1
|
Mueller F, Witteveldt J, Macias S. Antiviral Defence Mechanisms during Early Mammalian Development. Viruses 2024; 16:173. [PMID: 38399949 PMCID: PMC10891733 DOI: 10.3390/v16020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The type-I interferon (IFN) response constitutes the major innate immune pathway against viruses in mammals. Despite its critical importance for antiviral defence, this pathway is inactive during early embryonic development. There seems to be an incompatibility between the IFN response and pluripotency, the ability of embryonic cells to develop into any cell type of an adult organism. Instead, pluripotent cells employ alternative ways to defend against viruses that are typically associated with safeguard mechanisms against transposable elements. The absence of an inducible IFN response in pluripotent cells and the constitutive activation of the alternative antiviral pathways have led to the hypothesis that embryonic cells are highly resistant to viruses. However, some findings challenge this interpretation. We have performed a meta-analysis that suggests that the susceptibility of pluripotent cells to viruses is directly correlated with the presence of receptors or co-receptors for viral adhesion and entry. These results challenge the current view of pluripotent cells as intrinsically resistant to infections and raise the fundamental question of why these cells have sacrificed the major antiviral defence pathway if this renders them susceptible to viruses.
Collapse
Affiliation(s)
- Felix Mueller
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
- Centre for Virus Research, MRC-University of Glasgow, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (F.M.); (J.W.)
| |
Collapse
|
2
|
Fendereski M, Ming H, Jiang Z, Guo YL. Mouse Trophoblast Cells Have Attenuated Responses to TNF-α and IFN-γ and Can Avoid Synergic Cytotoxicity of the Two Cytokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:346-354. [PMID: 38054905 PMCID: PMC10843640 DOI: 10.4049/jimmunol.2300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
TNF-α and IFN-γ are two inflammatory cytokines that play critical roles in immune responses, but they can also negatively affect cell proliferation and viability. In particular, the combination of the two cytokines (TNF-α/IFN-γ) synergistically causes cytotoxicity in many cell types. We recently reported that mouse embryonic stem cells (ESCs) isolated from the blastocyst stage embryo do not respond to TNF-α and have limited response to IFN-γ, thereby avoiding TNF-α/IFN-γ cytotoxicity. The current study expanded our investigation to mouse trophoblast stem cells (TSCs) and their differentiated trophoblasts (TSC-TBs), the precursors and the differentiated cells of the placenta, respectively. In this study, we report that the combination of TNF-α/IFN-γ does not show the cytotoxicity to TSCs and TSC-TBs that otherwise effectively kills fibroblasts, similar to ESCs. Although ESCs, TSCs, and TSC-TBs are dramatically different in their growth rate, morphology, and physiological functions, they nevertheless share a similarity in being able to avoid TNF-α/IFN-γ cytotoxicity. We propose that this unique immune property may serve as a protective mechanism that limits cytokine cytotoxicity in the blastocyst. With molecular and cellular approaches and genome-wide transcriptomic analysis, we have demonstrated that the attenuated NF-κB and STAT1 transcription activation is a limiting factor that restricts the effect of TNF-α/IFN-γ on TSCs and TSC-TBs.
Collapse
Affiliation(s)
- Mona Fendereski
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS 39406
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32608
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32608
| | - Yan-Lin Guo
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS 39406
| |
Collapse
|
3
|
Fendereski M, Neupane B, Nazneen F, Bai F, Guo YL. Mouse Trophoblast Cells Can Provide IFN-Based Antiviral Protection to Embryonic Stem Cells via Paracrine Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2761-2770. [PMID: 35649628 PMCID: PMC9308691 DOI: 10.4049/jimmunol.2100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
The blastocyst is the preimplantation stage embryo that consists of two major components: the inner cell mass (ICM) and the trophectoderm (TE). The ICM gives rise to the fetus and some extraembryonic tissues whereas the TE contributes to development of the placenta. Previous studies have demonstrated that both human and mouse embryonic stem cells (ESCs) derived from the ICM are deficient in expressing type I IFNs in response to viral infection. In this study, we investigated the IFN response in mouse trophoblast stem cells (TSCs) and their in vitro differentiated trophoblasts (TSC-TBs). In this study, we report that, unlike ESCs, TSCs have a functional IFN system. They can express type I IFNs in response to viral stimuli and express IFN-stimulated genes in response to type I IFNs. TSC-TBs have a further developed IFN system and acquired the ability to express specialized type III IFN-λ. Furthermore, TSCs and TSC-TBs can provide ESCs with antiviral activity against Chikungunya, West Nile, and Zika virus infection, as demonstrated with a novel coculture model that simulates the temporal and spatial relationship between the ICM and the TE in a blastocyst. Taken together, our data demonstrate that mouse ESCs can respond to type I IFNs and gain IFN-based antiviral protection from TSCs and TSC-TBs via paracrine signaling mechanisms even though they themselves are unable to express type I IFNs.
