1
|
Otron DH, Filloux D, Brousse A, Hoareau M, Fenelon B, Hoareau C, Fernandez E, Tiendrébéogo F, Lett JM, Pita JS, Roumagnac P, Lefeuvre P. Improvement of Nanopore sequencing provides access to high quality genomic data for multi-component CRESS-DNA plant viruses. Virol J 2025; 22:78. [PMID: 40098028 PMCID: PMC11917030 DOI: 10.1186/s12985-025-02694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Faced with the recrudescence of viral CRESS-DNA plant diseases, the availability of efficient and cost-effective tools for routine diagnosis and genomic characterisation is vital. As these viruses possess circular single-strand DNA genomes, they have been routinely characterised using rolling circle amplification (RCA) coupled with Sanger sequencing. However, while providing the basis of our knowledge of the diverse CRESS-DNA viruses, this approach is laboratory-intensive, time-consuming and ultimately ineffective faced with co-infection or viruses with multiple genomic components, two common characteristics of these viruses. Whereas alternatives have proved effective in some applications, there is a strong need for next-generation sequencing methods suitable for small-scale projects that can routinely produce high quality sequences comparable to the gold standard Sanger sequencing. RESULTS Here, we present an RCA sequencing diagnostic technique using the latest Oxford Nanopore Technology flongle flow cells. Originally, using the tandem-repeat nature of RCA products, we were able to improve the quality of each viral read and assemble high-quality genomic components. The effectiveness of the method was demonstrated on two plant samples, one infected with the bipartite begomovirus African cassava mosaic virus (ACMV) and the other infected with the nanovirus faba bean necrotic stunt virus (FBNSV), a virus with eight genomic segments. This method allow us to recover all genomic components of both viruses. The assembled genomes of ACMV and FBNSV shared 100% nucleotide identity with those obtained with Sanger sequencing. Additionally, our experiments demonstrated that for similar-sized components, the number of reads was proportional to the segment frequencies measured using qPCR. CONCLUSION In this study, we demonstrated an accessible and effective Nanopore-based method for high-quality genomic characterisation of CRESS-DNA viruses, comparable to Sanger sequencing. Face with of increasing challenges posed by viral CRESS-DNA plant diseases, integrating this approach into routine workflows could pave the way for more proactive responses to viral epidemics.
Collapse
Affiliation(s)
- Daniel H Otron
- The Central and West African Virus Epidemiology (WAVE) for Food Security Program, Pôle Scientifique et d'Innovation, Université Félix Houphouët-Boigny (UFHB), Abidjan , 22 BP 582, Côte d'Ivoire
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
- UFR Biosciences, Université Félix Houphouët-Boigny (UFHB), Abidjan , 22 BP 582, Côte d'Ivoire
| | - Denis Filloux
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, F- 34398, France
- CIRAD, PHIM, Montpellier, F-34398, France
| | - Andy Brousse
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, F- 34398, France
| | | | | | - Cécile Hoareau
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Emmanuel Fernandez
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, F- 34398, France
- CIRAD, PHIM, Montpellier, F-34398, France
| | - Fidèle Tiendrébéogo
- The Central and West African Virus Epidemiology (WAVE) for Food Security Program, Pôle Scientifique et d'Innovation, Université Félix Houphouët-Boigny (UFHB), Abidjan , 22 BP 582, Côte d'Ivoire
| | | | - Justin S Pita
- The Central and West African Virus Epidemiology (WAVE) for Food Security Program, Pôle Scientifique et d'Innovation, Université Félix Houphouët-Boigny (UFHB), Abidjan , 22 BP 582, Côte d'Ivoire
- UFR Biosciences, Université Félix Houphouët-Boigny (UFHB), Abidjan , 22 BP 582, Côte d'Ivoire
| | - Philippe Roumagnac
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, F- 34398, France
- CIRAD, PHIM, Montpellier, F-34398, France
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Department of Plant Protection, College of Agriculture, CIRAD, UMR PVBMT, Can Tho University, Can Tho city, Vietnam.
