1
|
Hu Y, Li D, Yuan Z, Feng Y, Ren L, Hao Y, Wang S, Hu X, Liu Y, Hong K, Shao Y, Wang Z. Characterization of a VRC01-like antibody lineage with immature V L from an HIV-1 infected Chinese donor. Mol Immunol 2023; 154:11-23. [PMID: 36577292 DOI: 10.1016/j.molimm.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
Because of the broadly neutralizing activity, VRC01-class antibodies are attractive templates for HIV-1 vaccine development and suitable candidates for HIV-1 therapy. Although we previously revealed that glycans in gp120 may have a role in the uneven evolution of the VH and the VL of a VRC01-class antibody, DRVIA7, which was isolated from an elite neutralizer, it is unknown whether the immature VH or VL of VRC01-class antibodies are also present in the non-neutralizer. We identified a CD4bs-directed antibody - 263A9 - with low neutralizing activity from a donor whose plasma had a moderate neutralizing spectrum in this study. The 263A9 antibody, in particular, was a VRC01-like antibody whose VH and VL were derived from IGHV1-2 * 04 and IGKV1-33 * 01, respectively, and both had significant SHM rates. Surprisingly, we discovered that the VL of 263A9 hindered the neutralizing activity of the antibody, and that replacing its LCDR1 and LCDR3 with VRC01 increased the neutralizing breadth of the chimeric antibodies. Following that, an antibodyomics research revealed that the VL of 263A9 lineage was remote from VRC01-class antibodies. We also looked at the envelope sequence characteristics of donor CBJC263 and discovered that N276 in the D loop and N460/N463 glycans in the V5 region of gp120 potentially interact with VL of 263A9 at the structural level. This study will provide valuable information for immunogen screening and vaccine development for eliciting VRC01-class antibodies. DATA AVAILABILITY STATEMENT: The original data presented in the study are included in the article or Supplementary materials. Further inquiries can be directed to the corresponding author. HIV Env sequences in the manuscript had been deposited into the GenBank with the accession numbers from OL466822 to OL466859.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zhenzhen Yuan
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yi Feng
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xintao Hu
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ying Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zheng Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| |
Collapse
|
2
|
Zhang D, Liu Z, Wang W, Chen MX, Hou JL, Zhang Z, Ren WH, Ren L, Hao YL. Viral resistance to VRC01-like antibodies with mutations in loop D and V5 from an HIV-1 B′ subtype infected individual with broadly neutralization activity. Mol Immunol 2022; 145:50-58. [DOI: 10.1016/j.molimm.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
3
|
Hu Y, Li D, Fu H, Hao Y, Ren L, Wang S, Hu X, Shao Y, Hong K, Wang Z. Identification of a CD4-binding site-directed antibody with ADCC activity from a chronic HIV-1B'-infected Chinese donor. Virus Res 2021; 302:198470. [PMID: 34097932 DOI: 10.1016/j.virusres.2021.198470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) plays an important role in controlling HIV-1 invasion and replication in vivo. Isolation and identification of monoclonal antibodies (mAbs) with ADCC activity help design effective vaccines and develop novel treatment strategies. In this study, we first identified a broad neutralizer who had been infected with an HIV-1B' strain for over 10 years. Next, through probe-specific single-B-cell sorting and PCR amplification, we obtained genes for variable regions of the heavy chain (VHs) and light chain (VLs) of six antibodies and ligated them into expression vectors. After antibody expression and ELISA screening, we obtained a CD4-binding site-directed antibody (451-B4), whose VH and VL originated from the IGHV1-24 and IGLV1-40 germlines, respectively. Although 451-B4 neutralized only the SF162 tier 1 pseudovirus and 398F1 tier 2 pseudovirus, it could mediate comparable ADCC activity to a broadly neutralizing antibody, VRC01. The 451-B4 antibody will be a useful candidate for developing an ADCC-based treatment strategy against HIV-1 replication or latent infection in vivo.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Hongyang Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Xintao Hu
- Present address: Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Zheng Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China; Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| |
Collapse
|
4
|
Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B' Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines (Basel) 2021; 9:vaccines9040311. [PMID: 33805985 PMCID: PMC8064334 DOI: 10.3390/vaccines9040311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
