1
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
2
|
Yang H, Talledge N, Arndt WG, Zhang W, Mansky LM. Human Immunodeficiency Virus Type 2 Capsid Protein Mutagenesis Reveals Amino Acid Residues Important for Virus Particle Assembly. J Mol Biol 2022; 434:167753. [PMID: 35868362 PMCID: PMC11057910 DOI: 10.1016/j.jmb.2022.167753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Zhuang Z, Zhong X, Chen Q, Chen H, Liu Z. Bioinformatics and System Biology Approach to Reveal the Interaction Network and the Therapeutic Implications for Non-Small Cell Lung Cancer Patients With COVID-19. Front Pharmacol 2022; 13:857730. [PMID: 35721149 PMCID: PMC9201692 DOI: 10.3389/fphar.2022.857730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
5
|
van Brummelen R, van Brummelen AC. The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 - A formulator's perspective. Biomed Pharmacother 2022; 148:112767. [PMID: 35240527 PMCID: PMC8884665 DOI: 10.1016/j.biopha.2022.112767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/18/2022] Open
Abstract
With an increased transmissibility but milder form of disease of the omicron variant of COVID-19 and the newer antivirals often still out of reach of many populations, a refocus of the current treatment regimens is required. Safe, affordable, and available adjuvant treatments should also be considered and known drugs and substances need to be repurposed and tested. Resveratrol, a well-known antioxidant of natural origin, shown to act as an antiviral as well as playing a role in immune stimulation, down regulation of the pro-inflammatory cytokine release and reducing lung injury by reducing oxidative stress, is such an option. New initiatives and collaborations will however need to be found to unleash resveratrol's full potential in the pharmaceutical market.
Collapse
|
6
|
Differential Activity of APOBEC3F, APOBEC3G, and APOBEC3H in the Restriction of HIV-2. J Mol Biol 2022; 434:167355. [PMID: 34774569 PMCID: PMC8752514 DOI: 10.1016/j.jmb.2021.167355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/01/2023]
Abstract
Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.
Collapse
|
7
|
Meissner ME, Julik EJ, Badalamenti JP, Arndt WG, Mills LJ, Mansky LM. Development of a User-Friendly Pipeline for Mutational Analyses of HIV Using Ultra-Accurate Maximum-Depth Sequencing. Viruses 2021; 13:v13071338. [PMID: 34372543 PMCID: PMC8310143 DOI: 10.3390/v13071338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
| | - Emily J. Julik
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan P. Badalamenti
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - William G. Arndt
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren J. Mills
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (E.J.J.); (W.G.A.)
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (L.J.M.); (L.M.M.)
| |
Collapse
|
8
|
Distinct Antiretroviral Mechanisms Elicited by a Viral Mutagen. J Mol Biol 2021; 433:167111. [PMID: 34153286 DOI: 10.1016/j.jmb.2021.167111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
5-aza-cytidine (5-aza-C) has been shown to be a potent human immunodeficiency virus type 1 (HIV-1) mutagen that induces G-to-C hypermutagenesis by incorporation of the reduced form (i.e., 5-aza-dC, 5-aza-dCTP). Evidence to date suggests that this lethal mutagenesis is the primary antiretroviral mechanism for 5-aza-C. To investigate the breadth of application of 5-aza-C as an antiretroviral mutagen, we have conducted a comparative, parallel analysis of the antiviral mechanism of 5-aza-C between HIV-1 and gammaretroviruses - i.e., murine leukemia virus (MuLV) and feline leukemia virus (FeLV). Intriguingly, in contrast to the hallmark G-to-C hypermutagenesis observed with HIV-1, MuLV and FeLV did not reveal the presence of a significant increase in mutational burden, particularly that of G-to-C transversion mutations. The effect of 5-aza-dCTP on DNA synthesis revealed that while HIV-1 RT was not inhibited by 5-aza-dCTP even at 100 µM, 5-aza-dCTP was incorporated and significantly inhibited MuLV RT, generating pause sites and reducing the fully extended product. 5-aza-dCTP was found to be incorporated into DNA by MuLV RT or HIV-1 RT, but only acted as a non-obligate chain terminator for MuLV RT. This biochemical data provides an independent line of experimental evidence in support of the conclusion that HIV-1 and MuLV have distinct primary mechanisms of antiretroviral action with 5-aza-C. Taken together, our data provides striking evidence that an antiretroviral mutagen can have strong potency via distinct mechanisms of action among closely related viruses, unlinking antiviral activity from antiviral mechanism of action.