| |
Collapse
|
2
|
Chen Y, Guo S, Jiang L, Yan F, Hao K, Wang Z, An M, Xia Z, Li F, Zhou X, Wu Y. Molecular characterization and pathogenicity of a novel monopartite geminivirus infecting tobacco in China. Virology 2024; 594:110061. [PMID: 38518441 DOI: 10.1016/j.virol.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
The occurrence of geminiviruses causes significant economic losses in many economically important crops. In this study, a novel geminivirus isolated from tobacco in Sichuan province of China, named tomato leaf curl Chuxiong virus (TLCCxV), was characterized by small RNA-based deep sequencing. The full-length of TLCCxV genome was determined to be 2744 nucleotides (nt) encoding six open reading frames. Phylogenetic and genome-wide pairwise identity analysis revealed that TLCCxV shared less than 91% identities with reported geminiviruses. A TLCCxV infectious clone was constructed and successfully infected Nicotiana benthamiana, N. tabacum, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants. Furthermore, expression of the V2, C1 and C4 proteins through a potato virus X vector caused severe chlorosis or necrosis symptom in N. benthamiana. Taken together, we identified a new geminivirus in tobacco plants, and found that V2, C1 and C4 contribute to symptom development.
Collapse
Affiliation(s)
- Yuan Chen
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shiping Guo
- Sichuan Tobacco Company, Chengdu, Sichuan, 610000, China
| | - Lianqiang Jiang
- Liangshan Branch of Sichuan Tobacco Company, Xichang, Sichuan, 615000, China
| | - Fangfang Yan
- Panzhihua Branch of Sichuan Tobacco Company, Panzhihua, Sichuan, 617000, China
| | - Kaiqiang Hao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
3
|
Villegas M, Yvon M, Le Blaye S, Mathieu L, Blanc S, Zeddam JL. Replication-independent change in the frequencies of distinct genome segments of a multipartite virus during its transit within aphid vectors. Microbiol Spectr 2024; 12:e0028724. [PMID: 38517168 PMCID: PMC11064520 DOI: 10.1128/spectrum.00287-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Multipartite viruses exhibit a fragmented genome composed of several nucleic acid segments individually packaged in distinct viral particles. The genome of all species of the genus Nanovirus holds eight segments, which accumulate at a very specific and reproducible relative frequency in the host plant tissues. In a given host species, the steady state pattern of the segments' relative frequencies is designated the genome formula and is thought to have an adaptive function through the modulation of gene expression. Nanoviruses are aphid-transmitted circulative non-propagative viruses, meaning that the virus particles are internalized into the midgut cells, transferred to the hemolymph, and then to the saliva, with no replication during this transit. Unexpectedly, a previous study on the faba bean necrotic stunt virus revealed that the genome formula changes after ingestion by aphids. We investigate here the possible mechanism inducing this change by first comparing the relative segment frequencies in different compartments of the aphid. We show that changes occur both in the midgut lumen and in the secreted saliva but not in the gut, salivary gland, or hemolymph. We further establish that the viral particles differentially resist physicochemical variations, in particular pH, ionic strength, and/or type of salt, depending on the encapsidated segment. We thus propose that the replication-independent genome formula changes within aphids are not adaptive, contrary to changes occurring in plants, and most likely reflect a fortuitous differential degradation of virus particles containing distinct segments when passing into extra-cellular media such as gastric fluid or saliva. IMPORTANCE The genome of multipartite viruses is composed of several segments individually packaged into distinct viral particles. Each segment accumulates at a specific frequency that depends on the host plant species and regulates gene expression. Intriguingly, the relative frequencies of the genome segments also change when the octopartite faba bean necrotic stunt virus (FBNSV) is ingested by aphid vectors, despite the present view that this virus travels through the aphid gut and salivary glands without replicating. By monitoring the genomic composition of FBNSV populations during the transit in aphids, we demonstrate here that the changes take place extracellularly in the gut lumen and in the saliva. We further show that physicochemical factors induce differential degradation of viral particles depending on the encapsidated segment. We propose that the replication-independent changes within the insect vector are not adaptive and result from the differential stability of virus particles containing distinct segments according to environmental parameters.