We sought to analyze the evolutionary characteristics and neutralization sensitivity of viruses in a human immunodeficiency virus type 1 (HIV-1) subtype B′ infected plasma donor with broadly neutralizing activity, which may provide information for new broadly neutralizing antibodies (bNAbs) isolation and immunogen design. A total of 83 full-length envelope genes were obtained by single-genome amplification (SGA) from the patient’s plasma at three consecutive time points (2005, 2006, and 2008) spanning four years. In addition, 28 Env-pseudotyped viruses were constructed and their neutralization sensitivity to autologous plasma and several representative bNAbs were measured. Phylogenetic analysis showed that these env sequences formed two evolutionary clusters (Cluster I and II). Cluster I viruses vanished in 2006 and then appeared as recombinants two years later. In Cluster II viruses, the V1 length and N-glycosylation sites increased over the four years of the study period. Most viruses were sensitive to concurrent and subsequent autologous plasma, and to bNAbs, including 10E8, PGT121, VRC01, and 12A21, but all viruses were resistant to PGT135. Overall, 90% of Cluster I viruses were resistant to 2G12, while 94% of Cluster II viruses were sensitive to 2G12. We confirmed that HIV-1 continued to evolve even in the presence of bNAbs, and two virus clusters in this donor adopted different escape mechanisms under the same humoral immune pressure.
Collapse
|
5
|
Characteristics of HIV-1 env genes from Chinese chronically infected donors with highly broad cross-neutralizing activity. Virology 2020; 551:16-25. [PMID: 33010671 DOI: 10.1016/j.virol.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
Knowledge about the special characteristics of HIV-1 envelope (env) glycoproteins in rare individuals developing >90% neutralization breadth in Chinese subtype B' slow progressors may provide insights for vaccine design against local viruses. We performed a cross-sectional analysis on 7 samples. We tested the neutralization breadth and geometric mean ID50 titers (GMTs) of these samples, and divided them into hBCN+ and hBCN- group according to whether their neutralization breadth >90%. We obtained env sequences in these samples through single genome amplification (SGA) assay. By comparing with hBCN-, subtype B chronically infected group (B-SP), and Chinese subtype B group (B-Database), we analyzed the characteristics of the env sequences of hBCN+ group. Longer V1 and V4 regions with more glycosylation sites were found in hBCN+ samples compared to hBCN- samples. Further analysis compared to B-SP and B-Database showed that hBCN+ group exhibited unique extra-long V1 region containing higher proportion of N-glycan sites and additional cysteines.
Collapse
|
6
|
Kumar S, Ju B, Shapero B, Lin X, Ren L, Zhang L, Li D, Zhou Z, Feng Y, Sou C, Mann CJ, Hao Y, Sarkar A, Hou J, Nunnally C, Hong K, Wang S, Ge X, Su B, Landais E, Sok D, Zwick MB, He L, Zhu J, Wilson IA, Shao Y. A V H1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. SCIENCE ADVANCES 2020; 6:eabb1328. [PMID: 32938661 PMCID: PMC7494343 DOI: 10.1126/sciadv.abb1328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/31/2020] [Indexed: 05/03/2023]
Abstract
An oligomannose patch around the V3 base of HIV-1 envelope glycoprotein (Env) is recognized by multiple classes of broadly neutralizing antibodies (bNAbs). Here, we investigated the bNAb response to the V3 glycan supersite in an HIV-1-infected Chinese donor by Env-specific single B cell sorting, structural and functional studies, and longitudinal analysis of antibody and virus repertoires. Monoclonal antibodies 438-B11 and 438-D5 were isolated that potently neutralize HIV-1 with moderate breadth, are encoded by the VH1-69 germline gene, and have a disulfide-linked long HCDR3 loop. Crystal structures of Env-bound and unbound antibodies revealed heavy chain-mediated recognition of the glycan supersite with a unique angle of approach and a critical role of the intra-HCDR3 disulfide. The mechanism of viral escape was examined via single-genome amplification/sequencing and glycan mutations around the N332 supersite. Our findings further emphasize the V3 glycan supersite as a prominent target for Env-based vaccine design.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Ju
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Zehua Zhou
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin J Mann
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiali Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Christian Nunnally
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xiangyang Ge
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui Province 230601, China
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China.
