1
|
Wu Y, Gao S, Liu G, Wang M, Tan R, Huang B, Tan W. Development of viral infectious clones and their applications based on yeast and bacterial artificial chromosome platforms. MOLECULAR BIOMEDICINE 2025; 6:26. [PMID: 40295404 PMCID: PMC12037452 DOI: 10.1186/s43556-025-00266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Infectious Clones represent a foundational technique in the field of reverse genetics, allowing for the construction and manipulation of full-length viral genomes. The main methods currently used for constructing viral infectious clones include Transformation-associated recombination (TAR), which is based on Yeast Artificial Chromosome (YAC) and Bacterial Artificial Chromosome (BAC). The YAC and BAC systems are powerful tools that enable the clones and manipulation of large DNA fragments, making them well-suited for the construction of full-length viral genomes. These methods have been successfully applied to construct infectious clones for a wide range of viruses, including coronaviruses, herpesviruses, flaviviruses and baculoviruses. The rescued recombinant viruses from these infectious clones have been widely used in various research areas, such as vaccine development, antiviral drug screening, pathogenesis and virulence studies, gene therapy and vector design. However, as different viruses possess unique biological characteristics, the challenge remains in how to rapidly obtain infectious clones for future research. In summary, this review introduced the development and applications of infectious clones, with a focus on the YAC, BAC and combined YAC-BAC technologies. We emphasize the importance of these platforms in various research areas and aim to provide deeper insights that can advance the platform and broaden its application horizons.
Collapse
Affiliation(s)
- Yiyi Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Shangqing Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Guanya Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
- School of Public Health, Baotou Medical College, Baotou City, Inner Mongolia Autonomous Region, 014040, China
| | - Mengwei Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China
| | - Ruixiao Tan
- College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Baoying Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
| | - Wenjie Tan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, 155 Changbai Road, Beijing, 102206, China.
- School of Public Health, Baotou Medical College, Baotou City, Inner Mongolia Autonomous Region, 014040, China.
| |
Collapse
|
2
|
Kida I, Tamura T, Kuroda Y, Fukuhara T, Maeda K, Matsuno K. Application of versatile reverse genetics system for feline coronavirus. Microbiol Spectr 2025; 13:e0269224. [PMID: 40062768 PMCID: PMC11960445 DOI: 10.1128/spectrum.02692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). Although multiple gene mutations in FCoV likely account for FIP pathogenesis, molecular studies for FCoV have been limited due to the lack of a suitable reverse genetics system. In the present study, we established a rapid PCR-based system to generate recombinant FCoV using the circular polymerase extension reaction (CPER) method for both serotype 1 and 2 viruses. Recombinant FCoV was successfully rescued at sufficient titers to propagate the progeny viruses with high sequence accuracy. The growth kinetics of recombinant FCoV were comparable to those of the parental viruses. We successfully generated recombinants harboring the spike gene from a different FCoV strain or a reporter HiBiT tag using the CPER method. The chimeric virus demonstrated similar characteristics with the parental virus of the spike gene. The reporter tag stably expressed after five serial passages in the susceptible cells, and the reporter virus could be applied to evaluate the sensitivity of antiviral inhibitors using the luciferase assay system to detect HiBiT tag. Taken together, our versatile reverse genetics system for FCoV shown herein is a robust tool to characterize viral genes even without virus isolation and to investigate the molecular mechanisms of the proliferation and pathogenicity of FCoV. IMPORTANCE Feline infectious peritonitis is a highly fatal disease in cats caused by feline coronavirus variants that can infect systemically. Due to the lack of a versatile toolbox for manipulating the feline coronavirus genome, an efficient method is urgently needed to study the virus proteins responsible for the severe disease. Herein, we established a rapid reverse genetics system for the virus and demonstrated the capability of the recombinant viruses to be introduced with desired modifications or reporter genes without any negative impacts on virus characteristics in cell culture. Recombinant viruses are also useful to evaluate antiviral efficacy. Overall, our system can be a promising tool to reveal the molecular mechanisms of the viral life cycle of feline coronavirus and disease progression of feline infectious peritonitis.