Collapse
Affiliation(s)
- Mathilde Villegas
- PHIM, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Michel Yvon
- PHIM, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Sophie Le Blaye
- PHIM, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Laura Mathieu
- PHIM, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Jean-Louis Zeddam
- PHIM, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
5
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
6
|
Nonconcomitant host-to-host transmission of multipartite virus genome segments may lead to complete genome reconstitution. Proc Natl Acad Sci U S A 2022; 119:e2201453119. [PMID: 35914138 PMCID: PMC9371732 DOI: 10.1073/pnas.2201453119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.
Collapse
|
7
|
Effects of an alphasatellite on life cycle of the nanovirus Faba bean necrotic yellows virus. J Virol 2021; 96:e0138821. [PMID: 34818072 DOI: 10.1128/jvi.01388-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (hereafter named SCSA 1) on various important traits of faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation and transmission. The results indicate that SCSA 1 does not affect the symptom severity nor the overall FBNYV accumulation in V. faba, but changes the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to simple increase of the viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. Importance Alphasatellites are circular single stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruse, the two ssDNA plant infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both plant and vector. We also confirm that while within-plant virus load and symptom are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load, but significantly increases virus transmission rate, so may confer a possible evolutionary advantage for the helper virus.
Collapse
|
8
|
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, Lima ATM, Murilo Zerbini F. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 2021; 30:3747-3767. [PMID: 34021651 DOI: 10.1111/mec.15997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.
Collapse
Affiliation(s)
- César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Talita B Mar
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Osvaldo F L Sande
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José C Silva
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Ramos-Sobrinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renato N Nascimento
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Iraildes Assunção
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Gaus S A Lima
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Alison T M Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
10
|
Gaafar YZA, Herz K, Hartrick J, Fletcher J, Blouin AG, MacDiarmid R, Ziebell H. Investigating the Pea Virome in Germany-Old Friends and New Players in the Field(s). Front Microbiol 2020; 11:583242. [PMID: 33281777 PMCID: PMC7691430 DOI: 10.3389/fmicb.2020.583242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Peas are an important legume for human and animal consumption and are also being used as green manure or intermediate crops to sustain and improve soil condition. Pea production faces constraints from fungal, bacterial, and viral diseases. We investigated the virome of German pea crops over the course of three successive seasons in different regions of pea production to gain an overview of the existing viruses. Pools from 540 plants, randomly selected from symptomatic and asymptomatic peas, and non-crop plants surrounding the pea fields were used for ribosomal RNA-depleted total RNA extraction followed by high-throughput sequencing (HTS) and RT-PCR confirmation. Thirty-five different viruses were detected in addition to nine associated nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains or viruses that have not been reported previously from Germany. Pea enation mosaic virus 1 and 2 were the most prevalent viruses detected in the pea crops, followed by pea necrotic yellow dwarf virus (PNYDV) and turnip yellows virus which was also found also in the surrounding non-legume weeds. Moreover, a new emaravirus was detected in symptomatic peas in one region for two successive seasons. Most of the identified viruses are known to be aphid transmissible. The results revealed a high virodiversity in the German pea fields that poses new challenges to diagnosticians, researchers, risk assessors and policy makers, as the impact of the new findings are currently unknown.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kerstin Herz
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jonas Hartrick
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - John Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
11
|
Yu NT, Zhang YL, Wang JH, Liu ZX. A New Method to Obtain the Complete Genome Sequence of Multiple-Component Circular ssDNA Viruses by Transcriptome Analysis. Front Bioeng Biotechnol 2020; 8:832. [PMID: 32850712 PMCID: PMC7396673 DOI: 10.3389/fbioe.2020.00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Circular single-stranded DNA (ssDNA) viruses are widely distributed globally, infecting diverse hosts ranging from bacteria, archaea, and eukaryotes. Among these, the genome of Banana bunchy top virus (BBTV) comprises at least six circular, ssDNA components that are ∼1 kb in length. Its genome is usually amplified and obtained at the DNA level. However, RNA-based techniques to obtain the genome sequence of such multi-component viruses have not been reported. In this study, transcriptome sequencing analysis showed that the full-length of BBTV each genomic component was transcribed into viral mRNA (vmRNA). Accordingly, the near-complete genome of BBTV B2 isolate was assembled using transcriptome sequencing data from virus-infected banana leaves. Assembly analysis of BBTV-derived reads indicated that the full-length sequences were obtained for DNA-R, DNA-U3, DNA-S, DNA-M, DNA-N, NewS2, and Sat4 components, while two gaps (73 and 25 nt) missing in the DNA-C component which was further filled by reverse transcription-PCR (RT-PCR). The RT-qPCR analysis indicated that the vmRNA levels of coding regions were 3.19–103.53 folds higher than those of non-coding regions, implying that the integrity of genome assembly depended on the transcription level of non-coding region. In conclusion, this study proposes a new approach to obtain the genome of nanovirids, and provides insights for studying the transcriptional mechanism of the family Nanoviridae, Genomoviridae, and Geminiviridae.