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
7
|
Zhang D, Zou S, Hu Y, Hou J, Hu X, Ren L, Ma L, He X, Shao Y, Hong K. Characteristics of Envelope Genes in a Chinese Chronically HIV-1 Infected Patient With Broadly Neutralizing Activity. Front Microbiol 2019; 10:1096. [PMID: 31178836 PMCID: PMC6543928 DOI: 10.3389/fmicb.2019.01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Exploring the characteristics of the HIV-1 envelope glycoprotein (env) gene in a natural HIV-1 infected individual, with broadly neutralizing activity, may provide insight into the generation of such broadly neutralizing antibodies and initiate the design of an appropriate immunogen. Recently, a chronically HIV-1 infected patient with broadly neutralization activity was identified and a VRC01-class neutralizing antibody DRVIA7 (A7) was isolated from the patient. In the present study, 155 full length HIV-1 env gene fragments (including 68 functionally Env clones) were amplified longitudinally from the plasma of six time points spanning over 5 years in this donor. Viral features were analyzed by comparing Env clones of different time points, as well as 165 Chinese HIV-1 subtype B env sequences from HIV Sequence Database (Chinese B_database). Shorter V1 length, less potential glycan and a lower ratio of NXT: NXS in gp160 were observed in the first five time points compared to that from the last time points, as well that from the Chinese B_database. A sequence analysis and a neutralization assay of Env-pseudoviruses showed that the increasing diversity of env sequences in the patient was consistent with the appearance and maturation of A7 lineage antibodies. The potent neutralization activity and viruses that escaped from the neutralization of the concurrent autologous plasma, are consistent with higher residue variations at the antibody recognition sites. Almost all viruses from the plasmas were neutralization-resistant to VRC01 and A7 lineage antibodies. For a chronically HIV-1 infected individual over 10 years, we found that greater viral diversity, short V1 sequences and less potential N-linked glycosylation (PNGS) in V1, might be associated with the development of broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Dai Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China.,The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Sen Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yuanyuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Jiali Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xintao Hu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xiang He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| |
Collapse
|
8
|
Ju B, Li D, Ren L, Hou J, Hao Y, Liang H, Wang S, Zhu J, Wei M, Shao Y. Identification of a novel broadly HIV-1-neutralizing antibody from a CRF01_AE-infected Chinese donor. Emerg Microbes Infect 2018; 7:174. [PMID: 30382080 PMCID: PMC6210191 DOI: 10.1038/s41426-018-0175-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 01/13/2023]
Abstract
The isolation and characterization of monoclonal broadly neutralizing antibodies (nAbs) from natural HIV-1-infected individuals play very important roles in understanding nAb responses to HIV-1 infection and designing vaccines and therapeutics. Many broadly nAbs have been isolated from individuals infected with HIV-1 clade A, B, C, etc., but, as an important recombinant virus, the identification of broadly nAbs in CRF01_AE-infected individuals remains elusive. In this study, we used antigen-specific single B-cell sorting and monoclonal antibody expression to isolate monoclonal antibodies from a CRF01_AE-infected Chinese donor (GX2016EU04), a broad neutralizer based on neutralizing activity against a cross-clade virus panel. We identified a series of HIV-1 monoclonal cross-reactive nAbs, termed F2, H6, BF8, F4, F8, BE7, and F6. F6 could neutralize 21 of 37 tested HIV-1 Env-pseudotyped viruses (57%) with a geometric mean value of 12.15 μg/ml. Heavy and light chains of F6 were derived from IGHV4-34 and IGKV 2-28 germlines, complementarity determining region (CDR) 3 loops were composed of 18 and 9 amino acids, and somatic hypermutations (SHMs) were 16.14% and 11.83% divergent from their respective germline genes. F6 was a GP120-specific nAb and recognized the linear epitope. We identified for the first time a novel broadly HIV-1-neutralizing antibody, termed F6, from a CRF01_AE-infected donor, which could enrich the research of HIV-1 nAbs and provide useful insights for designing vaccine immunogens and antibody-based therapeutics.
