1
|
Mandour MF, Soe PP, Castonguay AS, Van Snick J, Coutelier JP. Inhibition of IL-12 heterodimers impairs TLR9-mediated prevention of early mouse plasmacytoma cell growth. Front Med (Lausanne) 2023; 9:1057252. [PMID: 36714124 PMCID: PMC9880182 DOI: 10.3389/fmed.2022.1057252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Natural prevention of cancer development depends on an efficient immunosurveillance that may be modulated by environmental factors, including infections. Innate lymphoid cytotoxic cells have been shown to play a major role in this immunosurveillance. Interleukin-12 (IL-12) has been suggested to be a key factor in the activation of innate cytotoxic cells after infection, leading to the enhancement of cancer immunosurveillance. Methods The aim of this work was to analyze in mouse experimental models by which mechanisms the interaction between infectious agent molecules and the early innate responses could enhance early inhibition of cancer growth and especially to assess the role of IL-12 by using novel antibodies specific for IL-12 heterodimers. Results Ligation of toll-like receptor (TLR)9 by CpG-protected mice against plasmacytoma TEPC.1033.C2 cell early growth. This protection mediated by innate cytolytic cells was strictly dependent on IL-12 and partly on gamma-interferon. Moreover, the protective effect of CpG stimulation, and to a lesser extent of TLR3 and TLR7/8, and the role of IL-12 in this protection were confirmed in a model of early mesothelioma AB1 cell growth. Discussion These results suggest that modulation of the mouse immune microenvironment by ligation of innate receptors deeply modifies the efficiency of cancer immunosurveillance through the secretion of IL-12, which may at least partly explain the inhibitory effect of previous infections on the prevalence of some cancers.
Collapse
Affiliation(s)
- Mohamed F. Mandour
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pyone Pyone Soe
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Department of Pathology, University of Medicine (1) Yangon, Yangon, Myanmar
| | - Anne-Sophie Castonguay
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Département de Pharmacologie et de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jacques Van Snick
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Ludwig Institute, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Paul Coutelier
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,de Duve Institute, Université catholique de Louvain, Woluwe-Saint-Lambert, Belgium,*Correspondence: Jean-Paul Coutelier,
| |
Collapse
|
2
|
Mandour MF, Soe PP, Uyttenhove C, Van Snick J, Marbaix E, Coutelier JP. Lactate dehydrogenase-elevating virus enhances natural killer cell-mediated immunosurveillance of mouse mesothelioma development. Infect Agent Cancer 2020; 15:30. [PMID: 32391074 PMCID: PMC7203855 DOI: 10.1186/s13027-020-00288-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
Background Viral infections can reduce early cancer development through enhancement of cancer immunosurveillance. This study was performed to analyse this effect of viral infection in a mouse model of solid tumor. Methods The experimental model used was the effect of BALB/c mouse infection by lactate dehydrogenase-elevating virus on AB1 mesothelioma cancer development. Results Acute infection with lactate dehydrogenase-elevating virus strongly reduced in vivo early AB1 mesothelioma growth and death resulting from cancer development. This effect was not due to a direct cytolytic effect of the virus on AB1 cells, but to an in vivo activation of natural killer cells. Gamma-interferon production rather than cytotoxic activity against AB1 cells mediated this protective effect. This gamma-interferon production by natural killer cells was dependent on interleukin-12 production. Conclusions Together with other reported effects of infectious agents on cancer development, this observation may support the hypothesis that enhancement of innate immunosurveillance against tumors may result from infection with common infectious agents through modulation of the host immune microenvironment.
Collapse
Affiliation(s)
- Mohamed F Mandour
- 1Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, SSS/DDUV - ICP, Av. Hippocrate 75, bte B1.75.02, 1200 Brussels, Belgium.,2Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pyone Pyone Soe
- 1Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, SSS/DDUV - ICP, Av. Hippocrate 75, bte B1.75.02, 1200 Brussels, Belgium.,3Department of Pathology, University of Medicine, Yangon, Myanmar
| | - Catherine Uyttenhove
- 4Ludwig Institute, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jacques Van Snick
- 4Ludwig Institute, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Etienne Marbaix
- 5Unit of Cell Biology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-Paul Coutelier
- 1Unit of Experimental Medicine, de Duve Institute, Université Catholique de Louvain, SSS/DDUV - ICP, Av. Hippocrate 75, bte B1.75.02, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, Reilly K, Donnelly O, Peach H, Dewar D, Harrington KJ, Pandha H, Samson A, Vile RG, Melcher AA, Errington-Mais F. Potentiating Oncolytic Virus-Induced Immune-Mediated Tumor Cell Killing Using Histone Deacetylase Inhibition. Mol Ther 2019; 27:1139-1152. [PMID: 31053413 PMCID: PMC6554638 DOI: 10.1016/j.ymthe.2019.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023] Open
Abstract
A clinical oncolytic herpes simplex virus (HSV) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), talimogene laherparepvec, causes regression of injected and non-injected melanoma lesions in patients and is now licensed for clinical use in advanced melanoma. To date, limited data are available regarding the mechanisms of human anti-tumor immune priming, an improved understanding of which could inform the development of future combination strategies with improved efficacy. This study addressed direct oncolysis and innate and adaptive human immune-mediated effects of a closely related HSV encoding GM-CSF (HSVGM-CSF) alone and in combination with histone deacetylase inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity via monocyte-mediated type I interferon production, which activates NK cells, and viral maturation of immature dendritic cells (iDCs) into potent antigen-presenting cells for cytotoxic T lymphocyte (CTL) priming. Addition of the histone deacetylase inhibitor valproic acid (VPA) to HSVGM-CSF treatment of tumor cells increased viral replication, viral GM-CSF production, and oncolysis and augmented the development of anti-tumor immunity. Mechanistically, VPA increased expression of activating ligands for NK cell recognition and induced expression of tumor-associated antigens, supporting innate NK cell killing and CTL priming. These data support the clinical combination of talimogene laherparepvec with histone deacetylase inhibition to enhance oncolysis and anti-tumor immunity.
Collapse
Affiliation(s)
- Victoria A Jennings
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK; Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gina B Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Ailsa M S Rose
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Karen J Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gemma Migneco
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Brian Keller
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katrina Reilly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Oliver Donnelly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Howard Peach
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Donald Dewar
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Kevin J Harrington
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Hardev Pandha
- Leggett Building, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK
| | - Adel Samson
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | | | - Alan A Melcher
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK.
| | - Fiona Errington-Mais
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
4
|
Abstract
Today’s laboratory mouse, Mus musculus, has its origins as the ‘house mouse’ of North America and Europe. Beginning with mice bred by mouse fanciers, laboratory stocks (outbred) derived from M. musculus musculus from eastern Europe and M. m. domesticus from western Europe were developed into inbred strains. Since the mid-1980s, additional strains have been developed from Asian mice (M. m. castaneus from Thailand and M. m. molossinus from Japan) and from M. spretus which originated from the western Mediterranean region.
Collapse
|