Duplodnaviria in the Myoviridae family, and consists of a 244,421 bp dsDNA, with a G + C content of 48.51%. Its plaque diameters are approximately 2.5 mm to 0.5 mm on the agar plate. It inhibited Salmonella Enteritidis growth after 6 h. The growth curve showed that the latent and rise periods were approximately 40 min and 30 min, respectively. The burst size was estimated to be 56 PFU/cell. It can stabilize and maintain original activity between 4 °C and 55 °C for 1 h. These results indicate that phage-1252 is a promising candidate for controlling multiple S. enterica serovars in food production.
Collapse
Affiliation(s)
- Chuan-Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Zabdiel Alvarado-Martínez
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| |
Collapse
|
6
|
Casjens SR, Davidson AR, Grose JH. The small genome, virulent, non-contractile tailed bacteriophages that infect Enterobacteriales hosts. Virology 2022; 573:151-166. [DOI: 10.1016/j.virol.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
|
7
|
Sun Z, Mandlaa, Wen H, Ma L, Chen Z. Isolation, characterization and application of bacteriophage PSDA-2 against Salmonella Typhimurium in chilled mutton. PLoS One 2022; 17:e0262946. [PMID: 35073376 PMCID: PMC8786174 DOI: 10.1371/journal.pone.0262946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/08/2022] [Indexed: 12/01/2022] Open
Abstract
Salmonella is a common foodborne pathogen, especially in meat and meat products. Lytic phages are promising alternatives to conventional methods for Salmonella biocontrol in food and food processing. In this study, a virulent bacteriophage (PSDA-2) against Salmonella enterica serovar Typhimurium was isolated from the sewage and it was found that PSDA-2 belongs to Cornellvirus genus of Siphoviridae family by morphological and phylogenetic analysis. Based on the one-step growth curve, PSDA-2 has a short latent period (10 min) and a high burst size (120 PFU/cell). The stability test in vitro reveals that PSDA-2 is stable at 30–70°C and pH 3–10. Bioinformatics analysis show that PSDA-2 genome consists of 40,062 bp with a GC content of 50.21% and encodes 63 open reading frames (ORFs); no tRNA genes, lysogenic genes, drug resistance genes and virulence genes were identified in the genome. Moreover, the capacity for PSDA-2 to control Salmonella Typhimurium in chilled mutton was investigated. The results show that incubation of PSDA-2 at 4°C reduced recoverable Salmonella by 1.7 log CFU/mL and 2.1 log CFU/mL at multiplicity of infection (MOI) of 100 and 10,000 respectively, as relative to the phage-excluded control. The features of phage PSDA-2 suggest that it has the potential to be an agent to control Salmonella.
Collapse
|
8
|
Ilyas SZ, Tariq H, Basit A, Tahir H, Haider Z, Rehman SU. SGP-C: A Broad Host Range Temperate Bacteriophage; Against Salmonella gallinarum. Front Microbiol 2022; 12:768931. [PMID: 35095790 PMCID: PMC8790156 DOI: 10.3389/fmicb.2021.768931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella gallinarum is a poultry restricted-pathogen causing fowl-typhoid disease in adult birds with mortality rates up-to 80% and exhibit resistance against commonly used antibiotics. In this current study, a temperate broad host range bacteriophage SGP-C was isolated against S. gallinarum from poultry digesta. It showed infection ability in all the 15 tested field strains of S. gallinarum. The SGP-C phage produced circular, turbid plaques with alternate rings. Its optimum activity was observed at pH 7.0 and 37-42°C, with a latent period of 45 min and burst size of 187 virions/bacterial cell. The SGP-C lysogens, SGPC-L5 and SGPC-L6 exhibited super-infection immunity against the same phage, an already reported feature of lysogens. A virulence index of 0.5 and 0.001 as MV50 of SGP-C suggests its moderate virulence. The genome of SGP-C found circular double stranded DNA of 42 Kbp with 50.04% GC content, which encodes 63 ORFs. The presence of repressor gene at ORF49, and absence of tRNA sequence in SGP-C genome indicates its lysogenic nature. Furthermore, from NGS analysis of lysogens we propose that SGP-C genome might exist either as an episome, or both as integrated and temporary episome in the host cell and warrants further studies. Phylogenetic analysis revealed its similarity with Salmonella temperate phages belonging to family Siphoviridae. The encoded proteins by SGP-C genome have not showed homology with any known toxin and virulence factor. Although plenty of lytic bacteriophages against this pathogen are already reported, to our knowledge SGP-C is the first lysogenic phage against S. gallinarum reported so far.