Collapse
Affiliation(s)
- Bin Ju
- School of Medicine, Nankai University, 300071, Tianjin, China.,Nankai University Second People's Hospital, School of Medicine, Nankai University, 300071, Tianjin, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Jiali Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Shuo Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China
| | - Jiang Zhu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Min Wei
- School of Medicine, Nankai University, 300071, Tianjin, China. .,Nankai University Second People's Hospital, School of Medicine, Nankai University, 300071, Tianjin, China.
| | - Yiming Shao
- School of Medicine, Nankai University, 300071, Tianjin, China. .,State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 102206, Beijing, China.
| |
Collapse
|
9
|
Makhdoomi MA, Khan L, Kumar S, Aggarwal H, Singh R, Lodha R, Singla M, Das BK, Kabra SK, Luthra K. Evolution of cross-neutralizing antibodies and mapping epitope specificity in plasma of chronic HIV-1-infected antiretroviral therapy-naïve children from India. J Gen Virol 2017; 98:1879-1891. [PMID: 28696188 DOI: 10.1099/jgv.0.000824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Delineating the factors leading to the development of broadly neutralizing antibodies (bnAbs) during natural HIV-1 infection and dissecting their epitope specificities generates useful information for vaccine design. This is the first longitudinal study to assess the plasma-neutralizing antibody response and neutralizing determinants in HIV-1-infected children from India. We enrolled 26 and followed up 20 antiretroviral therapy (ART)-naïve, asymptomatic, chronic HIV-1-infected children. Five (19.2 %) baseline and 10 (50 %) follow-up plasma samples neutralized ≥50 % of subtypes A, B and C tier 2 viruses at an ID50 titre ≥150. A modest improvement in neutralization breadth and potency was observed with time. At baseline, subtype C-specific neutralization predominated (P=0.026); interestingly, follow-up samples exhibited cross-neutralizing activity. Epitope mapping revealed V3C reactive antibodies with significantly increased Max50 binding titres in follow-up samples from five infected children; patient #4's plasma antibodies exhibited V3-directed neutralization. A salient observation was the presence of CD4 binding site (CD4bs)-specific NAbs in patient #18 that improved with time (1.76-fold). The RSC3 wild-type (RSC3WT) protein-depleted plasma eluate of patient #18 demonstrated a more than 50% ID50 decrease in neutralization capacity against five HIV-1 pseudoviruses. Further, the presence of CD4bs-neutralizing determinants in patient #18's plasma was confirmed by the neutralizing activity demonstrated by the CD4bs-directed IgG fraction purified from this plasma, and competition with sCD4 against JRFLgp120, identifying this paediatric donor as a potential candidate for the isolation of CD4bs-directed bnAbs. Overall, we observed a relative increase in plasma-neutralizing activity with time in HIV-1-infected children, which suggests that the bnAbs evolve.