Collapse
|
9
|
|
10
|
Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019; 865:172747. [PMID: 31634460 PMCID: PMC7173238 DOI: 10.1016/j.ejphar.2019.172747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Nucleos(t)ide analogues play pivotal roles as antiviral, cytotoxic or immunosuppressive agents. Here, we review recent reports of nucleoside analogues that exhibit broad-spectrum activity towards multiple life-threatening RNA and DNA viruses. We also present a discussion about nucleoside antimetabolites-approved antineoplastic agents-that have recently been shown to have antiviral and/or antibacterial activity. The approved drugs and drug combinations, as well as recently identified candidates for investigation and/or experimentation, are discussed. Several examples of repurposed drugs that have already been approved for use are presented. This strategy can be crucial for the first-line treatment of acute infections or coinfections and for the management of drug-resistant strains.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
11
|
Ianevski A, Zusinaite E, Kuivanen S, Strand M, Lysvand H, Teppor M, Kakkola L, Paavilainen H, Laajala M, Kallio-Kokko H, Valkonen M, Kantele A, Telling K, Lutsar I, Letjuka P, Metelitsa N, Oksenych V, Bjørås M, Nordbø SA, Dumpis U, Vitkauskiene A, Öhrmalm C, Bondeson K, Bergqvist A, Aittokallio T, Cox RJ, Evander M, Hukkanen V, Marjomaki V, Julkunen I, Vapalahti O, Tenson T, Merits A, Kainov D. Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Res 2018; 154:174-182. [PMID: 29698664 PMCID: PMC7113852 DOI: 10.1016/j.antiviral.2018.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/03/2022]
Abstract
According to the WHO, there is an urgent need for better control of viral diseases. Re-positioning existing safe-in-human antiviral agents from one viral disease to another could play a pivotal role in this process. Here, we reviewed all approved, investigational and experimental antiviral agents, which are safe in man, and identified 59 compounds that target at least three viral diseases. We tested 55 of these compounds against eight different RNA and DNA viruses. We found novel activities for dalbavancin against echovirus 1, ezetimibe against human immunodeficiency virus 1 and Zika virus, as well as azacitidine, cyclosporine, minocycline, oritavancin and ritonavir against Rift valley fever virus. Thus, the spectrum of antiviral activities of existing antiviral agents could be expanded towards other viral diseases. 339 approved, investigational and experimental safe-in-human antivirals were identified. 59 compounds, which target ≥3 viral diseases, were selected. 55 of the 59 compounds were tested against 8 RNA and DNA viruses. 7 compounds were found to possess novel antiviral activities.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway.
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, Helsinki 00014, Finland.
| | - Mårten Strand
- Department of Clinical Microbiology, Umeå University, Umeå 90185, Sweden.
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| | - Mona Teppor
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku 20520, Finland.
| | | | - Mira Laajala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40500, Finland.
| | - Hannimari Kallio-Kokko
- Department of Virology and Immunology, University of Helsinki, Helsinki University Hospital, Helsinki 00014, Finland.
| | - Miia Valkonen
- Helsinki University Hospital, Helsinki 00014, Finland.
| | - Anu Kantele
- Helsinki University Hospital, Helsinki 00014, Finland.
| | - Kaidi Telling
- Institute of Medical Microbiology, University of Tartu, Tartu 50411, Estonia.
| | - Irja Lutsar
- Institute of Medical Microbiology, University of Tartu, Tartu 50411, Estonia.
| | | | | | - Valentyn Oksenych
- St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Trondheim 7006, Norway.
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7006, Norway.
| | - Uga Dumpis
- Pauls Stradins Clinical University Hospital, Riga 1002, Latvia.
