1
|
Guo ZH, Qin XY, Guo HF, Zheng C, Zhang ZY, Chen Q, Wang XB, Han CG, Wang Y. The E3 ligase HRD1 enhances plant antiviral immunity by targeting viral movement proteins. Cell Rep 2025; 44:115449. [PMID: 40106437 DOI: 10.1016/j.celrep.2025.115449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
The ubiquitin-26S proteasome system (UPS) is a conserved protein degradation process involved in plant growth and immunity. However, whether some UPS E3 ligases directly target plant viruses in the endoplasmic reticulum (ER) remains less understood. Here, we identify an E3 ubiquitin ligase Hmg-CoA reductase degradation 1 of Nicotiana benthamiana (NbHRD1) interacting with the triple gene block (TGB) movement proteins of beet necrotic yellow vein virus (BNYVV) in the ER. The TGB proteins are ubiquitinated by NbHRD1 and then degraded by the UPS. Consequently, overexpression of NbHRD1a significantly inhibits BNYVV infection, whereas silencing of NbHRD1 promotes BNYVV infection in N. benthamiana. Moreover, NbHRD1a mainly impairs BNYVV cell-to-cell movement, rather than virus replication. Interestingly, NbHRD1 also targets the TGB proteins of potato virus X for ubiquitination and virus inhibition. Collectively, our results demonstrate that NbHRD1 is an important antiviral component targeting plant viruses with TGB movement proteins.
Collapse
Affiliation(s)
- Zhi-Hong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin-Yu Qin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong-Fang Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chuan Zheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Villar-Álvarez D, Leastro MO, Pallas V, Sánchez-Navarro JÁ. Identification of Host Factors Interacting with Movement Proteins of the 30K Family in Nicotiana tabacum. Int J Mol Sci 2024; 25:12251. [PMID: 39596316 PMCID: PMC11595209 DOI: 10.3390/ijms252212251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The interaction of viral proteins with host factors represents a crucial aspect of the infection process in plants. In this work, we developed a strategy to identify host factors in Nicotiana tabacum that interact with movement proteins (MPs) of the 30K family, a group of viral proteins around 30 kDa related to the MP of tobacco mosaic virus, which enables virus movement between plant cells. Using the alfalfa mosaic virus (AMV) MP as a model, we incorporated tags into its coding sequence, without affecting its functionality, enabling the identification of 121 potential interactors through in vivo immunoprecipitation of the tagged MP. Further analysis of five selected candidates (histone 2B (H2B), actin, 14-3-3A protein, eukaryotic initiation factor 4A (elF4A), and a peroxidase-POX-) were conducted using bimolecular fluorescence complementation (BiFC). The interactions between these factors were also studied, revealing that some form part of protein complexes associated with AMV MP. Moreover, H2B, actin, 14-3-3, and eIF4A interacted with other MPs of the 30K family. This observation suggests that, beyond functional and structural features, 30K family MPs may share common interactors. Our results demonstrate that tagging 30K family MPs is an effective strategy to identify host factors associated with these proteins during viral infection.
Collapse
Affiliation(s)
| | | | | | - Jesús Ángel Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de Valencia-CISC, 46022 Valencia, Spain; (D.V.-Á.); (M.O.L.); (V.P.)