Collapse
Affiliation(s)
- Muzamil A Makhdoomi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lubina Khan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Heena Aggarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ravinder Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bimal K Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
10
|
Profiling the neutralizing antibody response in chronically HIV-1 CRF07_BC-infected intravenous drug users naïve to antiretroviral therapy. Sci Rep 2017; 7:46308. [PMID: 28387330 PMCID: PMC5384219 DOI: 10.1038/srep46308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 11/23/2022] Open
Abstract
Characterizing neutralizing antibody (NAb) responses in individuals infected with diverse HIV-1 strains is necessary to reveal the novel targets for regional preventive and therapeutic strategies development. We evaluated the prevalence, breadth, and potency of NAb responses in 98 CRF07_BC-infected individuals using a large, multi-subtype panel of 30 tier 2-3 Env-pseudotyped viruses. Furthermore, we compared the neutralization pattern of CRF07_BC-infected people with that of subtype B’-infected individuals in China. Of the 98 plasma samples tested, 18% neutralized more than 80% of viruses in the panel, and 53% neutralized more than 50%, suggesting the presence of broadly NAbs in these individuals. A preferential intra-subtype neutralization of CRF07_BC was found. Notably, CRF07_BC-infected individuals generated higher neutralization titers against intra-subtype viruses than subtype B’-infected individuals with longer infection length. However, subtype B’-infected individuals mounted broader neutralization responses against inter-subtype viruses than CRF07_BC infection with shorter infection time, indicating the transition from narrow autologous to broad heterologous neutralization over time. Neutralization activity of the top six plasmas from each cohort was attributable to IgG fraction, and half of them developed CD4 binding site antibody reactivity. Heatmap analysis identified three statistically robust clusters of plasmas that offer valuable resources for further in-depth virological and immunological study.
Collapse
|
11
|
Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: An approach to control HIV-1 infection. Int Rev Immunol 2016; 36:31-40. [PMID: 27739924 DOI: 10.1080/08830185.2016.1225301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although available antiretroviral therapy (ART) has changed human immunodeficiency virus (HIV)-1 infection to a non-fatal chronic disease, the economic burden of lifelong therapy, severe adverse ART effects, daily ART adherence, and emergence of ART-resistant HIV-1 mutants require prospecting for alternative therapeutic modalities. Indeed, a growing body of evidence suggests that broadly neutralizing anti-HIV-1 antibodies (BNAbs) may offer one such feasible alternative. To evaluate their therapeutic potential in established HIV-1 infection, we sought to address recent advances in pre-clinical and clinical investigations in this area of HIV-1 research. In addition, we addressed the obstacles that may impede the success of such immunotherapeutic approach, suggested strategic solutions, and briefly compared this approach with the currently used ART to open new insights for potential future passive immunotherapy for HIV-1 infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- a Department of Medical Laboratory Sciences , College of Applied Medical Sciences, Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad Mahmoud Yaseen
- b Department of Public Health, College of Nursing , University of Benghazi , Benghazi , Libya
| | - Mohammad Ali Alqudah
- c Department of Clinical Pharmacy , College of Pharmacy, Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
12
|
Qiao Y, Man L, Qiu Z, Yang L, Sun Y, He Y. Isolation and characterization of a novel neutralizing antibody targeting the CD4-binding site of HIV-1 gp120. Antiviral Res 2016; 132:252-61. [PMID: 27387828 DOI: 10.1016/j.antiviral.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022]
Abstract
Isolation and characterization of novel HIV-1 neutralizing antibodies assists the development of effective AIDS vaccines and immune therapeutics. In this study, we constructed a phage display antibody library by using the PBMC samples of a clade B' HIV-1-infected long-term nonprogressor (LTNP) whose sera exhibited broadly neutralizing activity. A novel human monoclonal antibody (hMAb), termed A16, was identified by panning the library with two clades of HIV-1 Env glycoproteins. We demonstrated that A16 neutralized 32% of 73 tested HIV-1 isolates and it targeted the CD4-binding site (CD4bs) of gp120 with high affinity. By selecting the peptide mimotopes in combination with computational algorithms and site-directed mutagenesis, the epitope of A16 was mapped to the structurally conserved sites located within the β1-α1, loop D, β20-β21 (bridging sheet) and β24-α5 of gp120, which critically determine the CD4 binding and are involved in the epitopes of CD4bs-directed antibodies. Our studies have shed new insights for the immune response of HIV-1 infection and offered a new tool for designing vaccine immunogens and antibody-based immune therapy.
Collapse
Affiliation(s)
- Yuanyuan Qiao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lai Man
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zonglin Qiu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingli Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youxiang Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity 2016; 44:939-50. [PMID: 27067056 DOI: 10.1016/j.immuni.2016.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.