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Science, Kaunas 44307, Lithuania.
| | - Christina Öhrmalm
- Department of Medical Sciences, Uppsala University, Uppsala 75309, Sweden.
| | - Kåre Bondeson
- Department of Medical Sciences, Uppsala University, Uppsala 75309, Sweden.
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, Uppsala 75309, Sweden.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki 00290, Finland; Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå 90185, Sweden.
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, Turku 20520, Finland.
| | - Varpu Marjomaki
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40500, Finland.
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku 20520, Finland.
| | - Olli Vapalahti
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway; Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| |
Collapse
|
12
|
Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene. Antimicrob Agents Chemother 2017; 61:AAC.00408-17. [PMID: 28652233 DOI: 10.1128/aac.00408-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations.
Collapse
|
13
|
Rawson JMO, Gohl DM, Landman SR, Roth ME, Meissner ME, Peterson TS, Hodges JS, Beckman KB, Mansky LM. Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra. J Mol Biol 2017; 429:2290-2307. [PMID: 28502791 DOI: 10.1016/j.jmb.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Morgan E Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Tara S Peterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Ordonez P, Kunzelmann S, Groom HCT, Yap MW, Weising S, Meier C, Bishop KN, Taylor IA, Stoye JP. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells. Sci Rep 2017; 7:42824. [PMID: 28220857 PMCID: PMC5318888 DOI: 10.1038/srep42824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 11/17/2022] Open
Abstract
SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs.
Collapse
Affiliation(s)
- Paula Ordonez
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Harriet C. T. Groom
- Infection and Replication of Retroviruses Laboratory, The Francis Crick Institute, London, UK
| | - Melvyn W. Yap
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Simon Weising
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Germany
| | - Kate N. Bishop
- Infection and Replication of Retroviruses Laboratory, The Francis Crick Institute, London, UK
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
15
|
Achuthan V, Singh K, DeStefano JJ. Physiological Mg 2+ Conditions Significantly Alter the Inhibition of HIV-1 and HIV-2 Reverse Transcriptases by Nucleoside and Non-Nucleoside Inhibitors in Vitro. Biochemistry 2016; 56:33-46. [PMID: 27936595 DOI: 10.1021/acs.biochem.6b00943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse transcriptases (RTs) are typically assayed in vitro with 5-10 mM Mg2+, whereas the free Mg2+ concentration in cells is much lower. Artificially high Mg2+ concentrations used in vitro can misrepresent different properties of human immunodeficiency virus (HIV) RT, including fidelity, catalysis, pausing, and RNase H activity. Here, we analyzed nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) in primer extension assays at different concentrations of free Mg2+. At low concentrations of Mg2+, NRTIs and dideoxynucleotides (AZTTP, ddCTP, ddGTP, and 3TCTP) inhibited HIV-1 and HIV-2 RT synthesis less efficiently than they did with large amounts of Mg2+, whereas inhibition by the "translocation-defective RT inhibitor" EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) was unaffected by Mg2+ concentrations. Steady-state kinetic analyses revealed that the reduced level of inhibition at low Mg2+ concentrations resulted from a 3-9-fold (depending on the particular nucleotide and inhibitor) less efficient incorporation (based on kcat/Km) of these NRTIs under this condition compared to incorporation of natural dNTPs. In contrast, EFdATP was incorporated with an efficiency similar to that of its analogue dATP at low Mg2+ concentrations. Unlike NRTIs, NNRTIs (nevirapine, efavirenz, and rilviripine), were approximately 4-fold (based on IC50 values) more effective at low than at high Mg2+ concentrations. Drug-resistant HIV-1 RT mutants also displayed the Mg2+-dependent difference in susceptibility to NRTIs and NNRTIs. In summary, analyzing the efficiency of inhibitors under more physiologically relevant low-Mg2+ conditions yielded results dramatically different from those from measurements using commonly employed high-Mg2+ in vitro conditions. These results also emphasize differences in Mg2+ sensitivity between the translocation inhibitor EFdATP and other NRTIs.