Collapse
Affiliation(s)
- Mona Fendereski
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS
| | - Biswas Neupane
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS
| | - Farzana Nazneen
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS
| | - Fengwei Bai
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS
| | - Yan-Lin Guo
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
4
|
Guo YL, Gurung C, Fendereski M, Huang F. Dicer and PKR as Novel Regulators of Embryonic Stem Cell Fate and Antiviral Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2259-2266. [PMID: 35577384 PMCID: PMC9179006 DOI: 10.4049/jimmunol.2200042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 05/17/2023]
Abstract
Embryonic stem cells (ESCs) represent a unique cell population in the blastocyst stage embryo. They have been intensively studied as a promising cell source for regenerative medicine. Recent studies have revealed that both human and mouse ESCs are deficient in expressing IFNs and have attenuated inflammatory responses. Apparently, the ability to express IFNs and respond to certain inflammatory cytokines is not "innate" to ESCs but rather is developmentally acquired by somatic cells during differentiation. Accumulating evidence supports a hypothesis that the attenuated innate immune response may serve as a protective mechanism allowing ESCs to avoid immunological cytotoxicity. This review describes our current understanding of the molecular basis that shapes the immune properties of ESCs. We highlight the recent findings on Dicer and dsRNA-activated protein kinase R as novel regulators of ESC fate and antiviral immunity and discuss how ESCs use alternative mechanisms to accommodate their stem cell properties.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Chandan Gurung
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Mona Fendereski
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Faqing Huang
- Chemistry and Biochemistry Program, University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
5
|
Endogenous reverse transcriptase and RNase H-mediated antiviral mechanism in embryonic stem cells. Cell Res 2021; 31:998-1010. [PMID: 34158624 PMCID: PMC8217788 DOI: 10.1038/s41422-021-00524-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based systems play important roles in antiviral defense, including CRISPR/Cas that adopts RNA-guided DNA cleavage to prevent DNA phage infection and RNA interference (RNAi) that employs RNA-guided RNA cleavage to defend against RNA virus infection. Here, we report a novel type of nucleic acid-based antiviral system that exists in mouse embryonic stem cells (mESCs), which suppresses RNA virus infection by DNA-mediated RNA cleavage. We found that the viral RNA of encephalomyocarditis virus can be reverse transcribed into complementary DNA (vcDNA) by the reverse transcriptase (RTase) encoded by endogenous retrovirus-like elements in mESCs. The vcDNA is negative-sense single-stranded and forms DNA/RNA hybrid with viral RNA. The viral RNA in the heteroduplex is subsequently destroyed by cellular RNase H1, leading to robust suppression of viral growth. Furthermore, either inhibition of the RTase activity or depletion of endogenous RNase H1 results in the promotion of virus proliferation. Altogether, our results provide intriguing insights into the antiviral mechanism of mESCs and the antiviral function of endogenized retroviruses and cellular RNase H. Such a natural nucleic acid-based antiviral mechanism in mESCs is referred to as ERASE (endogenous RTase/RNase H-mediated antiviral system), which is an addition to the previously known nucleic acid-based antiviral mechanisms including CRISPR/Cas in bacteria and RNAi in plants and invertebrates.