Collapse
Affiliation(s)
- Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department of Virology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Antas M, Olech M. First report of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in pigs from Poland. BMC Vet Res 2024; 20:517. [PMID: 39551750 PMCID: PMC11571510 DOI: 10.1186/s12917-024-04364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Porcine transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) are swine coronaviruses belonging to the genus Alphacoronavirus in the family Coronaviridae. To date, there are no reports on the prevalence and genetic characterization of these viruses in domestic pigs from Poland. In this study, 828 serum samples were tested by TGEV/PRCV immunoassay to estimate TGEV and PRCV seroprevalence, while 277 nasal swabs and 221 stool samples were tested by real-time PCR to detect viral RNA. Our results revealed that 2.2% (95% CI 1.2, 3.2) of serum samples were positive for anti-TGEV antibodies, while 12.2% (95% CI 9.8, 14.4) of samples were positive for anti-PRCV antibodies. 2.5% (95% CI 1.5, 2.6) and 5.2% (95% CI 3.7, 6.7) of serum samples were inconclusive for TGEV and PRCV, respectively. RNA of TGEV was not detected in any of the tested samples, while PRCV RNA was detected in 6.22% of samples. Genetic and phylogenetic analysis revealed that all Polish PRCV strains were closely related to European and Korean PRCV strains than to American strains. Some of the Polish PRCV strains have a 672 nt deletion at the same position at the 5' end of the S gene as other European and Korean PRCV strains, suggesting that they originated from the same precursor. Other Polish PRCV strains had a 690 nt deletion that differed in size and location from any of the known PRCV strains. This may suggest that these Polish PRCVs may have originated from different ancestor. Furthermore, the Polish PRCV strains showed some unique changes in their sequences, which may reflect their evolution. This study is the first report on the prevalence of TGEV/PRCV in pigs from Poland. In addition, this is the first report on the genetic characterization of Polish PRCV strains, which provide new information on PRCV heterogeneity.
Collapse
Affiliation(s)
- Marta Antas
- National Veterinary Research Institute, Al. Partyzantów 57, Puławy, 24-100, Poland
| | - Monika Olech
- National Veterinary Research Institute, Al. Partyzantów 57, Puławy, 24-100, Poland.
| |
Collapse
|
4
|
Establishment of Full-Length cDNA Clones and an Efficient Oral Infection Model for Feline Coronavirus in Cats. J Virol 2021; 95:e0074521. [PMID: 34406859 DOI: 10.1128/jvi.00745-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Feline infectious peritonitis virus (FIPV) is the etiologic agent of feline infectious peritonitis (FIP) and causes fatal disease in cats of almost all ages. Currently, there are no clinically approved drugs or effective vaccines for FIP. Furthermore, the pathogenesis of FIP is still not fully understood. There is an urgent need for an effective infection model of feline infectious peritonitis induced by FIPV. Here, we constructed a field type I FIPV full-length cDNA clone, pBAC-QS, corresponding to the isolated FIPV QS. By replacing the FIPV QS spike gene with the commercially available type II FIPV 79-1146 (79-1146_CA) spike gene, we established and rescued a recombinant virus, designated rQS-79. Moreover, we constructed 79-1146_CA infectious full-length cDNA pBAC-79-1146_CA, corresponding to recombinant feline coronavirus (FCoV) 79-1146_CA (r79-1146_CA). In animal experiments with 1- to 2-year-old adult cats orally infected with the recombinant virus, rQS-79 induced typical FIP signs and 100% mortality. In contrast to cats infected with rQS-79, cats infected with 79-1146_CA did not show obvious signs. Furthermore, by rechallenging rQS-79 in surviving cats previously infected with 79-1146_CA, we found that there was no protection against rQS-79 with different titers of neutralizing antibodies. However, high titers of neutralizing antibodies may help prolong the cat survival time. Overall, we report the first reverse genetics of virulent recombinant FCoV (causing 100% mortality in adult cats) and attenuated FCoV (causing no mortality in adult cats), which will be powerful tools to study pathogenesis, antiviral drugs, and vaccines for FCoV. IMPORTANCE Tissue- or cell culture-adapted feline infectious peritonitis virus (FIPV) usually loses pathogenicity. To develop a highly virulent FIPV, we constructed a field isolate type I FIPV full-length clone with the spike gene replaced by the 79-1146 spike gene, corresponding to a virus named rQS-79, which induces high mortality in adult cats. rQS-79 represents the first described reverse genetics system for highly pathogenic FCoV. By further constructing the cell culture-adapted FCoV 79-1146_CA, we obtained infectious clones of virulent and attenuated FCoV. By in vitro and in vivo experiments, we established a model that can serve to study the pathogenic mechanisms of FIPV. Importantly, the wild-type FIPV replicase skeleton of serotype I will greatly facilitate the screening of antiviral drugs, both in vivo and in vitro.