Collapse
|
14
|
Li D, Wang Z, Ren L, Zhang J, Feng G, Hong K, Hao Y, Qi Z, Liang H, Shao Y. Study of antibody repertoires to the CD4 binding site of gp120 of a Chinese HIV-1-infected elite neutralizer, using 454 sequencing and single-cell sorting. Arch Virol 2015; 161:789-99. [PMID: 26671829 DOI: 10.1007/s00705-015-2710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/29/2015] [Indexed: 11/25/2022]
Abstract
Broadly neutralizing antibodies (NAbs) against the CD4 binding site of HIV gp120 (CD4bs) have provided important information for vaccine design. In this study, we combined deep sequencing and single memory B cell sorting to isolate CD4bs-directed NAbs from a Chinese HIV-1-infected elite neutralizer. We first performed 454 pyrosequencing to capture the IGHV1, IGKV, and IGLV germline gene families. IGHV1-2*02, the heavy chain germline V gene (VH) of the CD4bs-directed bNAb VRC01, was found to have a relatively low somatic mutation rate. When an identity/divergence plot was used to interrogate the 454 sequencing data, no VRC01-like sequences were found within the dataset. We next used a pair of CD4bs-specific probes (RSC3/ΔRSC3) to sort the B cells from this Chinese donor and identified a CD4bs-directed Ab that showed limited neutralization capability. Interestingly, the VH gene of this weak NAb belongs to the IGHV5-51 lineage, with a somatic mutation rate of 7.99 %. Our study thus demonstrates that CD4bs-directed NAbs can be produced by rearrangement from other VH genes, such as IGHV5-51 in this donor, rather than IGHV1-2*02. The 454 sequencing data and NAb obtained from this study will provide useful insights into the CD4bs-directed B-cell response during HIV-1 infection as well as the diversity of neutralizing antibodies.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Zheng Wang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.
| | - Li Ren
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Jing Zhang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Guangda Feng
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Yanling Hao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Zhi Qi
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Hua Liang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Yiming Shao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,Center of Infectious Diseases, Peking University, Beijing, China.
| |
Collapse
|
15
|
Sun Z, Li J, Hu X, Shao Y, Zhang MY. Reconstitution and characterization of antibody repertoires of HIV-1-infected "elite neutralizers". Antiviral Res 2015; 118:1-9. [PMID: 25770672 DOI: 10.1016/j.antiviral.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/23/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
Around 3-5% HIV-1-infected individuals develop high titers of broadly neutralizing HIV-1 antibodies (bnAbs) during chronic infection. However, monoclonal antibodies (mAbs) isolated from such "elite neutralizers" do not, in most cases, depict the serum IgGs in neutralizing the virus. We hypothesize that HIV-1-specific antibodies in infected subjects may work in a population manner in containing the virus in vivo, and in vitro reconstituted antibody repertoires of "elite neutralizers" may mimic the sera in binding and neutralizing the virus. This study aims to investigate the antibody repertoires of three such "elite neutralizers" by reconstituting the immune antibody repertories in vitro followed by a comparative study of the recombinant library IgGs with the corresponding serum IgGs. We found that the recombinant library IgGs were much weaker than the serum IgGs in binding to envelope glycoproteins (Envs) and in neutralizing the virus and inhibiting Env-mediated cell-cell fusion. However, the sorted libraries composing of HIV-1-specific neutralizing antibodies (nAbs) in the three recombinant libraries exhibited comparable binding and inhibitory activities, as well as antibody-dependent cell-mediated cytotoxicity (ADCC), to the serum IgGs. The sorted library IgGs further showed neutralization profiles which are similar to those of the serum IgGs, but they were overall less potent than the serum IgGs. The sorted library IgGs and the serum IgGs bound weakly to the resurfaced Env gp120, RSC3, and did not bind to the CD4 binding site (CD4bs) knock-out mutant, ΔRSC3. Profiling with VRC01 binding site knock-out site mutants of gp120BaL indicates that, if there are any CD4bs bnAbs in these sera, they are more likely b12-like, but not VRC01-class bnAbs. Our results suggest that HIV-1-specific Ab-expressing B cells, especially potent nAb-expressing B cells may not be rich in the B cell repertoires of "elite neutralizers", but they may be highly active in producing nAbs in vivo. In vitro reconstituted HIV-1 nAb repertoires of "elite neutralizers" may be used in passive immunization to prevent HIV-1 infection. HIV-1 vaccine immunogens may be designed to target multiple neutralizing determinants to stimulate multiple B cell populations. HIV-1-specific antibodies induced by such immunogens may work in combination or synergistically in containing the virus.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jingjing Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xintao Hu