Collapse
|
6
|
Chao TL, Gu SY, Lin PH, Chou YT, Ling TY, Chang SY. Characterization of Influenza A Virus Infection in Mouse Pulmonary Stem/Progenitor Cells. Front Microbiol 2020; 10:2942. [PMID: 32038512 PMCID: PMC6985155 DOI: 10.3389/fmicb.2019.02942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
The pulmonary stem/progenitor cells, which could be differentiated into downstream cells to repair tissue damage caused by influenza A virus, have also been shown to be the target cells of influenza virus infection. In this study, mouse pulmonary stem/progenitor cells (mPSCs) with capability to differentiate into type I or type II alveolar cells were used as an in vitro cell model to characterize replication and pathogenic effects of influenza viruses in PSCs. First, mPSCs and its immortalized cell line mPSCsOct4+ were shown to be susceptible to PR8, seasonal H1N1, 2009 pandemic H1N1, and H7N9 influenza viruses and can generate infectious virus particles, although with a lower virus titer, which could be attributed by the reduced vRNA replication and nucleoprotein (NP) aggregation in the cytoplasm. Nevertheless, a significant increase of interleukin (IL)-6 and interferon (IFN)-γ at 12 h and IFN-β at 24 h post infection in mPSCs implicates that mPSCs might function as a sensor to modulate immune responses to influenza virus infection. In summary, our results demonstrated mPSCs, as one of the target cells for influenza A viruses, could modulate early proinflammatory responses to influenza virus infection.
Collapse
Affiliation(s)
- Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sing-Yi Gu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Han Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tien Chou
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Thai-Yen Ling
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Influenza a virus-triggered autophagy decreases the pluripotency of human-induced pluripotent stem cells. Cell Death Dis 2019; 10:337. [PMID: 31000695 PMCID: PMC6472374 DOI: 10.1038/s41419-019-1567-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
Abstract
Maternal influenza infection during pregnancy was reported multiple times as the possible cause of many defects and congenital anomalies. Apart from several cases of influenza-related miscarriage during various trimesters of pregnancy, some epidemiological data suggest a link between maternal influenza infection and genetic abnormalities in offspring. However, there are no reports yet describing how maternal influenza alters cellular pathways at early stages of development to result in congenital defects in the fetus. In the present study, using proteomic approaches, we utilized human-induced pluripotent stem cells (hiPSCs) for modeling intrablastocyst infection with influenza virus to not only investigate the vulnerability and responses of pluripotent stem cells to this virus but also to determine the possible impacts of influenza on pluripotency and signaling pathways controlling differentiation and embryogenesis. Our data indicated viral protein production in influenza A virus (IAV)-infected hiPSCs. However, viral replication was restricted in these cells, but cell viability and pluripotency were negatively affected. These events occurred simultaneously with an excessive level of IAV-induced autophagy as well as cytopathic effects. Quantitative SOMAscan screening also indicated that changes in the proteome of hiPSCs corresponded to abnormal differentiation in these cells. Taken together, our results showed that IAV-modulated reduction in hiPSC pluripotency is associated with significant activation of autophagy. Further investigations are required to explore the role of IAV-induced autophagy in leading pluripotent stem cells toward abnormal differentiation and impaired development in early stages of embryogenesis.
Collapse
|
8
|
Guo YL. The underdeveloped innate immunity in embryonic stem cells: The molecular basis and biological perspectives from early embryogenesis. Am J Reprod Immunol 2019; 81:e13089. [PMID: 30614149 DOI: 10.1111/aji.13089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) have been intensively studied as a promising cell source for regenerative medicine. The rapid advancements in the field have not only proven the feasibility of ESC-based cell therapy, but also led to a better understanding of pluripotent stem cells (PSCs) as a unique cell population at an early stage of embryogenesis. Recent studies have revealed that both human and mouse ESCs have attenuated innate immune responses to infectious agents and inflammatory cytokines. These findings raise interesting questions about the rationale for ESCs, the PSCs experimentally derived from preimplantation stage embryos, to not have an innate defense mechanism that has been adapted so well in somatic cells. All somatic cells have innate immune systems that can be activated by pathogen-associated molecular patterns (PAMPs) or cellular damage-associated molecular patterns (DAMPs), leading to production of cytokines. The underdeveloped innate immunity represents a unique property of PSCs that may have important implications. This review discusses the immunological properties of PSCs, the molecular basis underlying their diminished innate immune responses, and the hypothesis that the attenuated innate immune responses could be an adaptive mechanism that allows PSCs to avoid cytotoxicity associated with inflammation and immune responses during early embryogenesis.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, Mississippi
