1
|
Hikmat H, Le Targa L, Boschi C, Py J, Bedotto M, Morand A, Cassir N, Aherfi S, La Scola B, Colson P. Sequencing and characterization of human bocavirus genomes from patients diagnosed in Southern France between 2017 and 2022. J Med Virol 2024; 96:e29706. [PMID: 38888111 DOI: 10.1002/jmv.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
The diversity and evolution of the genomes of human bocavirus (HBoV), which causes respiratory diseases, have been scarcely studied. Here, we aimed to obtain and characterize HBoV genomes from patients's nasopharyngeal samples collected between 2017 and 2022 period (5 years and 7 months). Next-generation sequencing (NGS) used Illumina technology after having implemented using GEMI an in-house multiplex PCR amplification strategy. Genomes were assembled and analyzed with CLC Genomics, Mafft, BioEdit, MeV, Nextclade, MEGA, and iTol. A total of 213 genomes were obtained. Phylogeny classified them all as of Bocavirus 1 (HBoV1) species. Five HBoV1 genotypic clusters determined by hierarchical clustering analysis of 27 variable genome positions were scattered over the study period although with differences in yearly prevalence. A total of 167 amino acid substitutions were detected. Besides, coinfection was observed for 52% of the samples, rhinoviruses then adenoviruses (HAdVs) being the most common viruses. Principal component analysis showed that HBoV1 genotypic cluster α tended to be correlated with HAdV co-infection. Subsequent HAdV typing for HBoV1-positive samples and negative controls demonstrated that HAdVC species predominated but HAdVB was that significantly HBoV1-associated. Overall, we described here the first HBoV1 genomes sequenced for France. HBoV1 and HAdVB association deserves further investigation.
Collapse
Affiliation(s)
- Houmadi Hikmat
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Lorlane Le Targa
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Biosellal, Lyon, France
| | - Celine Boschi
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Justine Py
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Marielle Bedotto
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Morand
- Service d'Accueil des Urgences Pédiatriques, Hôpital Nord, AP-HM, Marseille, France
- Service de Pédiatrie Générale, Hôpital Timone, AP-HM, Marseille, France
| | - Nadim Cassir
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Sarah Aherfi
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Philippe Colson
- Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Universite, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
2
|
Impact of Natural or Synthetic Singletons in the Capsid of Human Bocavirus 1 on Particle Infectivity and Immunoreactivity. J Virol 2020; 94:JVI.00170-20. [PMID: 32213611 DOI: 10.1128/jvi.00170-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Human bocavirus 1 (HBoV1) is a parvovirus that gathers increasing attention due to its pleiotropic role as a pathogen and emerging vector for human gene therapy. Curiously, albeit a large variety of HBoV1 capsid variants has been isolated from human samples, only one has been studied as a gene transfer vector to date. Here, we analyzed a cohort of HBoV1-positive samples and managed to PCR amplify and sequence 29 distinct HBoV1 capsid variants. These differed from the originally reported HBoV1 reference strain in 32 nucleotides or four amino acids, including a frequent change of threonine to serine at position 590. Interestingly, this T590S mutation was associated with lower viral loads in infected patients. Analysis of the time course of infection in two patients for up to 15 weeks revealed a gradual accumulation of T590S, concurrent with drops in viral loads. Surprisingly, in a recombinant vector context, T590S was beneficial and significantly increased titers compared to that of T590 variants but had no major impact on their transduction ability or immunoreactivity. Additional targeted mutations in the HBoV1 capsid identified several residues that are critical for transduction, capsid assembly, or DNA packaging. Our new findings on the phylogeny, infectivity, and immunoreactivity of HBoV1 capsid variants improve our understanding of bocaviral biology and suggest strategies to enhance HBoV1 gene transfer vectors.IMPORTANCE The family of Parvoviridae comprises a wide variety of members that exhibit a unique biology and that are concurrently highly interesting as a scaffold for the development of human gene therapy vectors. A most notable example is human bocavirus 1 (HBoV1), which we and others have recently harnessed to cross-package and deliver recombinant genomes derived from another parvovirus, the adeno-associated virus (AAV). Here, we expanded the repertoire of known HBoV1 variants by cloning 29 distinct HBoV1 capsid sequences from primary human samples and by analyzing their properties as AAV/HBoV1 gene transfer vectors. This led to our discovery of a mutational hot spot at HBoV1 capsid position 590 that accumulated in two patients during natural infection and that lowers viral loads but increases vector yields. Thereby, our study expands our current understanding of HBoV1 biology in infected human subjects and concomitantly provides avenues to improve AAV/HBoV1 gene transfer vectors.