Collapse
Affiliation(s)
| | | | | | | | | | - Shafiq ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Kuźmińska-Bajor M, Śliwka P, Ugorski M, Korzeniowski P, Skaradzińska A, Kuczkowski M, Narajaczyk M, Wieliczko A, Kolenda R. Genomic and functional characterization of five novel Salmonella-targeting bacteriophages. Virol J 2021; 18:183. [PMID: 34496915 PMCID: PMC8425127 DOI: 10.1186/s12985-021-01655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/29/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The host-unrestricted, non-typhoidal Salmonella enterica serovar Enteritidis (S. Enteritidis) and the serovar Typhimurium (S. Typhimurium) are major causative agents of food-borne gastroenteritis, and the host-restricted Salmonella enterica serovar Gallinarum (S. Gallinarum) is responsible for fowl typhoid. Increasing drug resistance in Salmonella contributes to the reduction of effective therapeutic and/or preventive options. Bacteriophages appear to be promising antibacterial tools, able to combat infectious diseases caused by a wide range of Salmonella strains belonging to both host-unrestricted and host-restricted Salmonella serovars. METHODS In this study, five novel lytic Salmonella phages, named UPWr_S1-5, were isolated and characterized, including host range determination by plaque formation, morphology visualization with transmission electron microscopy, and establishment of physiological parameters. Moreover, phage genomes were sequenced, annotated and analyzed, and their genomes were compared with reference Salmonella phages by use of average nucleotide identity, phylogeny, dot plot, single nucleotide variation and protein function analysis. RESULTS It was found that UPWr_S1-5 phages belong to the genus Jerseyvirus within the Siphoviridae family. All UPWr_S phages were found to efficiently infect various Salmonella serovars. Host range determination revealed differences in host infection profiles and exhibited ability to infect Salmonella enterica serovars such as Enteritidis, Gallinarum, Senftenberg, Stanley and Chester. The lytic life cycle of UPWr_S phages was confirmed using the mitomycin C test assay. Genomic analysis revealed that genomes of UPWr_S phages are composed of 51 core and 19 accessory genes, with 33 of all predicted genes having assigned functions. UPWr_S genome organization comparison revealed 3 kinds of genomes and mosaic structure. UPWr_S phages showed very high sequence similarity to each other, with more than 95% average nucleotide identity. CONCLUSIONS Five novel UPWr_S1-5 bacteriophages were isolated and characterized. They exhibit host lysis range within 5 different serovars and are efficient in lysis of both host-unrestricted and host-restricted Salmonella serovars. Therefore, because of their ability to infect various Salmonella serovars and lytic life cycle, UPWr_S1-5 phages can be considered as useful tools in biological control of salmonellosis.
Collapse
Affiliation(s)
- Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Paweł Korzeniowski
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Magdalena Narajaczyk
- Department of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
10
|
Jungkhun N, Farias ARG, Barphagha I, Patarapuwadol S, Ham JH. Isolation and Characterization of Bacteriophages Infecting Burkholderia glumae, the Major Causal Agent of Bacterial Panicle Blight in Rice. PLANT DISEASE 2021; 105:2551-2559. [PMID: 33417498 DOI: 10.1094/pdis-08-20-1711-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial panicle blight (BPB), caused by Burkholderia glumae, is one of the most severe seed-borne bacterial diseases of rice in the world, which can decrease rice production by ≤75%. Nevertheless, there are few effective measures to manage this disease. In an attempt to develop an alternative management tool for BPB, we isolated and characterized phages from soil and water that are effective to lyse several strains of B. glumae. After tests of host ranges, the phages NBP1-1, NBP4-7, and NBP4-8 were selected for further comprehensive characterization, all of which could lyse B. glumae BGLa14-8 (phage sensitive) but not B. glumae 336gr-1 (phage insensitive). This result indicates that the phages killing B. glumae cells have specific host ranges at the strain level within the bacterial species. In the greenhouse condition of this study, foliar application of the phage NBP4-7 reduced the severity of BPB caused by B. glumae BGLa14-8 ≤62% but did not cause any significant effect on the infection by B. glumae 336gr-1. Electron microscopy and whole-genome sequencing were also performed to characterize the three selected phages. Transmission electron microscopy revealed that the selected phages belong to the family Myoviridae. Furthermore, whole-genome sequence analysis indicated that the three phages belong to a same species and are closely related to the Burkholderia phage KL3, a member of the Myoviridae family.