Collapse
Affiliation(s)
- Vasudevan Achuthan
- Cell Biology and Molecular Genetics, University of Maryland , College Park, Maryland 20742, United States.,Maryland Pathogen Research Institute , College Park, Maryland 20742, United States
| | - Kamlendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States.,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine , Columbia, Missouri 65211, United States
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, University of Maryland , College Park, Maryland 20742, United States.,Maryland Pathogen Research Institute , College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Rawson JMO, Roth ME, Xie J, Daly MB, Clouser CL, Landman SR, Reilly CS, Bonnac L, Kim B, Patterson SE, Mansky LM. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase. Bioorg Med Chem 2016; 24:2410-2422. [PMID: 27117260 DOI: 10.1016/j.bmc.2016.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/18/2016] [Accepted: 03/27/2016] [Indexed: 11/29/2022]
Abstract
Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michele B Daly
- Emory Center for AIDS Research, Emory University, 1518 Clifton Road NE, Suite 8050, Atlanta, GA 30322, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street SE, Minneapolis, MN 55455, USA
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Laurent Bonnac
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Baek Kim
- Emory Center for AIDS Research, Emory University, 1518 Clifton Road NE, Suite 8050, Atlanta, GA 30322, USA
| | - Steven E Patterson
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, Medical School, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Daly MB, Roth ME, Bonnac L, Maldonado JO, Xie J, Clouser CL, Patterson SE, Kim B, Mansky LM. Dual anti-HIV mechanism of clofarabine. Retrovirology 2016; 13:20. [PMID: 27009333 PMCID: PMC4806454 DOI: 10.1186/s12977-016-0254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 replication kinetics inherently depends on the availability of cellular dNTPs for viral DNA synthesis. In activated CD4(+) T cells and other rapidly dividing cells, the concentrations of dNTPs are high and HIV-1 reverse transcription occurs in an efficient manner. In contrast, nondividing cells such as macrophages have lower dNTP pools, which restricts efficient reverse transcription. Clofarabine is an FDA approved ribonucleotide reductase inhibitor, which has shown potent antiretroviral activity in transformed cell lines. Here, we explore the potency, toxicity and mechanism of action of clofarabine in the human primary HIV-1 target cells: activated CD4(+) T cells and macrophages. RESULTS Clofarabine is a potent HIV-1 inhibitor in both activated CD4(+) T cells and macrophages. Due to its minimal toxicity in macrophages, clofarabine displays a selectivity index over 300 in this nondividing cell type. The anti-HIV-1 activity of clofarabine correlated with a significant decrease in both cellular dNTP levels and viral DNA synthesis. Additionally, we observed that clofarabine triphosphate was directly incorporated into DNA by HIV-1 reverse transcriptase and blocked processive DNA synthesis, particularly at the low dNTP levels found in macrophages. CONCLUSIONS Taken together, these data provide strong mechanistic evidence that clofarabine is a dual action inhibitor of HIV-1 replication that both limits dNTP substrates for viral DNA synthesis and directly inhibits the DNA polymerase activity of HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Michele B Daly
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laurent Bonnac
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - José O Maldonado
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Steven E Patterson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, 1760 Haygood Dr., Atlanta, GA, 30322, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA. .,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Rawson JMO, Clouser CL, Mansky LM. Rapid Determination of HIV-1 Mutant Frequencies and Mutation Spectra Using an mCherry/EGFP Dual-Reporter Viral Vector. Methods Mol Biol 2016; 1354:71-88. [PMID: 26714706 DOI: 10.1007/978-1-4939-3046-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP). The reporter-based method can be used to efficiently quantify changes in mutant frequencies and mutation spectra that arise due to a variety of factors, including viral mutagens, drug resistance mutations, cellular physiology, and APOBEC3 proteins.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Microbiology, University of Minnesota, Graduate Program, Mayo Mail Code 196, 1460 Mayo Building, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Trends in Antiviral Strategies. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149557 DOI: 10.1016/b978-0-12-800837-9.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral populations are true moving targets regarding the genomic sequences to be targeted in antiviral designs. Experts from different fields have expressed the need of new paradigms for antiviral interventions and viral disease control. This chapter reviews several strategies that aim at counteracting the adaptive capacity of viral quasispecies. The proposed designs are based on combinations of different antiviral drugs and immune modulators, or in the administration of virus-specific mutagenic agents, in an approach termed lethal mutagenesis of viruses. It consists of decreasing viral fitness by an excess of mutations that render viral proteins sub-optimal or non-functional. Viral extinction by lethal mutagenesis involves several sequential, overlapping steps that recapitulate the major concepts of intra-population interactions and genetic information stability discussed in preceding chapters. Despite the magnitude of the challenge, the chapter closes with some optimistic prospects for an effective control of viruses displaying error-prone replication, based on the combined targeting of replication fidelity and the induction of the innate immune response.