Collapse
Affiliation(s)
- Nai-Tong Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Hainan Key Laboratory of Tropical Microbe Resources, Haikou, China
| | - Yu-Liang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian-Hua Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Hainan Key Laboratory of Tropical Microbe Resources, Haikou, China
| | - Zhi-Xin Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Hainan Key Laboratory of Tropical Microbe Resources, Haikou, China
| |
Collapse
|
12
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
13
|
Hassan-Sheikhi P, Heydarnejad J, Massumi H, Kraberger S, Varsani A. Novel nanovirus and associated alphasatellites identified in milk vetch plants with chlorotic dwarf disease in Iran. Virus Res 2019; 276:197830. [PMID: 31790775 DOI: 10.1016/j.virusres.2019.197830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/03/2023]
Abstract
Members of the family Nanoviridae are multi-component single-stranded DNA viruses that infect a variety of plant species. Using a combination of conventional PCR and high throughput sequencing-based approach, we identified a novel nanovirus infecting two symptomatic milk vetch plants (Astragalus myriacanthus Boiss.; family Fabaceae) showing marginal leaf chlorosis, little leaves and dwarfing in Iran. All eight segments (DNA-C, DNA-M, DNA-N, DNA-R, DNA-S, DNA-U1, DNA-U2 and DNAU4) were recovered and Sanger sequenced. The genome of this new nanovirus, hereby referred to as milk vetch chlorotic dwarf virus (MVCDV), shares 62.2-74.7 % nucleotide pairwise identity with the genomes of other nanoviruses. DNA-C, DNA-M, DNA-N, DNA-S components are most closely related to those of black medic leaf roll virus (BMLRV), sharing between 67.8-81.2 % identity. We also identified three nanoalphasatellites (family Alphasatellitidae) associated with the nanovirus which belong to species Faba bean necrotic yellows alphasatellite 1 (genus Subclovsatellite), Faba bean necrotic yellows alphasatellite 2 (genus Fabenesatellite) and Sophora yellow stunt alphasatellite 5 (genus Clostunsatellite). Given the significant diversity of Astragalus spp. in Iran, it is likely that there could be more nanoviruses circulating in these plants and that these may play a role in the spread of these nanovirus to cultivated fabaceous hosts.
Collapse
Affiliation(s)
- Parisa Hassan-Sheikhi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
| | - Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran; Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, 7616914111, Iran.
| | - Hossain Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
| | - Simona Kraberger
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
14
|
Vetten HJ, Knierim D, Rakoski MS, Menzel W, Maiss E, Gronenborn B, Winter S, Krenz B. Identification of a novel nanovirus in parsley. Arch Virol 2019; 164:1883-1887. [PMID: 31079213 DOI: 10.1007/s00705-019-04280-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/09/2019] [Indexed: 11/30/2022]
Abstract
Using next-generation sequencing to characterize agents associated with a severe stunting disease of parsley from Germany, we identified a hitherto undescribed virus. We sequenced total RNA and rolling-circle-amplified DNA from diseased plants. The genome sequence of the virus shows that it is a member of the genus Nanovirus, but it lacks DNA-U4. In addition to the seven genomic DNAs of the virus, we identified a second DNA-R and seven distinct alphasatellites associated with the disease. We propose the name "parsley severe stunt associated virus" (PSSaV) for this novel nanovirus.