Collapse
Affiliation(s)
- Nootjarin Jungkhun
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Chiang Rai Rice Research Center, Rice Department, Phan, Chiang Rai 57120, Thailand
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Antonio R G Farias
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife 52.171-900, Brazil
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Sujin Patarapuwadol
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| |
Collapse
|
11
|
Potential for Bacteriophage Cocktail to Complement Commercial Sanitizer Use on Produce Against Escherichia coli O157:H7. Microorganisms 2020; 8:microorganisms8091316. [PMID: 32872459 PMCID: PMC7563534 DOI: 10.3390/microorganisms8091316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/03/2023] Open
Abstract
The increasing concern for food safety has created a need to evaluate novel techniques to eliminate or control pathogens, resulting in safe food. In this study, four bacteriophages of bovine origin, specific to E. coli O157:H7, were successfully isolated and characterized. A microplate reader assay demonstrated the efficacy of the bacteriophage (phage) cocktail against E. coli O157:H7 resulting in a significant reduction (p < 0.01) in the target pathogen population. The phage cocktail demonstrated significant efficacy (p < 0.05) against E. coli O157:H7 in the presence of the most utilized sanitizers in the United States, namely 100 parts per million (ppm) free chlorine and 100-ppm peroxyacetic acid. Survival in the sanitizer concentrations demonstrates the potential use of phage cocktail and sanitizer synergistically to enhance sanitation operations in the food industry.
Collapse
|
12
|
Comprehensive Evaluation of the Safety and Efficacy of BAFASAL ® Bacteriophage Preparation for the Reduction of Salmonella in the Food Chain. Viruses 2020; 12:v12070742. [PMID: 32664206 PMCID: PMC7412135 DOI: 10.3390/v12070742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages are bacterial predators, which are garnering much interest nowadays vis-à-vis the global phenomenon of antimicrobial resistance. Bacteriophage preparations seem to be an alternative to antibiotics, which can be used at all levels of the food production chain. Their safety and efficacy, however, are of public concern. In this study, a detailed evaluation of BAFASAL® preparation was performed. BAFASAL® is a bacteriophage cocktail that reduces Salmonella in poultry farming. In vivo acute and sub-chronic toxicity studies on rats and tolerance study on targeted animals (chicken broiler) conducted according to GLP and OECD guidelines did not reveal any signs of toxicity, which could be associated with BAFASAL® administration. In addition, no evidences of genotoxicity were observed. The tolerance study with 100-times concentrated dose also did not show any statistically significant differences in the assessed parameters. The in vitro crop assay, mimicking normal feed storage and feed application conditions showed that BAFASAL® reduced the number of Salmonella bacteria in experimentally contaminated feed. Moreover, reductions were observed for all examined forms (liquid, powder, spray). Furthermore, the in vivo efficacy study showed that treatment with BAFASAL® significantly decreased Salmonella content in caeca of birds infected with Salmonella Enteritidis. Detailed examination of BAFASAL® in terms of safety and efficacy, adds to the body of evidence that bacteriophages are harmless to animals and effective in the struggle against bacteria.