Collapse
|
5
|
Adaptive Evolution of Feline Coronavirus Genes Based on Selection Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9089768. [PMID: 32923488 PMCID: PMC7453238 DOI: 10.1155/2020/9089768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022]
Abstract
Purpose We investigated sequences of the feline coronaviruses (FCoV), which include feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV), from China and other countries to gain insight into the adaptive evolution of this virus. Methods Ascites samples from 31 cats with suspected FIP and feces samples from 8 healthy cats were screened for the presence of FCoV. Partial viral genome sequences, including parts of the nsp12-nsp14, S, N, and 7b genes, were obtained and aligned with additional sequences obtained from the GenBank database. Bayesian phylogenetic analysis was conducted, and the possibility of recombination within these sequences was assessed. Analysis of the levels of selection pressure experienced by these sequences was assessed using methods on both the PAML and Datamonkey platforms. Results Of the 31 cats investigated, two suspected FIP cats and one healthy cat tested positive for FCoV. Phylogenetic analysis showed that all of the sequences from mainland China cluster together with a few sequences from the Netherlands as a distinct clade when analyzed with FCoV sequences from other countries. Fewer than 3 recombination breakpoints were detected in the nsp12-nsp14, S, N, and 7b genes, suggesting that analyses for positive selection could be conducted. A total of 4, 12, 4, and 4 positively selected sites were detected in the nsp12-nsp14, S, N, and 7b genes, respectively, with the previously described site 245 of the S gene, which distinguishes FIPV from FECV, being a positive selection site. Conversely, 106, 168, 25, and 17 negative selection sites in the nsp12-14, S, N, and 7b genes, respectively, were identified. Conclusion Our study provides evidence that the FCoV genes encoding replicative, entry, and virulence proteins potentially experienced adaptive evolution. A greater number of sites in each gene experienced negative rather than positive selection, which suggests that most of the protein sequence must be conservatively maintained for virus survival. A few of the sites showing evidence of positive selection might be associated with the more severe pathology of FIPV or help these viruses survive other harmful conditions.
Collapse
|
6
|
Doki T, Toda M, Hasegawa N, Hohdatsu T, Takano T. Therapeutic effect of an anti-human-TNF-alpha antibody and itraconazole on feline infectious peritonitis. Arch Virol 2020; 165:1197-1206. [PMID: 32236683 PMCID: PMC7110289 DOI: 10.1007/s00705-020-04605-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Feline infectious peritonitis (FIP) is a fatal disease in wild and domestic cat species. Although several drugs are expected to be useful as treatments for FIP, no drugs are available in clinical practice. In this study, we evaluated the therapeutic effect of combined use of adalimumab (an anti-human-TNF-alpha monoclonal antibody, ADA) and itraconazole (ICZ), which are presently available to veterinarians. The neutralizing activity of ADA against fTNF-alpha-induced cytotoxicity was measured in WEHI-164 cells. Ten specific pathogen-free (SPF) cats were inoculated intraperitoneally with type I FIPV KU-2. To the cats that developed FIP, ADA (10 mg/animal) was administered twice between day 0 and day 4 after the start of treatment. ICZ (50 mg/head, SID) was orally administered daily from day 0 after the start of treatment. ADA demonstrated dose-dependent neutralizing activity against rfTNF-alpha. In an animal experiment, 2 of 3 cats showed improvements in FIP clinical symptoms and blood chemistry test results, an increase in the peripheral blood lymphocyte count, and a decrease in the plasma alpha 1-AGP level were observed after the beginning of treatment. One of the cats failed to respond to treatment and was euthanized, although the viral gene level in ascites temporarily decreased after the start of treatment. ADA was found to have neutralizing activity against rfTNF-alpha. The combined use of ADA and ICZ showed a therapeutic effect for experimentally induced FIP. We consider these drugs to be a treatment option until effective anti-FIPV drugs become available.