Collapse
|
3
|
Piewbang C, Kasantikul T, Pringproa K, Techangamsuwan S. Feline bocavirus-1 associated with outbreaks of hemorrhagic enteritis in household cats: potential first evidence of a pathological role, viral tropism and natural genetic recombination. Sci Rep 2019; 9:16367. [PMID: 31705016 PMCID: PMC6841677 DOI: 10.1038/s41598-019-52902-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Feline bocavirus-1 (FBoV-1) was identified in cats from different households with hemorrhagic enteritis during outbreaks of an unusual clinical presentation of feline panleukopenia virus (FPLV) in Thailand. Use of polymerase chain reaction revealed the presence of the FBoV-1 DNA in several tissues, suggesting hematogenous viremia, with the viral nucleic acid, detected by in situ hybridization (ISH), was localized in intestinal cells and vascular endothelium of intestinal mucosa and serosa, and in necrosis areas primarily in various lymph nodes while FPLV-immunohistochemical analysis revealed viral localization only in cryptal cells, neurons, and limited to leukocytes in the mesenteric lymph node. Full-length coding genome analysis of the Thai FBoV-1 strains isolated from moribund cats revealed three distinct strains with a high between-strain genetic diversity, while genetic recombination in one of the three FBoV-1 strains within the NS1 gene. This is the first report identifying natural genetic recombination of the FBoV-1 and describing the pathology and viral tropism of FBoV-1 infection in cats. Although the role of FBoV-1 associated with systemic infection of these cats remained undetermined, a contributory role of enteric infection of FBoV-1 is possible. Synergistic effects of dual infection with FPLV and FBoV-1 are hypothesized, suggesting more likely severe clinical presentations.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanit Kasantikul
- Department of Preclinic and Applied Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Diagnosis and Monitoring of Animal Pathogens Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Di Martino B, Di Profio F, Melegari I, Marsilio F. Feline Virome-A Review of Novel Enteric Viruses Detected in Cats. Viruses 2019; 11:v11100908. [PMID: 31575055 PMCID: PMC6832874 DOI: 10.3390/v11100908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in the diagnostic and metagenomic investigations of the feline enteric environment have allowed the identification of several novel viruses that have been associated with gastroenteritis in cats. In the last few years, noroviruses, kobuviruses, and novel parvoviruses have been repetitively detected in diarrheic cats as alone or in mixed infections with other pathogens, raising a number of questions, with particular regards to their pathogenic attitude and clinical impact. In the present article, the current available literature on novel potential feline enteric viruses is reviewed, providing a meaningful update on the etiology, epidemiologic, pathogenetic, clinical, and diagnostic aspects of the infections caused by these pathogens.
Collapse
Affiliation(s)
- Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Irene Melegari
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
5
|
Zhang J, Bai Y, Zhu B, Hao S, Chen Z, Wang H, Guan W. Mutations in the C-terminus of HBoV NS1 affect the function of NP1. Sci Rep 2017; 7:7407. [PMID: 28785044 PMCID: PMC5547040 DOI: 10.1038/s41598-017-06513-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Human bocavirus 1 (HBoV1) is an autonomous parvovirus in the Bocaparvovirus genus. The multifunctional nuclear protein NP1 is involved in viral replication. In the present study, we found that the mutations in the C-terminus of NS1 affected NP1 function in viral replication. Knocking out NP1 expression in the recombinant infectious clone, on which the C-terminus of NS1 was mutated based on the clinical samples from nasopharyngeal aspirates, resulted in different degrees of decreased replication. The result suggested that NP1 facilitated the replication of viral genome but was not necessary, which is different from the minute virus of canines, where NP1 is essential for viral replication. Further studies showed that clinical mutations in the NP1 region did not affect viral genome replication, and UP1 promoted viral DNA replication. Our results suggested that the C-terminus of NS1 is important for viral replication and may be a target for regulating the replication of the viral genome.