Collapse
|
13
|
Li M, Lin H, Jing Y, Wang J. Broad-host-range Salmonella bacteriophage STP4-a and its potential application evaluation in poultry industry. Poult Sci 2020; 99:3643-3654. [PMID: 32616261 PMCID: PMC7597861 DOI: 10.1016/j.psj.2020.03.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Salmonella is regarded as the predominant cause of foodborne illnesses worldwide, and the increase of these antimicrobial-resistant strains makes it more difficult to prevent. On this occasion, bacteriophages (phages) stand out as an alternative biocontrol agent with high efficiency and low mutation rates. Salmonella phages have confronted challenges to counteract with more than 2,500 serovars of Salmonella spp. and overcome the universality of antibiotics to different species, and thus, broad-host-range phages infecting Salmonella spp. are urgently required to realize precise poultry treatment or clinical therapy. First, phage STP4-a was screened to have a broad host range through bioinformatics analysis, and then the host range assay proved that phage STP4-a could inhibit 88 out of 91 Salmonella strains. Then, in silico analysis excluded the possibility of phage STP4-a possessing any known lysogeny factors, toxins, pathogen-related genes, or foodborne allergens, and oral toxicity studies further ensured the safety of unknown factors or suspected risks. In addition, strong inhibition effects of phage STP4-a were seen on both single Salmonella strain and multiple Salmonella strains in vitro, reducing 3-5 log in 30 min. Phage STP4-a could survive and keep more than 50% activity in simulated stomach or intestine environments in vitro. In terms of antimicrobial activities in chickens, pretreatment with phage STP4-a was the most efficient approach to Salmonella biocontrol, non-detectable in feces during the 14-day experimental period. Therefore, phage STP4-a was an extremely broad-host-range and safe biocontrol agent, performing its potential as a food additive or therapeutic drug in poultry industry.
Collapse
Affiliation(s)
- Mengzhe Li
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Hong Lin
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Yujie Jing
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jingxue Wang
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China.
| |
Collapse
|
14
|
Bumunang EW, McAllister TA, Stanford K, Anany H, Niu YD, Ateba CN. Characterization of Non-O157 STEC Infecting Bacteriophages Isolated from Cattle Faeces in North-West South Africa. Microorganisms 2019; 7:E615. [PMID: 31779135 PMCID: PMC6956337 DOI: 10.3390/microorganisms7120615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes that are frequently associated with diseases in humans around the world. The consequences of these serogroups for public health is a concern given the lack of effective prevention and treatment measures. In this study, ten bacteriophages (phages; SA20RB, SA79RD, SA126VB, SA30RD, SA32RD, SA35RD, SA21RB, SA80RD, SA12KD and SA91KD) isolated from cattle faeces collected in the North-West of South Africa were characterized. Activity of these phages against non-O157 STEC isolates served as hosts for these phages. All of the phages except SA80RD displayed lytic against non-O157 E. coli isolates. Of 22 non-O157 E. coli isolates, 14 were sensitive to 9 of the 10 phages tested. Phage SA35RD was able to lyse 13 isolates representing a diverse group of non-O157 E. coli serotypes including a novel O-antigen Shiga toxigenic (wzx-Onovel5:H19) strain. However, non-O157 E. coli serotypes O76:H34, O99:H9, O129:H23 and O136:H30 were insensitive to all phages. Based on transmission electron microscopy, the non-O157 STEC phages were placed into Myoviridae (n = 5) and Siphoviridae (n = 5). Genome of the phage ranged from 44 to 184.3 kb. All but three phages (SA91KD, SA80RD and SA126VB) were insensitive to EcoRI-HF and HindIII nucleases. This is the first study illustrating that cattle from North-West South Africa harbour phages with lytic potentials that could potentially be exploited for biocontrol against a diverse group of non-O157 STEC isolated from the same region.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa;
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Hany Anany
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, ON N1G 5C9, Canada;
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
15
|
Yildirim Z, Sakin T, Akçelik M, Akçelik N. Characterization of SE-P3, P16, P37, and P47 bacteriophages infectingSalmonellaEnteritidis. J Basic Microbiol 2019; 59:1049-1062. [DOI: 10.1002/jobm.201900102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/30/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Zeliha Yildirim
- Department of Food Engineering, Faculty of Engineering; Niğde Ömer Halisdemir University; Niğde Turkey
| | - Tuba Sakin
- Department of Food Engineering, Faculty of Engineering; Niğde Ömer Halisdemir University; Niğde Turkey
| | - Mustafa Akçelik
- Department of Biology, Faculty of Science; Ankara University; Ankara Turkey