Collapse
Affiliation(s)
| | - Dennis Knierim
- Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Messeweg 11/12, 38104, Brunswick, Germany
| | - Mirko Sebastian Rakoski
- Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, 30419, Hannover, Germany
| | - Wulf Menzel
- Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Messeweg 11/12, 38104, Brunswick, Germany
| | - Edgar Maiss
- Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, 30419, Hannover, Germany
| | - Bruno Gronenborn
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198, Gif sur Yvette, France
| | - Stephan Winter
- Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Messeweg 11/12, 38104, Brunswick, Germany
| | - Björn Krenz
- Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Messeweg 11/12, 38104, Brunswick, Germany.
| |
Collapse
|
15
|
Knierim D, Barrière Q, Grigoras I, Winter S, Vetten HJ, Schwinghamer M, Thomas J, Chu P, Gronenborn B, Timchenko T. Subterranean Clover Stunt Virus Revisited: Detection of Two Missing Genome Components. Viruses 2019; 11:v11020138. [PMID: 30720711 PMCID: PMC6410307 DOI: 10.3390/v11020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 01/15/2023] Open
Abstract
Subterranean clover stunt virus (SCSV) is a type species of the genus Nanovirus in the family Nanoviridae. It was the first single-stranded DNA plant virus with a multipartite genome, of which genomic DNA sequences had been determined. All nanoviruses have eight genome components except SCSV, for which homologs of two genome components present in all other nanovirus genomes, DNA-U2 and DNA-U4, were lacking. We analysed archived and more recent samples from SCSV-infected legume plants to verify its genome composition and found the missing genome components. These results indicated that SCSV also has eight genome components and is a typical member of the genus Nanovirus.
Collapse
Affiliation(s)
- Dennis Knierim
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7B, 38124 Braunschweig, Germany.
| | - Quentin Barrière
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, 91198 Gif-sur-Yvette, France.
| | - Ioana Grigoras
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, 91198 Gif-sur-Yvette, France.
| | - Stephan Winter
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Inhoffenstraße 7B, 38124 Braunschweig, Germany.
| | | | - Mark Schwinghamer
- NSW Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Calala, NSW 2340, Australia
| | - John Thomas
- The University of Queensland, QAAFI, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia.
| | - Paul Chu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Megalong Crescent, Harrison, ACT 2914, Australia.
| | - Bruno Gronenborn
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, 91198 Gif-sur-Yvette, France.
| | - Tatiana Timchenko
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
17
|
Zhang J, Liu X, Li W, Zhang J, Xiao Z, Zhou Z, Liu T, Li Y, Wang F, Zhang S, Yang J. Rapid detection of milk vetch dwarf virus by loop-mediated isothermal amplification. J Virol Methods 2018; 261:147-152. [PMID: 30176303 DOI: 10.1016/j.jviromet.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
Milk vetch dwarf virus (MDV) is a member of the genus Nanovirus, and its genome is composed of multiple circular 1-kb ssDNA components. In this study, we first determined that the diseased tobacco samples obtained in Zhucheng, Shandong Province were naturally infected with MDV using a polymerase chain reaction (PCR) assay. Subsequently, loop-mediated isothermal amplification (LAMP) was developed for the detection of MDV for the first time. The Mg2+ and dNTP concentrations and the reaction temperature and time of the LAMP were optimized to 8 mM, 1.8 mM, 65 °C, and 60 min, respectively. The best ratio of the inner primers (FIP and BIP) to the outer primers (F3 and B3) was 2:1. The LAMP detection limit was 100 times greater than that of PCR. The nucleotide amplification could be clearly observed by adding SYBR Green I. The positive and negative reactions exhibit distinctly different colors in daylight; however, the positive reactions exhibit green fluorescence under a UV lamp. Therefore, the method is stable, sensitive and specific.