Collapse
Affiliation(s)
- Junmei Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Bai
- Pediatric department of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, 510120, P. R. China
| | - Sujuan Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hanzhong Wang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
6
|
Abdel-Moneim AS, Kamel MM, Hassan NM. Evolutionary and genetic analysis of human bocavirus genotype-1 strains reveals an evidence of intragenomic recombination. J Med Microbiol 2017; 66:245-254. [PMID: 28086073 DOI: 10.1099/jmm.0.000432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Human bocavirus (HBoV) exsits in four genotypes: 1 to 4, with HBoV-1 being the most prevalent genotype. The aim of the current study was to genetically analyze the full-length genome of the HBoV-1 of recently detected Egyptian strains. METHODOLOGY Seven overlapping sets of primers were developed to amplify an almost complete HBoV-1 genome from the clinical samples. The primer sets were tested on three recently identified Egyptian HBoV-1 strains with viral loads ≥105 ml-1. Sequencing was conducted using the same sets of primers. HBoV-1 virus strains were genetically analyzed based on the sequences of their complete genomes and the individual ORFs. RESULTS The new sets of primers successfully amplified the three tested strains. Sequence analysis of the full-length genome of the HBoV-1 revealed a considerable level of genetic heterogenicity between different strains. Based on the full genome and VP1 ORF, HBoV-1 viruses were clustered into three main lineages, A to C, and lineage A was further subdivided into three sublineages, A1-A3. The Egyptian strains were clustered within two sublineages, A1 and A2. New amino acid substitutions were detected in NS1 and VP1/VP2 proteins. Both inter- and intragenomic recombination events were detected among the Egyptian strains. CONCLUSION The existence of both intragenomic recombination event and multiple amino acid substitutions in the examined Egyptian HBoV-1 strains elucidates considerable level of genetic alterations among bocaviruses. Their possible effects on the virus virulence and multiplication efficiency need to be investigated.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.,Microbiology Department, College of Medicine, Taif University, Al-Taif 21944, Saudi Arabia
| | - Mahmoud M Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Xiao Q, Ren L, Zheng S, Wang L, Xie X, Deng Y, Zhao Y, Zhao X, Luo Z, Fu Z, Huang A, Liu E. Prevalence and molecular characterizations of enterovirus D68 among children with acute respiratory infection in China between 2012 and 2014. Sci Rep 2015; 5:16639. [PMID: 26568267 PMCID: PMC4644992 DOI: 10.1038/srep16639] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023] Open
Abstract
EV-D68 is associated with respiratory tract infections (RTIs). Since its first isolation, EV-D68 has been detected sporadically. However, the US and Canada have experienced outbreaks of EV-D68 infections between August and December 2014. This study aimed to investigate the molecular epidemiology and clinical characteristics of EV-D68 in Chongqing, Southwestern China. From January 2012 to November 2014, 1876 nasopharyngeal aspirate specimens (NPAs) were collected from hospitalized children with RTIs. Among the 1876 NPAs, EV-D68 was detected in 19 samples (1.0%, 19/1876). Of these, 13 samples were detected in September and October 2014 (9.8%, 13/132). Phylogenetic analysis showed that all 13 strains detected in the 2014 Chongqing had high homology with the main strains of the 2014 US outbreak. Among the children with EV-D68 infection, 13 (68%) had a history of recurrent wheezing. A total of 13 children had a discharge diagnosis of asthma. Of these, 11 children were diagnosed with acute asthma exacerbation. EV-D68 was the predominant pathogen that evoked asthma exacerbation in September and October 2014. In conclusion, our results found that a history of recurrent wheezing may be a risk factor for the detection of EV-D68 and viral-induced asthma exacerbation may be a clinical feature of EV-D68 infection.