| | - Nesife Akçelik
- Department of Biotecnology, Institute of Biotechnology; Ankara University; Ankara Turkey
| |
Collapse
|
16
|
Petsong K, Benjakul S, Chaturongakul S, Switt AIM, Vongkamjan K. Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S. Enteritidis and S. Typhimurium. Microorganisms 2019; 7:E100. [PMID: 30959743 PMCID: PMC6518243 DOI: 10.3390/microorganisms7040100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium are major foodborne pathogens of concern worldwide. Bacteriophage applications have gained more interest for biocontrol in foods. This study isolated 36 Salmonella phages from several animal farms in Thailand and tested them on 47 Salmonella strains from several sources, including farms, seafood processing plant and humans in Thailand and USA. Phages were classified into three major groups. The estimated phage genome size showed the range from 50 ± 2 to 200 ± 2 kb. An effective phage cocktail consisting of three phages was developed. Approximately 4 log CFU/mL of S. Enteritidis and S. Typhimurium could be reduced. These phages revealed a burst size of up to 97.7 on S. Enteritidis and 173.7 PFU/cell on S. Typhimurium. Our phage cocktail could decrease S. Enteritidis on chicken meat and sunflower sprouts by 0.66 log CFU/cm² and 1.27 log CFU/g, respectively. S. Typhimurium on chicken meat and sunflower sprouts were decreased by 1.73 log CFU/cm² and 1.17 log CFU/g, respectively. Overall, animal farms in Thailand provided high abundance and diversity of Salmonella phages with the lysis ability on Salmonella hosts from various environments and continents. A developed phage cocktail suggests a potential biocontrol against Salmonella in fresh foods.
Collapse
Affiliation(s)
- Kantiya Petsong
- Department of Food Technology, Prince of Songkla University, Hat Yai 90112, Thailand.
| | - Soottawat Benjakul
- Department of Food Technology, Prince of Songkla University, Hat Yai 90112, Thailand.
| | - Soraya Chaturongakul
- Department of Microbiology, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
| | - Andrea I Moreno Switt
- Escuela Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica 440, 8370251 Santiago, Chile.
| | - Kitiya Vongkamjan
- Department of Food Technology, Prince of Songkla University, Hat Yai 90112, Thailand.
| |
Collapse
|
17
|
Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection. J Microbiol 2019; 57:170-179. [PMID: 30706346 DOI: 10.1007/s12275-019-8610-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
Since Salmonella Enteritidis is one of the major foodborne pathogens, on-site applicable rapid detection methods have been required for its control. The purpose of this study was to isolate and purify S. Enteritidis-specific phage (KFS-SE2 phage) from an eel farm and to investigate its feasibility as a novel, efficient, and reliable bio-receptor for its employment. KFS-SE2 phage was successfully isolated at a high concentration of (2.31 ± 0.43) × 1011 PFU/ml, and consisted of an icosahedral head of 65.44 ± 10.08 nm with a non-contractile tail of 135.21 ± 12.41 nm. The morphological and phylogenetic analysis confirmed that it belongs to the Pis4avirus genus in the family of Siphoviridae. KFS-SE2 genome consisted of 48,608 bp with 45.7% of GC content. Genome analysis represented KFS-SE2 to have distinctive characteristics as a novel phage. Comparative analysis of KFS-SE2 phage with closely related strains confirmed its novelty by the presence of unique proteins. KFS-SE2 phage exhibited excellent specificity to S. Enteritidis and was stable under the temperature range of 4 to 50°C and pH of 3 to 11 (P < 0.05). The latent time was determined to be 20 min. Overall, a new lytic KFS-SE2 phage was successfully isolated from the environment at a high concentration and the excellent feasibility of KFS-SE2 phage was demonstrated as a new bio-receptor for S. Enteritidis detection.
Collapse
|
18
|
Genomics of Salmonella phage ΦStp1: candidate bacteriophage for biocontrol. Virus Genes 2018; 54:311-318. [DOI: 10.1007/s11262-018-1538-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/01/2018] [Indexed: 01/21/2023]
|
19
|
Turner D, Sutton JM, Reynolds DM, Sim EM, Petty NK. Visualization of Phage Genomic Data: Comparative Genomics and Publication-Quality Diagrams. Methods Mol Biol 2018; 1681:239-260. [PMID: 29134600 DOI: 10.1007/978-1-4939-7343-9_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The presentation of bacteriophage genomes as diagrams allows the location and organization of features to be communicated in a clear and effective manner. A wide range of software applications are available for the clear and accurate visualization of genomic data. Several of these applications incorporate comparative analysis tools, allowing for insertions, deletions, rearrangements and variations in syntenic regions to be visualized. In this chapter, freely available software and resources for the generation of high-quality graphical maps of bacteriophage genomes are listed and discussed.