| |
Collapse
|
9
|
D'Angelo W, Gurung C, Acharya D, Chen B, Ortolano N, Gama V, Bai F, Guo YL. The Molecular Basis for the Lack of Inflammatory Responses in Mouse Embryonic Stem Cells and Their Differentiated Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2147-2155. [PMID: 28130495 DOI: 10.4049/jimmunol.1601068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
We reported previously that mouse embryonic stem cells do not have a functional IFN-based antiviral mechanism. The current study extends our investigation to the inflammatory response in mouse embryonic stem cells and mouse embryonic stem cell-differentiated cells. We demonstrate that LPS, TNF-α, and viral infection, all of which induce robust inflammatory responses in naturally differentiated cells, failed to activate NF-κB, the key transcription factor that mediates inflammatory responses, and were unable to induce the expression of inflammatory genes in mouse embryonic stem cells. Similar results were obtained in human embryonic stem cells. In addition to the inactive state of NF-κB, the deficiency in the inflammatory response in mouse embryonic stem cells is also attributed to the lack of functional receptors for LPS and TNF-α. In vitro differentiation can trigger the development of the inflammatory response mechanism, as indicated by the transition of NF-κB from its inactive to active state. However, a limited response to TNF-α and viral infection, but not to LPS, was observed in mouse embryonic stem cell-differentiated fibroblasts. We conclude that the inflammatory response mechanism is not active in mouse embryonic stem cells, and in vitro differentiation promotes only partial development of this mechanism. Together with our previous studies, the findings described in this article demonstrate that embryonic stem cells are fundamentally different from differentiated somatic cells in their innate immunity, which may have important implications in developmental biology, immunology, and embryonic stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- William D'Angelo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406; and
| | - Chandan Gurung
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406; and
| | - Dhiraj Acharya
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406; and
| | - Bohan Chen
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406; and
| | - Natalya Ortolano
- Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406; and
| | - Yan-Lin Guo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406; and
| |
Collapse
|
10
|
Susta L, He Y, Hutcheson JM, Lu Y, West FD, Stice SL, Yu P, Abdo Z, Afonso CL. Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection. Virol J 2016; 13:205. [PMID: 27919263 PMCID: PMC5139146 DOI: 10.1186/s12985-016-0659-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV-caused disease. Induced pluripotent stem cell (iPSC) technology allows adult cells to be reprogrammed into an embryonic stem cell-like state capable of contributing to live offspring and passing on unique traits in a number of species. Recently, iPSC approaches have been successfully applied to avian cells. If chicken induced pluripotent stem cells (ciPSCs) are genetically or epigenetically modified to resist NDV infection, it may be possible to generate ND resistant poultry. There is limited information on the potential of ciPSCs to be infected by NDV, or the capacity of these cells to become resistant to infection. The aim of the present work was to assess the characteristics of the interaction between NDV and ciPSCs, and to develop a selection method that would increase tolerance of these cells to NDV-induced cellular damage. Results Results showed that ciPSCs were permissive to infection with NDV, and susceptible to virus-mediated cell death. Since ciPSCs that survived infection demonstrated the ability to recover quickly, we devised a system to select surviving cells through multiple infection rounds with NDV. ciPSCs that sustained 9 consecutive infections had a statistically significant increase in survival (up to 36 times) compared to never-infected ciPSCs upon NDV infection (tolerant cells). Increased survival was not caused by a loss of permissiveness to NDV replication. RNA sequencing followed by enrichment pathway analysis showed that numerous metabolic pathways where differentially regulated between tolerant and never-infected ciPSCs. Conclusions Results demonstrate that ciPSCs are permissive to NDV infection and become increasingly tolerant to NDV under selective pressure, indicating that this system could be applied to study mechanisms of cellular tolerance to NDV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0659-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Susta
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA. .,Present address: Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2 W1, Canada.