| |
Collapse
|
3
|
Atabekova AK, Lazareva EA, Lezzhov AA, Golyshev SA, Skulachev BI, Morozov SY, Solovyev AG. Defense Responses Induced by Viral Movement Protein and Its Nuclear Localization Modulate Virus Cell-to-Cell Transport. PLANTS (BASEL, SWITZERLAND) 2024; 13:2550. [PMID: 39339524 PMCID: PMC11435296 DOI: 10.3390/plants13182550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Movement proteins (MPs) encoded by plant viruses are essential for cell-to-cell transport of viral genomes through plasmodesmata. The genome of hibiscus green spot virus contains a module of two MP genes termed 'binary movement block' (BMB), encoding the proteins BMB1 and BMB2. Here, BMB1 is shown to induce a defense response in Nicotiana benthamiana plants that inhibits BMB-dependent virus transport. This response is characterized by the accumulation of reactive oxygen species, callose deposition in the cell wall, and upregulation of 9-LOX expression. However, the BMB1-induced response is inhibited by coexpression with BMB2. Furthermore, BMB1 is found to localize to subnuclear structures, in particular to Cajal bodies, in addition to the cytoplasm. As shown in experiments with a BMB1 mutant, the localization of BMB1 to nuclear substructures enhances BMB-dependent virus transport. Thus, the virus transport mediated by BMB proteins is modulated by (i) a BMB1-induced defense response that inhibits transport, (ii) suppression of the BMB1-induced response by BMB2, and (iii) the nuclear localization of BMB1 that promotes virus transport. Collectively, the data presented demonstrate multiple levels of interactions between viral pathogens and their plant hosts during virus cell-to-cell transport.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (E.A.L.); (A.A.L.); (S.A.G.); (B.I.S.); (S.Y.M.)
| |
Collapse
|
4
|
Singh J, Teotia S, Singh AK, Arya M, Rout AK, Behera BK, Majumder S. Whole genome sequence analysis of shallot virus X from India reveals it to be a natural recombinant with positive selection pressure. BMC Genom Data 2024; 25:42. [PMID: 38711021 DOI: 10.1186/s12863-024-01196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Ajay Kumar Singh
- Deaprtment of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, 284003, Jhansi, Uttar Pradesh, India.
| | - Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, 284003, Jhansi, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, 284003, Jhansi, Uttar Pradesh, India
| | - Shahana Majumder
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
5
|
Li L, Wang G, Zhang Y, Wang W, Zhu Y, Lyu Y, Wang Y, Zhang Y, Hong N. The functions of triple gene block proteins and coat protein of apple stem pitting virus in viral cell-to-cell movement. MOLECULAR PLANT PATHOLOGY 2024; 25:e13392. [PMID: 37837244 PMCID: PMC10782654 DOI: 10.1111/mpp.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Apple stem pitting virus is a species in the genus Foveavirus in the family Betaflexiviridae. Apple stem pitting virus (ASPV) commonly infects apple and pear plants grown worldwide. In this study, by integrating bimolecular fluorescence complementation, split-ubiquitin-based membrane yeast two-hybrid, and Agrobacterium-mediated expression assays, the interaction relationships and the subcellular locations of ASPV proteins TGBp1-3 and CP in Nicotiana benthamiana leaf cells were determined. Proteins CP, TGBp1, TGBp2, and TGBp3 were self-interactable, and TGBp2 played a role in the formation of perinuclear viroplasm and enhanced the colocalization of TGBp3 with CP and TGBp1. We found that the plant microfilament and endoplasmic reticulum structures were involved in the production of TGBp3 and TGBp2 vesicles, and their disruption decreased the virus accumulation level in the systemic leaves. The TGBp3 motile vesicles functioned in delivering the viral ribonucleoprotein complexes to the plasma membrane. Two cysteine residues at sites 35 and 49 of the TGBp3 sorting signal were necessary for the diffusion of TGBp3-marked vesicles. Furthermore, our results revealed that TGBp1, TGBp2, and CP could increase plasmodesmal permeability and move to the adjacent cells. This study demonstrates an interaction network and a subcellular location map of four ASPV proteins and for the first time provides insight into the functions of these proteins in the movement of a foveavirus.