Collapse
Affiliation(s)
- Dann Turner
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - J Mark Sutton
- Public Health England, Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Darren M Reynolds
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Eby M Sim
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, Sydney, New South Wales, Australia
| | - Nicola K Petty
- The ithree institute, University of Technology Sydney, PO Box 123, Broadway, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
A proposed new bacteriophage subfamily: “Jerseyvirinae”. Arch Virol 2015; 160:1021-33. [DOI: 10.1007/s00705-015-2344-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/17/2015] [Indexed: 01/21/2023]
|
21
|
Switt AIM, Sulakvelidze A, Wiedmann M, Kropinski AM, Wishart DS, Poppe C, Liang Y. Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 2015; 1225:237-87. [PMID: 25253259 DOI: 10.1007/978-1-4939-1625-2_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since this book was originally published in 2007 there has been a significant increase in the number of Salmonella bacteriophages, particularly lytic virus, and Salmonella strains which have been fully sequenced. In addition, new insights into phage taxonomy have resulted in new phage genera, some of which have been recognized by the International Committee of Taxonomy of Viruses (ICTV). The properties of each of these genera are discussed, along with the role of phage as agents of genetic exchange, as therapeutic agents, and their involvement in phage typing.
Collapse
Affiliation(s)
- Andrea I Moreno Switt
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Escuela de Medicina Veterinaria, Republica 440, 8370251, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
22
|
Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann HW, Lavigne R, Kropinski AM. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 2014; 477:144-154. [PMID: 25466308 DOI: 10.1016/j.virol.2014.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Using a variety of genomic (BLASTN, ClustalW) and proteomic (Phage Proteomic Tree, CoreGenes) tools we have tackled the taxonomic status of members of the largest bacteriophage family, the Siphoviridae. In all over 400 phages were examined and we were able to propose 39 new genera, comprising 216 phage species, and add 62 species to two previously defined genera (Phic3unalikevirus; L5likevirus) grouping, in total, 390 fully sequenced phage isolates. Many of the remainders are orphans which the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) chooses not to ascribe genus status at the time being.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Lynnwood Road, Pretoria 0028, South Africa
| | - Rob Edwards
- Geology, Mathematics, and Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - John H E Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4
| | | | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada G1K 7P4
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, KasteelparkArenberg 21 - b2462, Heverlee 3001, Belgium.
| | - Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2A1.
| |
Collapse
|
23
|
Peng F, Mi Z, Huang Y, Yuan X, Niu W, Wang Y, Hua Y, Fan H, Bai C, Tong Y. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol 2014; 14:181. [PMID: 24996449 PMCID: PMC4094691 DOI: 10.1186/1471-2180-14-181] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 06/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the use of broad-spectrum antibiotics, immunosuppressive drugs, and glucocorticoids, multidrug-resistant Acinetobacter baumannii (MDR-AB) has become a major nosocomial pathogen species. The recent renaissance of bacteriophage therapy may provide new treatment strategies for combatting drug-resistant bacterial infections. In this study, we isolated a lytic bacteriophage vB_AbaM-IME-AB2 has a short latent period and a small burst size, which clear its host's suspension quickly, was selected for characterization and a complete genomic comparative study. RESULTS The isolated bacteriophage vB_AbaM-IME-AB2 has an icosahedral head and displays morphology resembling Myoviridae family. Gel separation assays showed that the phage particle contains at least nine protein bands with molecular weights ranging 15-100 kDa. vB_AbaM-IME-AB2 could adsorb its host cells in 9 min with an adsorption rate more than 99% and showed a short latent period (20 min) and a small burst size (62 pfu/cell). It could form clear plaques in the double-layer assay and clear its host's suspension in just 4 hours. Whole genome of vB_AbaM-IME-AB2 was sequenced and annotated and the results showed that its genome is a double-stranded DNA molecule consisting of 43,665 nucleotides. The genome has a G + C content of 37.5% and 82 putative coding sequences (CDSs). We compared