| | - Ying He
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Present address: College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 53004, China
| | - Jessica M Hutcheson
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Yangqing Lu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Ping Yu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Claudio L Afonso
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA
| |
Collapse
|
11
|
Utilization of different anti-viral mechanisms by mammalian embryonic stem cells and differentiated cells. Immunol Cell Biol 2016; 95:17-23. [PMID: 27485807 DOI: 10.1038/icb.2016.70] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have received tremendous attention because of their potential applications in regenerative medicine. Over the past two decades, intensive research has not only led to the generation of various types of cells from ESCs that can be potentially used for the treatment of human diseases but also led to the formation of new concepts and breakthroughs that have significantly impacted our understanding of basic cell biology and developmental biology. Recent studies have revealed that ESCs and other types of pluripotent cells do not have a functional interferon (IFN)-based anti-viral mechanism, challenging the idea that the IFN system is developed as the central component of anti-viral innate immunity in all types of cells in vertebrates. This finding also provided important insight into a question that has been uncertain for a long time: whether or not the RNA interference (RNAi) anti-viral mechanism operates in mammalian cells. An emerging paradigm is that mammals may have adapted distinct anti-viral mechanisms at different stages of organismal development; the IFN-based system is mainly used by differentiated somatic cells, while the RNAi anti-viral mechanism may be used in ESCs. This paper discusses the molecular basis and biological implications for mammals to have different anti-viral mechanisms during development.
Collapse
|
12
|
D'Angelo W, Acharya D, Wang R, Wang J, Gurung C, Chen B, Bai F, Guo YL. Development of Antiviral Innate Immunity During In Vitro Differentiation of Mouse Embryonic Stem Cells. Stem Cells Dev 2016; 25:648-59. [PMID: 26906411 DOI: 10.1089/scd.2015.0377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The innate immunity of embryonic stem cells (ESCs) has recently emerged as an important issue in ESC biology and in ESC-based regenerative medicine. We have recently reported that mouse ESCs (mESCs) do not have a functional type I interferon (IFN)-based antiviral innate immunity. They are deficient in expressing IFN in response to viral infection and have limited ability to respond to IFN. Using fibroblasts (FBs) as a cell model, the current study investigated the development of antiviral mechanisms during in vitro differentiation of mESCs. We demonstrate that mESC-differentiated FBs (mESC-FBs) share extensive similarities with naturally differentiated FBs in morphology, marker expression, and growth pattern, but their development of antiviral mechanisms lags behind. Nonetheless, the antiviral mechanisms are inducible during mESC differentiation as demonstrated by the transition of nuclear factor kappa B (NFκB), a key transcription factor for IFN expression, from its inactive state in mESCs to its active state in mESC-FBs and by increased responses of mESC-FBs to viral stimuli and IFN during their continued in vitro propagation. Together with our previously published study, the current data provide important insights into molecular basis for the deficiency of IFN expression in mESCs and the development of antiviral innate immunity during mESC differentiation.
Collapse
Affiliation(s)
- William D'Angelo
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| | - Dhiraj Acharya
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| | - Ruoxing Wang
- 2 Department of Cancer Biology, University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Jundi Wang
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| | - Chandan Gurung
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| | - Bohan Chen
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| | - Fengwei Bai
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| | - Yan-Lin Guo
- 1 Department of Biological Sciences, the University of Southern Mississippi , Hattiesburg, Mississippi
| |
Collapse
|
13
|
Guo YL, Carmichael GG, Wang R, Hong X, Acharya D, Huang F, Bai F. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine. Stem Cells 2015; 33:3165-73. [PMID: 26086534 DOI: 10.1002/stem.2079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/16/2015] [Indexed: 12/14/2022]
Abstract
Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine.
Collapse
Affiliation(s)
- Yan-Lin Guo
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gordon G Carmichael
- The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ruoxing Wang
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Xiaoxiao Hong
- The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Dhiraj Acharya
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Faqing Huang
- The Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Fengwei Bai
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
14
|
Yeung ATY, Hale C, Xia J, Tate PH, Goulding D, Keane JA, Mukhopadhyay S, Forrester L, Billker O, Skarnes WC, Hancock REW, Dougan G. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function. Sci Rep 2015; 5:8908. [PMID: 25752829 PMCID: PMC4354151 DOI: 10.1038/srep08908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/10/2015] [Indexed: 11/09/2022] Open
Abstract
The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-α signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection.