Collapse
Affiliation(s)
- Qiuyan Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Shouyan Zheng
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Lili Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yao Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Xiaodong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400014, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
8
|
Broccolo F, Falcone V, Esposito S, Toniolo A. Human bocaviruses: Possible etiologic role in respiratory infection. J Clin Virol 2015; 72:75-81. [PMID: 26441386 DOI: 10.1016/j.jcv.2015.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
Abstract
Four species of human bocaviruses (HBoV) are currently included in the Bocavirus genus. There is satisfactory evidence demonstrating an association between HBoV1 and respiratory disease in children, and there is evidence that HBoV2 (and possibly the HBoV3 and HBoV4 species) are associated with gastroenteritis. In particular, HBoV1 has been associated with a prolonged period of persistence in the mucosa of the respiratory tract. Virus persistence does play a role in the high frequency of co-infections with proper pathogens of the upper and lower respiratory tracts. The high detection rate of multiple respiratory viruses in up to 83% of respiratory specimens and the presence of asymptomatic HBoV1 infections complicate the elucidation of the pathogenic role of the agent. Overall, a large amount of data are available concerning HBoV1, whereas little information is available about other bocavirus species. High viral loads are often associated with symptoms, and viremia may be associated with systemic manifestations such as encephalopathy. The effects and mechanisms of latency, persistence, reactivation, and reinfection are poorly understood. Thus, particularly in co-infections, the pathogenic contribution of the detected bocavirus species cannot be accurately stated. This review summarizes the current knowledge of HBoV species and provides perspectives for future clinical studies.
Collapse
Affiliation(s)
- Francesco Broccolo
- Department of Health Sciences, University of Milano-Bicocca, Milano, Italy.
| | - Valeria Falcone
- Department of Virology, Freiburg University Medical Center, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Toniolo
- Laboratory of Clinical Microbiology, Ospedale di Circolo e Fondazione Macchi, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Principi N, Piralla A, Zampiero A, Bianchini S, Umbrello G, Scala A, Bosis S, Fossali E, Baldanti F, Esposito S. Bocavirus Infection in Otherwise Healthy Children with Respiratory Disease. PLoS One 2015; 10:e0135640. [PMID: 26267139 PMCID: PMC4534143 DOI: 10.1371/journal.pone.0135640] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
To evaluate the role of human bocavirus (hBoV) as a causative agent of respiratory disease, the importance of the viral load in respiratory disease type and severity and the pathogenicity of the different hBoV species, we studied all hBoV-positive nasopharyngeal samples collected from children who attended an emergency room for a respiratory tract infection during three winters (2009–2010, 2011–2012, and 2013–2014). Human bocavirus was detected using the respiratory virus panel fast assay and real-time PCR. Of the 1,823 nasopharyngeal samples, 104 (5.7%) were positive for hBoV; a similar prevalence was observed in all three periods studied. Among hBoV-infected children, 53.8% were between 1–2 years old, and hBoV was detected alone in 57/104 (54.8%) cases. All of the detected hBoV strains belonged to genotype 1. The median hBoV load was significantly higher in samples containing strains with both the N546H and T590S mutations compared to other samples (p<0.05). Children with a single hBoV-1 infection more frequently had upper respiratory tract infections (URTIs) than those who were co-infected (37.0% vs 17.8%, respectively, p = 0.04). The duration of hospitalization was longer among children with high viral loads than that observed among children with low viral loads (8.0 ±2.2 days vs 5.0 ±1.5 days, respectively, p = 0.03), and the use of aerosol therapy was more frequent among children with high viral loads than among those with low viral loads (77.1% vs 55.7%, respectively, p = 0.04). This study shows that hBoV is a relatively uncommon but stable infectious agent in children and that hBoV1 seems to be the only strain detected in Italy in respiratory samples. From a clinical point of view, hBoV1 seems to have in the majority of healthy children relatively low clinical relevance. Moreover, the viral load influences only the duration of hospitalization and the use of aerosol therapy without any association with the site of the respiratory disease.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alberto Zampiero