Collapse
|
20
|
Söderholm S, Anastasina M, Islam MM, Tynell J, Poranen MM, Bamford DH, Stenman J, Julkunen I, Šaulienė I, De Brabander JK, Matikainen S, Nyman TA, Saelens X, Kainov D. Immuno-modulating properties of saliphenylhalamide, SNS-032, obatoclax, and gemcitabine. Antiviral Res 2015; 126:69-80. [PMID: 26738783 DOI: 10.1016/j.antiviral.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022]
Abstract
Influenza A viruses (IAVs) impact the public health and global economy by causing yearly epidemics and occasional pandemics. Several anti-IAV drugs are available and many are in development. However, the question remains which of these antiviral agents may allow activation of immune responses and protect patients against co- and re-infections. To answer to this question, we analysed immuno-modulating properties of the antivirals saliphenylhalamide (SaliPhe), SNS-032, obatoclax, and gemcitabine, and found that only gemcitabine did not impair immune responses in infected cells. It also allowed activation of innate immune responses in lipopolysaccharide (LPS)- and interferon alpha (IFNα)-stimulated macrophages. Moreover, immuno-mediators produced by gemcitabine-treated IAV-infected macrophages were able to prime immune responses in non-infected cells. Thus, we identified an antiviral agent which might be beneficial for treatment of patients with severe viral infections.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Finland; Finnish Institute of Occupational Health (TTL), Helsinki, Finland
| | - Maria Anastasina
- The Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland
| | | | - Janne Tynell
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Dennis H Bamford
- Institute of Biotechnology, University of Helsinki, Finland; Department of Biosciences, University of Helsinki, Finland
| | - Jakob Stenman
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki, Finland; Department of Virology, University of Turku, Turku, Finland
| | - Ingrida Šaulienė
- Department of Environmental Research, Siauliai University, Siauliai, Lithuania
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA
| | | | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Finland
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Denis Kainov
- The Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland; Department of Virology, University of Turku, Turku, Finland.
| |
Collapse
|
21
|
Yang T, Li S, Zhang X, Pang X, Lin Q, Cao J. Resveratrol, sirtuins, and viruses. Rev Med Virol 2015; 25:431-45. [DOI: 10.1002/rmv.1858] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Yang
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Shugang Li
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang; Tarim University; Alar Xinjiang China
| | - Xuming Zhang
- Department of Microbiology and Immunology; University of Arkansas for Medical Sciences; Little Rock AR USA
| | - Xiaowu Pang
- Departments of Oral Pathology, College of Dentistry; Howard University; Washington DC USA
| | - Qinlu Lin
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| | - Jianzhong Cao
- College of Food Science and Technology; Central South University of Forestry and Technology; Changsha Hunan Province China
| |
Collapse
|
22
|
Resveratrol inhibits rhinovirus replication and expression of inflammatory mediators in nasal epithelia. Antiviral Res 2015; 123:15-21. [PMID: 26296578 DOI: 10.1016/j.antiviral.2015.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 11/23/2022]
Abstract
Human rhinoviruses (HRV), the cause of common colds, are the most frequent precipitants of acute exacerbation of asthma and chronic obstructive pulmonary disease, as well as causes of other serious respiratory diseases. No vaccine or antiviral agents are available for the prevention or treatment of HRV infection. Resveratrol exerts antiviral effect against different DNA and RNA viruses. The antiviral effect of a new resveratrol formulation containing carboxymethylated glucan was analyzed in H1HeLa cell monolayers and ex vivo nasal epithelia infected with HRV-16. Virus yield was evaluated by plaque assay and expression of viral capsid proteins by Western blot. IL-10, IFN-β, IL-6, IL-8 and RANTES levels were evaluated by ELISA assay. ICAM-1 was assessed by Western blot and immunofluorescence. Resveratrol exerted a high, dose-dependent, antiviral activity against HRV-16 replication and reduced virus-induced secretion of IL-6, IL-8 and RANTES to levels similar to that of uninfected nasal epithelia. Basal levels of IL-6 and RANTES were also significantly reduced in uninfected epithelia confirming an anti-inflammatory effect of the compound. HRV-induced expression of ICAM-1 was reversed by resveratrol. Resveratrol may be useful for a therapeutic approach to reduce HRV replication and virus-induced cytokine/chemokine production.