Collapse
Affiliation(s)
- Jun Zhang
- Open Project Program of Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaowei Liu
- Open Project Program of Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Wei Li
- Hongyun Honghe Tobacco (Group) Co. Ltd., Kunming, 650231, China
| | - Jing Zhang
- Hongyun Honghe Tobacco (Group) Co. Ltd., Kunming, 650231, China
| | - Zhixin Xiao
- Baoshan Branch, Yunnan Tobacco Company, Baoshan, 678000, China
| | - Zhicheng Zhou
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China
| | - Tianbo Liu
- Central South Agricultural Experiment Station of China Tobacco, Changsha, 410004, China
| | - Ying Li
- Open Project Program of Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fenglong Wang
- Open Project Program of Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Songbai Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Jinguang Yang
- Open Project Program of Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
18
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
19
|
Grigoras I, Vetten HJ, Commandeur U, Ziebell H, Gronenborn B, Timchenko T. Nanovirus DNA-N encodes a protein mandatory for aphid transmission. Virology 2018; 522:281-291. [PMID: 30071404 DOI: 10.1016/j.virol.2018.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Nanoviruses possess a multipartite single-stranded DNA genome and are naturally transmitted to plants by various aphid species in a circulative non-propagative manner. Using the cloned genomic DNAs of faba bean necrotic stunt virus (FBNSV) for reconstituting nanovirus infections we analyzed the necessity of different virus components for infection and transmission by aphids. We found that in the absence of DNA-U1 and DNA-U2 symptom severity decreased, and in the absence of DNA-U1 the transmission efficiency decreased. Most significantly, we demonstrated that the protein encoded by DNA-N (NSP) is mandatory for aphid transmission. Moreover, we showed that the NSP of FBNSV could substitute for that of a distantly related nanovirus, pea necrotic yellow dwarf virus. Altering the FBNSV NSP by adding 13 amino acids to its carboxy-terminus resulted in an infectious but non-transmissible virus. We demonstrate that the NSP acts as a nanovirus transmission factor, the existence of which had been hypothesized earlier.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Heiko Ziebell
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France.
| |
Collapse
|
20
|
Gaafar Y, Nielsen GC, Ziebell H. Molecular characterisation of the first occurrence of
Pea necrotic yellow dwarf virus
in Denmark. ACTA ACUST UNITED AC 2018. [DOI: 10.5197/j.2044-0588.2018.037.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Y. Gaafar
- Julius Kuehn‐InstituteInstitute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐1238106BraunschweigGermany
| | - G. Cordsen Nielsen
- SEGESDanish Agriculture & Food Council F.m.b.A.Agro Food Park158200Aarhus NDenmark
| | - H. Ziebell
- Julius Kuehn‐InstituteInstitute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐1238106BraunschweigGermany
| |
Collapse
|
21
|
Molecular characterization of faba bean necrotic yellows viruses in Tunisia. Arch Virol 2017; 163:687-694. [PMID: 29147784 DOI: 10.1007/s00705-017-3651-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.
Collapse
|
22
|
Krenz B, Schießl I, Greiner E, Krapp S. Analyses of pea necrotic yellow dwarf virus-encoded proteins. Virus Genes 2017; 53:454-463. [PMID: 28238159 DOI: 10.1007/s11262-017-1439-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.