Collapse
Affiliation(s)
- Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Masahiro Toda
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Nobuhisa Hasegawa
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tsutomu Hohdatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
7
|
Doki T, Tarusawa T, Hohdatsu T, Takano T. In Vivo Antiviral Effects of U18666A Against Type I Feline Infectious Peritonitis Virus. Pathogens 2020; 9:pathogens9010067. [PMID: 31963705 PMCID: PMC7169457 DOI: 10.3390/pathogens9010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.
Collapse
Affiliation(s)
| | | | | | - Tomomi Takano
- Correspondence: ; Tel.: +81-176-23-4371; Fax: +81-176-23-8703
| |
Collapse
|
8
|
Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663. J Virol 2019; 93:JVI.01208-19. [PMID: 31375588 PMCID: PMC6803248 DOI: 10.1128/jvi.01208-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV.IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.
Collapse
|
9
|
Acar DD, Stroobants VJE, Favoreel H, Saelens X, Nauwynck HJ. Identification of peptide domains involved in the subcellular localization of the feline coronavirus 3b protein. J Gen Virol 2019; 100:1417-1430. [PMID: 31483243 PMCID: PMC7079696 DOI: 10.1099/jgv.0.001321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Feline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53–57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10–35, in which a Tom20 recognition motif (residues 13–17) and two other overlapping hexamers (residues 24–30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61–65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.
Collapse
Affiliation(s)
- Delphine D. Acar
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Veerle J. E. Stroobants
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Hans J. Nauwynck,
| |
Collapse
|
10
|
Wang Q, Vlasova AN, Kenney SP, Saif LJ. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 2019; 34:39-49. [PMID: 30654269 PMCID: PMC7102852 DOI: 10.1016/j.coviro.2018.12.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Three coronaviruses are emerging/reemerging in pigs. The three porcine coronaviruses may have originated from other species. The clinical signs and pathogenesis of the three viruses are similar. No cross-protection among the three porcine coronaviruses. Individual vaccines are needed for each virus for disease prevention and control.
Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV) are emerging/reemerging coronaviruses (CoVs). They cause acute gastroenteritis in neonatal piglets. Sequence analyses suggest that PEDV and SADS-CoV may have originated from bat CoVs and PDCoV from a sparrow CoV, reaffirming the interspecies transmission of CoVs. The clinical signs and pathogenesis of the three viruses are similar. Necrosis of infected intestinal epithelial cells occurs, causing villous atrophy that results in malabsorptive diarrhea. The severe diarrhea and vomiting may lead to dehydration and death of piglets. Natural infection induces protective immunity, but there is no cross-protection among the three viruses. Besides strict biosecurity measures, individual vaccines are needed for each virus for disease prevention and control.
Collapse
Affiliation(s)
- Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Scott P Kenney
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
11
|
Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets. J Virol 2017; 91:JVI.00227-17. [PMID: 28490591 DOI: 10.1128/jvi.00227-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity.IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections.
Collapse
|
12
|
Abstract
Coronaviruses (CoVs) have a remarkable potential to change tropism. This is particularly illustrated over the last 15 years by the emergence of two zoonotic CoVs, the severe acute respiratory syndrome (SARS)- and Middle East respiratory syndrome (MERS)-CoV. Due to their inherent genetic variability, it is inevitable that new cross-species transmission events of these enveloped, positive-stranded RNA viruses will occur. Research into these medical and veterinary important pathogens—sparked by the SARS and MERS outbreaks—revealed important principles of inter- and intraspecies tropism changes. The primary determinant of CoV tropism is the viral spike (S) entry protein. Trimers of the S glycoproteins on the virion surface accommodate binding to a cell surface receptor and fusion of the viral and cellular membrane. Recently, high-resolution structures of two CoV S proteins have been elucidated by single-particle cryo-electron microscopy. Using this new structural insight, we review the changes in the S protein that relate to changes in virus tropism. Different concepts underlie these tropism changes at the cellular, tissue, and host species level, including the promiscuity or adaptability of S proteins to orthologous receptors, alterations in the proteolytic cleavage activation as well as changes in the S protein metastability. A thorough understanding of the key role of the S protein in CoV entry is critical to further our understanding of virus cross-species transmission and pathogenesis and for development of intervention strategies.