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Bianchini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Umbrello
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Scala
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Samantha Bosis
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilio Fossali
- Emergency Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Section of Microbiology, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| |
Collapse
|
10
|
Zhou L, Zheng S, Xiao Q, Ren L, Xie X, Luo J, Wang L, Huang A, Liu W, Liu E. Single detection of human bocavirus 1 with a high viral load in severe respiratory tract infections in previously healthy children. BMC Infect Dis 2014; 14:424. [PMID: 25078257 PMCID: PMC4125703 DOI: 10.1186/1471-2334-14-424] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human bocavirus is a newly discovered parvovirus. Multiple studies have confirmed the presence of human bocavirus1 (HBoV1) in respiratory tract samples of children. The viral load, presentation of single detection and its role as a causative agent of severe respiratory tract infections have not been thoroughly elucidated. METHODS We investigated the presence of HBoV1 by quantitative polymerase chain reaction (PCR) of nasopharyngeal aspirate specimens from 1229 children hospitalized for respiratory tract infections. The samples were analyzed for 15 respiratory viruses by PCR and 7 respiratory viruses by viral culture. RESULTS At least one virus was detected in 652 (53.1%) of 1229 children, and two or more viruses were detected in 266 (21.6%) children. HBoV1 was detected in 127 children (10.3%), in which 66/127 (52%) of the cases were the only HBoV1 virus detected. Seasonal variation was observed with a high HBoV1 infection rate in summer. A cutoff value of 107 copies/mL was used to distinguish high and low HBoV1 viral loads in the nasopharyngeal aspirates. High viral loads of HBoV1 were noted predominantly in the absence of other viral agents (28/39, 71.8%) whereas there was primarily co-detection in cases of low HBoV1 viral loads (50/88, 56.8%). There were no differences in the clinical symptoms and severity between HBoV1 single detection and co-detection. In cases of HBoV1 single detection, the high viral load group was more prevalent among children with dyspnea and wheezing than was the low viral load group (42.9% vs. 23.7%, P = 0.036; 60.7% vs. 31.6%, P = 0.018). In clinical severity, a significant difference was recorded (25.0% vs. 5.3%, P = 0.003) between high viral load and low viral load groups. Of the HBoV1 positive patients associated with severe respiratory tract infections, 10/18 (55.6%) patients belonged to the HBoV1 high viral load group, and 7/10 (70%) patients had cases of HBoV1 single detection. CONCLUSIONS HBoV1 at a high viral load is not frequently found in co-detection with other respiratory viruses, and a single detection with a high viral load could be an etiological agent of severe respiratory tract infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P, R, China.
| |
Collapse
|
11
|
Zhang W, Li L, Deng X, Kapusinszky B, Pesavento PA, Delwart E. Faecal virome of cats in an animal shelter. J Gen Virol 2014; 95:2553-2564. [PMID: 25078300 DOI: 10.1099/vir.0.069674-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We describe the metagenomics-derived feline enteric virome in the faeces of 25 cats from a single shelter in California. More than 90 % of the recognizable viral reads were related to mammalian viruses and the rest to bacterial viruses. Eight viral families were detected: Astroviridae, Coronaviridae, Parvoviridae, Circoviridae, Herpesviridae, Anelloviridae, Caliciviridae and Picobirnaviridae. Six previously known viruses were also identified: feline coronavirus type 1, felid herpes 1, feline calicivirus, feline norovirus, feline panleukopenia virus and picobirnavirus. Novel species of astroviruses and bocaviruses, and the first genome of a cyclovirus in a feline were characterized. The RNA-dependent RNA polymerase region from four highly divergent partial viral genomes in the order Picornavirales were sequenced. The detection of such a diverse collection of viruses shed within a single shelter suggested that such animals experience robust viral exposures. This study increases our understanding of the viral diversity in cats, facilitating future evaluation of their pathogenic and zoonotic potentials.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Linlin Li
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Xutao Deng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Beatrix Kapusinszky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| |
Collapse
|