Collapse
Affiliation(s)
- Björn Krenz
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Ingrid Schießl
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Eva Greiner
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Susanna Krapp
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
23
|
Gaafar Y, Timchenko T, Ziebell H. First report of
Pea necrotic yellow dwarf virus
in The Netherlands. ACTA ACUST UNITED AC 2017. [DOI: 10.5197/j.2044-0588.2017.035.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Y. Gaafar
- Julius Kuehn‐InstituteInstitute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐1238106BraunschweigGermany
| | - T. Timchenko
- The French National Centre for Scientific ResearchInstitute of Integrative Biology of the Cell (I2BC)Avenue de la Terrasse91198Gif sur Yvette CedexFrance
| | - H. Ziebell
- Julius Kuehn‐InstituteInstitute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐1238106BraunschweigGermany
| |
Collapse
|
24
|
Heydarnejad J, Kamali M, Massumi H, Kvarnheden A, Male MF, Kraberger S, Stainton D, Martin DP, Varsani A. Identification of a Nanovirus-Alphasatellite Complex in Sophora alopecuroides. Virus Res 2017; 235:24-32. [PMID: 28396284 DOI: 10.1016/j.virusres.2017.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 10/19/2022]
Abstract
Viruses in the genus Nanovirus of the family Nanoviridae generally have eight individually encapsidated circular genome components and have been predominantly found infecting Fabaceae plants in Europe, Australia, Africa and Asia. For over a decade Sophora alopecuroides L. (Fabaceae) plants have been observed across Iran displaying dwarfing, yellowing, stunted leaves and yellow vein banding. Using a high-throughput sequencing approach, sequences were identified within one such plant that had similarities to nanovirus genome components. From this plant, the nanovirus-like molecules DNA-R (n=4), DNA-C (n=2), DNA-S (n=1), DNA-M (n=1), DNA-N (n=1), DNA-U1 (n=1), DNA-U2 (n=1) and DNA-U4 (n=1) were amplified, cloned and sequenced. Other than for the DNA-R, these components share less than 71% identity with those of other known nanoviruses. The four DNA-R molecules were highly diverse, sharing only 65-71% identity with each other and 64-86% identity with those of other nanoviruses. In the S. alopecuroides plant 14 molecules sharing 57.7-84.6% identity with previously determined sequences of nanovirus-associated alphasatellites were also identified. Given the research activity in the nanovirus field during the last five years coupled with high-throughput sequence technologies, many more diverse nanoviruses and nanovirus-associated satellites are likely to be identified.
Collapse
Affiliation(s)
- Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mehdi Kamali
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hossain Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Anders Kvarnheden
- Department of Plant Biology, Uppsala BioCenter, Linnean Center of Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | - Maketalena F Male
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Rondebosch, Cape Town, South Africa
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch 7701, Cape Town, South Africa; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| |
Collapse
|
25
|
Complete genomic characterization of milk vetch dwarf virus isolates from cowpea and broad bean in Anhui province, China. Arch Virol 2017; 162:2437-2440. [DOI: 10.1007/s00705-017-3348-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/01/2017] [Indexed: 10/19/2022]
|
26
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|
27
|
Sicard A, Zeddam JL, Yvon M, Michalakis Y, Gutiérrez S, Blanc S. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View. J Virol 2015; 89:9719-26. [PMID: 26178991 PMCID: PMC4577921 DOI: 10.1128/jvi.00780-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/08/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission.
Collapse
|
28
|
Stainton D, Martin DP, Muhire BM, Lolohea S, Halafihi M, Lepoint P, Blomme G, Crew KS, Sharman M, Kraberger S, Dayaram A, Walters M, Collings DA, Mabvakure B, Lemey P, Harkins GW, Thomas JE, Varsani A. The global distribution of Banana bunchy top virus reveals little evidence for frequent recent, human-mediated long distance dispersal events. Virus Evol 2015; 1:vev009. [PMID: 27774281 PMCID: PMC5014477 DOI: 10.1093/ve/vev009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.
Collapse
Affiliation(s)
- Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Darren P Martin
- Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Brejnev M Muhire
- Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Mana'ia Halafihi
- Ministry of Agriculture and Food, Forests and Fisheries, Kingdom of Tonga
| | | | - Guy Blomme
- Bioversity International Uganda Office, Naguru, Kampala, Uganda
| | - Kathleen S Crew
- Queensland Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Murray Sharman
- Queensland Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Anisha Dayaram
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Matthew Walters
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - David A Collings
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Batsirai Mabvakure
- South African National Bioinformatics Institute, MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, 7535, South Africa
| | - Philippe Lemey
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Gordon W Harkins
- South African National Bioinformatics Institute, MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, 7535, South Africa
| | - John E Thomas
- The University of Queensland, Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, Ecosciences Precinct, PO Box 46, Brisbane, QLD, 4001, Australia