- Division of Research on Virology and Immunology, National Center for AIDS/STD Control and Prevention, China CDC, Beijing 102206, China
| | - Yiming Shao
- Division of Research on Virology and Immunology, National Center for AIDS/STD Control and Prevention, China CDC, Beijing 102206, China
| | - Mei-Yun Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China; Liver Disease Institute, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| |
Collapse
|
16
|
Cross-neutralizing antibody profile of Chinese HIV-1-infected individuals and the viral envelope features from elite neutralizers. J Acquir Immune Defic Syndr 2015; 67:472-80. [PMID: 25202919 DOI: 10.1097/qai.0000000000000345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Knowledge about the profile of neutralization responses and the viral envelope features of HIV-1-infected individuals in China may provide new insights for vaccine design against local viruses. METHODS Eight hundred sixty plasma samples from antiretroviral treatment-naive HIV-1-infected individuals in Xinjiang province (611) and Guangxi province (249), who had acquired infection over 3 years through intravenous drug use or sexual contact, were examined for their ability to neutralize diverse envelope-pseudoviruses of 5 subtypes. The sequence features of the envelopes from elite neutralizers were analyzed. RESULTS From Xinjiang and Guangxi, 29.1% and 5.2% of plasmas displayed intrasubtype cross neutralization against subtype B and subtype C, respectively. From Xinjiang, 10.6% of the plasmas displayed broad neutralization against the 3 subtypes, B, C, and CRF01_AE; whereas only 2.4% from Guangxi displayed broad neutralization. Envelopes from 6 elite neutralizers were obtained by single-genome amplification. The variations of their envelopes including the lengths, glycans, and net charges in V1, V2, and V4 regions were compared with those from CRF07_BC env sequences from the HIV Sequence Database. The Envs from 3 elite neutralizers displayed the sensitivities to the monoclonal broadly neutralizing antibodies such as PG9, PG16, and 4E10. Some unique characteristics of the envelope glycoproteins from the Chinese elite neutralizers were found. CONCLUSIONS The neutralization profile of HIV-1-infected individuals in the 2 regions of China, where the HIV-1 subtypes are the representative in China, and the unique characteristics of the envelope glycoproteins from the Chinese elite neutralizers provide useful information for viral infection prevention and an insight for vaccine design against locally epidemic viruses.
Collapse
|
17
|
The potential of the human immune system to develop broadly neutralizing HIV-1 antibodies: implications for vaccine development. AIDS 2013; 27:2529-39. [PMID: 24100711 PMCID: PMC3815086 DOI: 10.1097/qad.0000000000000015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES AND DESIGN Developing an effective HIV-1 vaccine that elicits broadly neutralizing HIV-1 human antibodies (bnAbs) remains a challenging goal. Extensive studies on HIV-1 have revealed various strategies employed by the virus to escape host immune surveillance. Here, we investigated the human antibody gene repertoires of uninfected and HIV-1-infected individuals at genomic DNA (gDNA) and cDNA levels by deep sequencing followed by high-throughput sequence analysis to determine the frequencies of putative germline antibody genes of known HIV-1 monoclonal bnAbs (bnmAbs). METHODS Combinatorial gDNA and cDNA antibody libraries were constructed using the gDNAs and mRNAs isolated from uninfected and HIV-1-infected human peripheral blood mononuclear cells (PBMCs). All libraries were deep sequenced and sequences analysed using IMGT/HighV-QUEST software (http://imgt.org/HighV-QUEST/index.action). The frequencies of putative germline antibodies of known bnmAbs in the gDNA and cDNA libraries were determined. RESULTS AND CONCLUSION The human gDNA antibody libraries were more diverse in heavy and light chain V-gene lineage usage than the cDNA libraries, indicating that the human gDNA antibody gene repertoires may have more potential than the cDNA repertoires to develop HIV-1 bnAbs. The frequencies of the heavy and kappa and lambda light chain variable regions with identical V(D)J recombinations to known HIV-1 bnmAbs were extremely low in human antibody gene repertoires. However, we found relatively high frequencies of the heavy and kappa and lambda light chain variable regions that used the same V-genes and had the same CDR3 lengths as known HIV-1 bnmAbs regardless of (D)J-gene usage. B-cells bearing B-cell receptors of such heavy and kappa and lambda light chain variable regions may be stimulated to induce HIV-1 bnAbs.