the characteristics and complete genome sequence of all known Acinetobacter baumannii bacteriophages. There are only three that have been sequenced Acinetobacter baumannii phages AB1, AP22, and phiAC-1, which have a relatively high similarity and own a coverage of 65%, 50%, 8% respectively when compared with our phage vB_AbaM-IME-AB2. A nucleotide alignment of the four Acinetobacter baumannii phages showed that some CDSs are similar, with no significant rearrangements observed. Yet some sections of these strains of phage are nonhomologous. CONCLUSION vB_AbaM-IME-AB2 was a novel and unique A. baumannii bacteriophage. These findings suggest a common ancestry and microbial diversity and evolution. A clear understanding of its characteristics and genes is conducive to the treatment of multidrug-resistant A. baumannii in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changqing Bai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | | |
Collapse
|
24
|
Denyes JM, Krell PJ, Manderville RA, Ackermann HW, She YM, Kropinski AM. The genome and proteome of Serratia bacteriophage η which forms unstable lysogens. Virol J 2014; 11:6. [PMID: 24433577 PMCID: PMC3918226 DOI: 10.1186/1743-422x-11-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/10/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Serratia marcescens phage η is a temperate unclassified member of the Siphoviridae which had been reported as containing hypermodified guanine residues. METHODS The DNA was characterized by enzymatic digestion followed by HPLC analysis of the nucleoside composition, and by DNA sequencing and proteomic analysis. Its ability to form stable lysogens and integrate was also investigated. RESULTS Enzymatic digestion and HPLC analysis revealed phage η DNA did not contain modified bases. The genome sequence of this virus, determined using pyrosequencing, is 42,724 nucleotides in length with a mol% GC of 49.9 and is circularly permuted. Sixty-nine putative CDSs were identified of which 19 encode novel proteins. While seven close genetic relatives were identified, they shared sequence similarity with only genes 40 to 69 of the phage η genome, while gp1 to gp39 shared no conserved relationship. The structural proteome, determined by SDS-PAGE and mass spectrometry, revealed seven unique proteins. This phage forms very unstable lysogens with its host S. marcescens.
Collapse
Affiliation(s)
- Jenna M Denyes
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Current address: ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Peter J Krell
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Hans-Wolfgang Ackermann
- Department of Microbiology, Immunology, and Infectiology, Faculty of Medicine, Laval University, Quebec, QC G1X 4C6, Canada
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Andrew M Kropinski
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, Ontario N1G 3W4, Canada
| |
Collapse
|
25
|
wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 2013; 79:1956-68. [PMID: 23335772 DOI: 10.1128/aem.02793-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Of the Salmonella enterica serovars, S. Enteritidis and S. Typhimurium are responsible for most of the Salmonella outbreaks implicated in the consumption of contaminated foods in the Republic of Korea. Because of the widespread occurrence of antimicrobial-resistant Salmonella in foods and food processing environments, bacteriophages have recently surfaced as an alternative biocontrol tool. In this study, we isolated a virulent bacteriophage (wksl3) that could specifically infect S. Enteritidis, S. Typhimurium, and several additional serovars. Transmission electron microscopy revealed that phage wksl3 belongs to the family Siphoviridae. Complete genome sequence analysis and bioinformatic analysis revealed that the DNA of phage wksl3 is composed of 42,766 bp with 64 open reading frames. Since it does not encode any phage lysogeny factors, toxins, pathogen-related genes, or food-borne allergens, phage wksl3 may be considered a virulent phage with no side effects. Analysis of genetic similarities between phage wksl3 and four of its relatives (SS3e, vB_SenS-Ent1, SE2, and SETP3) allowed wksl3 to be categorized as a SETP3-like phage. A single-dose test of oral toxicity with BALB/c mice resulted in no abnormal clinical observations. Moreover, phage application to chicken skin at 8°C resulted in an about 2.5-log reduction in the number of Salmonella bacteria during the test period. The strong, stable lytic activity, the significant reduction of the number of S. Enteritidis bacteria after application to food, and the lack of clinical symptoms of this phage suggest that wksl3 may be a useful agent for the protection of foods against S. Enteritidis and S. Typhimurium contamination.
Collapse
|