Collapse
|
13
|
Lu X, Rowe LA, Frace M, Stevens J, Abedi GR, Elnile O, Banassir T, Al-Masri M, Watson JT, Assiri A, Erdman DD. Spike gene deletion quasispecies in serum of patient with acute MERS-CoV infection. J Med Virol 2016; 89:542-545. [PMID: 27486688 PMCID: PMC7166981 DOI: 10.1002/jmv.24652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2016] [Indexed: 01/01/2023]
Abstract
The spike glycoprotein of the Middle East respiratory coronavirus (MERS-CoV) facilitates receptor binding and cell entry. During investigation of a multi-facility outbreak of MERS-CoV in Taif, Saudi Arabia, we identified a mixed population of wild-type and variant sequences with a large 530 nucleotide deletion in the spike gene from the serum of one patient. The out of frame deletion predicted loss of most of the S2 subunit of the spike protein leaving the S1 subunit with an intact receptor binding domain. This finding documents human infection with a novel genetic variant of MERS-CoV present as a quasispecies. J. Med. Virol. 89:542-545, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lori A Rowe
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael Frace
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - James Stevens
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Glen R Abedi
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | - John T Watson
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Dean D Erdman
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
14
|
Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures. Sci Rep 2016; 6:20022. [PMID: 26822958 PMCID: PMC4731813 DOI: 10.1038/srep20022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023] Open
Abstract
Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28–56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8+ regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise.
Collapse
|
15
|
Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 2014; 9:e106534. [PMID: 25180686 PMCID: PMC4152292 DOI: 10.1371/journal.pone.0106534] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3'-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5'-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cat Diseases/virology
- Cats
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Coronavirus, Canine/classification
- Coronavirus, Canine/genetics
- Coronavirus, Canine/pathogenicity
- Coronavirus, Feline/classification
- Coronavirus, Feline/genetics
- Coronavirus, Feline/pathogenicity
- DNA, Viral/genetics
- Dogs
- Genes, Viral
- Homologous Recombination
- Japan
- Molecular Sequence Data
- Phylogeny
- Reassortant Viruses/genetics
- Reassortant Viruses/pathogenicity
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Yutaka Terada
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Nobutaka Matsui
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Keita Noguchi
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co. Ltd., Osaka, Japan
| | - Masami Mochizuki
- Laboratory of Emerging Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
16
|
Pedersen NC. An update on feline infectious peritonitis: virology and immunopathogenesis. Vet J 2014; 201:123-32. [PMID: 24837550 PMCID: PMC7110662 DOI: 10.1016/j.tvjl.2014.04.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/24/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
Abstract
Feline infectious peritonitis (FIP) continues to be one of the most researched infectious diseases of cats. The relatively high mortality of FIP, especially for younger cats from catteries and shelters, should be reason enough to stimulate such intense interest. However, it is the complexity of the disease and the grudging manner in which it yields its secrets that most fascinate researchers. Feline leukemia virus infection was conquered in less than two decades and the mysteries of feline immunodeficiency virus were largely unraveled in several years. After a half century, FIP remains one of the last important infections of cats for which we have no single diagnostic test, no vaccine and no definitive explanations for how virus and host interact to cause disease. How can a ubiquitous and largely non-pathogenic enteric coronavirus transform into a highly lethal pathogen? What are the interactions between host and virus that determine both disease form (wet or dry) and outcome (death or resistance)? Why is it so difficult, and perhaps impossible, to develop a vaccine for FIP? What role do genetics play in disease susceptibility? This review will explore research conducted over the last 5 years that attempts to answer these and other questions. Although much has been learned about FIP in the last 5 years, the ultimate answers remain for yet more studies.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|