Collapse
Affiliation(s)
- A. T. Y. Yeung
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - C. Hale
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Xia
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - P. H. Tate
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - D. Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. A. Keane
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - S. Mukhopadhyay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - L. Forrester
- University of Edinburgh/MRC Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - O. Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - W. C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - R. E. W. Hancock
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - G. Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
15
|
Arnaoutov A, Dasso M. Enzyme regulation. IRBIT is a novel regulator of ribonucleotide reductase in higher eukaryotes. Science 2014; 345:1512-5. [PMID: 25237103 DOI: 10.1126/science.1251550] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ribonucleotide reductase (RNR) supplies the balanced pools of deoxynucleotide triphosphates (dNTPs) necessary for DNA replication and maintenance of genomic integrity. RNR is subject to allosteric regulatory mechanisms in all eukaryotes, as well as to control by small protein inhibitors Sml1p and Spd1p in budding and fission yeast, respectively. Here, we show that the metazoan protein IRBIT forms a deoxyadenosine triphosphate (dATP)-dependent complex with RNR, which stabilizes dATP in the activity site of RNR and thus inhibits the enzyme. Formation of the RNR-IRBIT complex is regulated through phosphorylation of IRBIT, and ablation of IRBIT expression in HeLa cells causes imbalanced dNTP pools and altered cell cycle progression. We demonstrate a mechanism for RNR regulation in higher eukaryotes that acts by enhancing allosteric RNR inhibition by dATP.
Collapse
Affiliation(s)
- Alexei Arnaoutov
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Wang R, Wang J, Acharya D, Paul AM, Bai F, Huang F, Guo YL. Antiviral responses in mouse embryonic stem cells: differential development of cellular mechanisms in type I interferon production and response. J Biol Chem 2014; 289:25186-98. [PMID: 24966329 DOI: 10.1074/jbc.m113.537746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFNs) in response to viral infection and synthetic viral RNA analogs (Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F., and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926-15936). Here, we report that mESCs are able to respond to type I IFNs, express IFN-stimulated genes, and mediate the antiviral effect of type I IFNs against La Crosse virus and chikungunya virus. The major signaling components in the IFN pathway are expressed in mESCs. Therefore, the basic molecular mechanisms that mediate the effects of type I IFNs are functional in mESCs; however, these mechanisms may not yet be fully developed as mESCs express lower levels of IFN-stimulated genes and display weaker antiviral activity in response to type I IFNs when compared with fibroblasts. Further analysis demonstrated that type I IFNs do not affect the stem cell state of mESCs. We conclude that mESCs are deficient in type I IFN expression, but they can respond to and mediate the cellular effects of type I IFNs. These findings represent unique and uncharacterized properties of mESCs and are important for understanding innate immunity development and ESC physiology.
Collapse
Affiliation(s)
| | - Jundi Wang
- From the Departments of Biological Sciences and
| | | | | | - Fengwei Bai
- From the Departments of Biological Sciences and
| | - Faqing Huang
- Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406
| | - Yan-Lin Guo
- From the Departments of Biological Sciences and
| |
Collapse
|
17
|
Wang R, Wang J, Paul AM, Acharya D, Bai F, Huang F, Guo YL. Mouse embryonic stem cells are deficient in type I interferon expression in response to viral infections and double-stranded RNA. J Biol Chem 2013; 288:15926-36. [PMID: 23580653 DOI: 10.1074/jbc.m112.421438] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Embryonic stem cells (ESCs) are considered to be a promising cell source for regenerative medicine because of their unlimited capacity for self-renewal and differentiation. However, little is known about the innate immunity in ESCs and ESC-derived cells. We investigated the responses of mouse (m)ESCs to three types of live viruses as follows: La Crosse virus, West Nile virus, and Sendai virus. Our results demonstrated mESCs were susceptible to viral infection, but they were unable to express type I interferons (IFNα and IFNβ, IFNα/β), which differ from fibroblasts (10T1/2 cells) that robustly express IFNα/β upon viral infections. The failure of mESCs to express IFNα/β was further demonstrated by treatment with polyIC, a synthetic viral dsRNA analog that strongly induced IFNα/β in 10T1/2 cells. Although polyIC transiently inhibited the transcription of pluripotency markers, the stem cell morphology was not significantly affected. However, polyIC can induce dsRNA-activated protein kinase in mESCs, and this activation resulted in a strong inhibition of cell proliferation. We conclude that the cytosolic receptor dsRNA-activated protein kinase is functional, but the mechanisms that mediate type I IFN expression are deficient in mESCs. This conclusion is further supported by the findings that the major viral RNA receptors are either expressed at very low levels (TLR3 and MDA5) or may not be active (retinoic acid-inducible gene I) in mESCs.
Collapse
Affiliation(s)
- Ruoxing Wang
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | | | | | | | | | | | | |
Collapse
|