Collapse
|
18
|
Winckelmann AA, Munk-Petersen LV, Rasmussen TA, Melchjorsen J, Hjelholt TJ, Montefiori D, Østergaard L, Søgaard OS, Tolstrup M. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients. PLoS One 2013; 8:e62074. [PMID: 23637967 PMCID: PMC3637371 DOI: 10.1371/journal.pone.0062074] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/18/2013] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1∶1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: −23.6–0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: −4.2–19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted.
Collapse
Affiliation(s)
- Anni A Winckelmann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
OuYang Y, Sun J, Huang Y, Lu L, Xu W, Hu X, Hong K, Jiang S, Shao Y, Ma L. Neutralization sensitivity of HIV-1 subtype B' clinical isolates from former plasma donors in China. Virol J 2013; 10:10. [PMID: 23289760 PMCID: PMC3599083 DOI: 10.1186/1743-422x-10-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 subtype B' isolates have been predominantly circulating in China. Their intra- and inter-subtype neutralization sensitivity to autologous and heterologous plasmas has not been well studied. RESULTS Twelve HIV-1 B' clinical isolates obtained from patients were tested for their intra- and inter-subtype neutralization sensitivity to the neutralization antibodies in the plasmas from patients infected by HIV-1 B' and CRF07_BC subtypes, respectively. We found that the plasmas from the HIV-1 B'-infected patients could potently neutralize heterologous viruses of subtype B' with mean ID50 titer (1/x) of about 67, but they were not effective in neutralizing autologous viruses of subtype B' with mean ID50 titer (1/x) of about 8. The plasmas from HIV-1 CRF07_BC-infected patients exhibited weak inter-subtype neutralization activity against subtype B' viruses with ID50 titer (1/x) is about 22. The neutralization sensitivity of HIV-1 B' isolates was inversely correlated with the neutralizing activity of plasmas from HIV-1 B'-infected patients (Spearman's r = -0.657, P = 0.020), and with the number of potential N-glycosylation site (PNGS) in V1-V5 region (Spearman's r = -0.493, P = 0.034), but positively correlated with the viral load (Spearman's r = 0.629, P = 0.028). It had no correlation with the length of V1-V5 regions or the CD4+ T cell count. Virus AH259V has low intra-subtype neutralization sensitivity, it can be neutralized by 17b (IC50: 10μg/ml) and 447-52D (IC50: 1.6μg/ml), and the neutralizing antibodies (nAbs) in plasma AH259P are effective in neutralizing infection by the primary HIV-1 isolates with different subtypes with ID50 titers (1/x) in the range of 32-396. CONCLUSIONS These findings suggest that the HIV-1 subtype B' viruses may mutate under the immune pressure, thus becoming resistant to the autologous nAbs, possibly by changing the number of PNGS in the V1-V5 region of the viral gp120. Some of primary HIV-1 isolates are able to induce both intra- and inter-subtype cross-neutralizing antibody responses.
Collapse
Affiliation(s)
- Yabo OuYang
- State Key Laboratory for Infection Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention (China-CDC), Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|