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|
30
|
Kraberger S, Argüello-Astorga GR, Greenfield LG, Galilee C, Law D, Martin DP, Varsani A. Characterisation of a diverse range of circular replication-associated protein encoding DNA viruses recovered from a sewage treatment oxidation pond. INFECTION GENETICS AND EVOLUTION 2015; 31:73-86. [PMID: 25583447 DOI: 10.1016/j.meegid.2015.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Our knowledge of circular replication-associated protein encoding single-stranded (CRESS) DNA virus diversity has increased dramatically in recent years, largely due to advances in high-throughput sequencing technologies. These viruses are apparently major virome components in most terrestrial and aquatic environments and it is therefore of interest to determine their diversity at the interfaces between these environments. Treated sewage water is a particularly interesting interface between terrestrial and aquatic viromes in that it is directly pumped into waterways and is likely to contain virus populations that have been strongly impacted by humans. We used a combination of high-throughput sequencing, full genome PCR amplification, cloning and Sanger sequencing to investigate the diversity of CRESS DNA viruses present in a sewage oxidation pond. Using this approach, we recovered 50 putatively complete novel CRESS viral genomes (it remains possible that some are components of multipartite viral genomes) and 11 putatively sub-genome-length circular DNA molecules which may be either defective genomes or components of multipartite genomes. Thirteen of the genomes have bidirectional genome organisations and share similar conserved replication-associated protein (Rep) motifs to those of the gemycircularviruses: a group that in turn is most closely related to the geminiviruses. The remaining 37 viral genomes share very low degrees of Rep similarity to those of all other known CRESS DNA viruses. This number of highly divergent CRESS DNA virus genomes within a single sewage treatment pond further reinforces the notion that there likely exist hundreds of completely unknown genus/family level CRESS DNA virus groupings.
Collapse
Affiliation(s)
- Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Gerardo R Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P., Mexico
| | - Laurence G Greenfield
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Craig Galilee
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Donald Law
- The Laboratories, Christchurch City Council, Christchurch, New Zealand
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
31
|
Muhire BM, Varsani A, Martin DP. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 2014; 9:e108277. [PMID: 25259891 PMCID: PMC4178126 DOI: 10.1371/journal.pone.0108277] [Citation(s) in RCA: 950] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/26/2014] [Indexed: 01/16/2023] Open
Abstract
The perpetually increasing rate at which viral full-genome sequences are being determined is creating a pressing demand for computational tools that will aid the objective classification of these genome sequences. Taxonomic classification approaches that are based on pairwise genetic identity measures are potentially highly automatable and are progressively gaining favour with the International Committee on Taxonomy of Viruses (ICTV). There are, however, various issues with the calculation of such measures that could potentially undermine the accuracy and consistency with which they can be applied to virus classification. Firstly, pairwise sequence identities computed based on multiple sequence alignments rather than on multiple independent pairwise alignments can lead to the deflation of identity scores with increasing dataset sizes. Also, when gap-characters need to be introduced during sequence alignments to account for insertions and deletions, methodological variations in the way that these characters are introduced and handled during pairwise genetic identity calculations can cause high degrees of inconsistency in the way that different methods classify the same sets of sequences. Here we present Sequence Demarcation Tool (SDT), a free user-friendly computer program that aims to provide a robust and highly reproducible means of objectively using pairwise genetic identity calculations to classify any set of nucleotide or amino acid sequences. SDT can produce publication quality pairwise identity plots and colour-coded distance matrices to further aid the classification of sequences according to ICTV approved taxonomic demarcation criteria. Besides a graphical interface version of the program for Windows computers, command-line versions of the program are available for a variety of different operating systems (including a parallel version for cluster computing platforms).
Collapse
Affiliation(s)
- Brejnev Muhizi Muhire
- Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Darren Patrick Martin
- Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Asymmetric patterns of reassortment and concerted evolution in Cardamom bushy dwarf virus. INFECTION GENETICS AND EVOLUTION 2014; 24:15-24. [DOI: 10.1016/j.meegid.2014.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 02/26/2014] [Indexed: 11/18/2022]
|
33
|
Savory FR, Varma V, Ramakrishnan U. Identifying geographic hot spots of reassortment in a multipartite plant virus. Evol Appl 2014; 7:569-79. [PMID: 24944570 PMCID: PMC4055178 DOI: 10.1111/eva.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/05/2014] [Indexed: 11/26/2022] Open
Abstract
Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains.
Collapse
Affiliation(s)
- Fiona R Savory
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Varun Varma
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| |
Collapse
|