Collapse
|
23
|
Benedict A, Bansal N, Senina S, Hooper I, Lundberg L, de la Fuente C, Narayanan A, Gutting B, Kehn-Hall K. Repurposing FDA-approved drugs as therapeutics to treat Rift Valley fever virus infection. Front Microbiol 2015. [PMID: 26217313 PMCID: PMC4495339 DOI: 10.3389/fmicb.2015.00676] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are currently no FDA-approved therapeutics available to treat Rift Valley fever virus (RVFV) infection. In an effort to repurpose drugs for RVFV treatment, a library of FDA-approved drugs was screened to determine their ability to inhibit RVFV. Several drugs from varying compound classes, including inhibitors of growth factor receptors, microtubule assembly/disassembly, and DNA synthesis, were found to reduce RVFV replication. The hepatocellular and renal cell carcinoma drug, sorafenib, was the most effective inhibitor, being non-toxic and demonstrating inhibition of RVFV in a cell-type and virus strain independent manner. Mechanism of action studies indicated that sorafenib targets at least two stages in the virus infectious cycle, RNA synthesis and viral egress. Computational modeling studies also support this conclusion. siRNA knockdown of Raf proteins indicated that non-classical targets of sorafenib are likely important for the replication of RVFV.
Collapse
Affiliation(s)
- Ashwini Benedict
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Neha Bansal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Svetlana Senina
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Bradford Gutting
- Chemical, Biological, Radiological Defense Division, Naval Surface Warfare Center Dahlgren, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
24
|
Han YS, Quashie PK, Mesplède T, Xu H, Quan Y, Jaeger W, Szekeres T, Wainberg MA. A resveratrol analog termed 3,3',4,4',5,5'-hexahydroxy-trans-stilbene is a potent HIV-1 inhibitor. J Med Virol 2015; 87:2054-60. [PMID: 25989218 DOI: 10.1002/jmv.24271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 02/04/2023]
Abstract
HIV resistance to current anti-HIV drugs and drug toxicity have created a need for new anti-HIV agents. We have examined and characterized a synthetic resveratrol analog, termed 3,3',4,4',5,5'-hexahydroxy-trans-stilbene (M8), for potential anti-HIV activity. Here, we demonstrate that M8 possesses potent anti-HIV activity against several HIV variants with EC50 values in the low μM range. M8 was shown to act at a very early step of HIV entry prior to fusion to host cells. These results demonstrate that this novel resveratrol derivative possesses potent anti-HIV-1 activity and may have a mechanism of action that is different from current anti-HIV-1 drugs including entry inhibitors. Further structure-guided design might lead to the development of newer improved resveratrol derivatives that could have value either in therapy or as microbicides to prevent the sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Thomas Szekeres
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Rawson JMO, Mansky LM. Retroviral vectors for analysis of viral mutagenesis and recombination. Viruses 2014; 6:3612-42. [PMID: 25254386 PMCID: PMC4189041 DOI: 10.3390/v6093612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|