Collapse
Affiliation(s)
- Liu Li
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yue Zhang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenjun Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yiting Zhu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yuzhuo Lyu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
6
|
Atabekova AK, Golyshev SA, Lezzhov AA, Skulachev BI, Moiseenko AV, Yastrebova DM, Andrianova NV, Solovyev ID, Savitsky AP, Morozov SY, Solovyev AG. Fine Structure of Plasmodesmata-Associated Membrane Bodies Formed by Viral Movement Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:4100. [PMID: 38140427 PMCID: PMC10747570 DOI: 10.3390/plants12244100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Cell-to-cell transport of plant viruses through plasmodesmata (PD) requires viral movement proteins (MPs) often associated with cell membranes. The genome of the Hibiscus green spot virus encodes two MPs, BMB1 and BMB2, which enable virus cell-to-cell transport. BMB2 is known to localize to PD-associated membrane bodies (PAMBs), which are derived from the endoplasmic reticulum (ER) structures, and to direct BMB1 to PAMBs. This paper reports the fine structure of PAMBs. Immunogold labeling confirms the previously observed localization of BMB1 and BMB2 to PAMBs. EM tomography data show that the ER-derived structures in PAMBs are mostly cisterns interconnected by numerous intermembrane contacts that likely stabilize PAMBs. These contacts predominantly involve the rims of the cisterns rather than their flat surfaces. Using FRET-FLIM (Förster resonance energy transfer between fluorophores detected by fluorescence-lifetime imaging microscopy) and chemical cross-linking, BMB2 is shown to self-interact and form high-molecular-weight complexes. As BMB2 has been shown to have an affinity for highly curved membranes at cisternal rims, the interaction of BMB2 molecules located at rims of adjacent cisterns is suggested to be involved in the formation of intermembrane contacts in PAMBs.
Collapse
Affiliation(s)
- Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Boris I. Skulachev
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Andrey V. Moiseenko
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Daria M. Yastrebova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia;
| | - Nadezda V. Andrianova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
| | - Ilya D. Solovyev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (A.P.S.)
| | - Alexander P. Savitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (A.P.S.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.K.A.); (S.A.G.); (A.A.L.); (S.Y.M.)
- Biological Faculty, Moscow State University, 119234 Moscow, Russia; (B.I.S.); (A.V.M.)
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
7
|
Alcaide C, Méndez-López E, Úbeda JR, Gómez P, Aranda MA. Characterization of Two Aggressive PepMV Isolates Useful in Breeding Programs. Viruses 2023; 15:2230. [PMID: 38005907 PMCID: PMC10674935 DOI: 10.3390/v15112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Pepino mosaic virus (PepMV) causes significant economic losses in tomato crops worldwide. Since its first detection infecting tomato in 1999, aggressive PepMV variants have emerged. This study aimed to characterize two aggressive PepMV isolates, PepMV-H30 and PepMV-KLP2. Both isolates were identified in South-Eastern Spain infecting tomato plants, which showed severe symptoms, including bright yellow mosaics. Full-length infectious clones were generated, and phylogenetic relationships were inferred using their nucleotide sequences and another 35 full-length sequences from isolates representing the five known PepMV strains. Our analysis revealed that PepMV-H30 and PepMV-KLP2 belong to the EU and CH2 strains, respectively. Amino acid sequence comparisons between these and mild isolates identified 8 and 15 amino acid substitutions for PepMV-H30 and PepMV-KLP2, respectively, potentially involved in severe symptom induction. None of the substitutions identified in PepMV-H30 have previously been described as symptom determinants. The E236K substitution, originally present in the PepMV-H30 CP, was introduced into a mild PepMV-EU isolate, resulting in a virus that causes symptoms similar to those induced by the parental PepMV-H30 in Nicotiana benthamiana plants. In silico analyses revealed that this residue is located at the C-terminus of the CP and is solvent-accessible, suggesting its potential involvement in CP-host protein interactions. We also examined the subcellular localization of PepGFPm2E236K in comparison to that of PepGFPm2, focusing on chloroplast affection, but no differences were observed in the GFP subcellular distribution between the two viruses in epidermal cells of N. benthamiana plants. Due to the easily visible symptoms that PepMV-H30 and PepMV-KLP2 induce, these isolates represent valuable tools in programs designed to breed resistance to PepMV in tomato.
Collapse
Affiliation(s)
| | | | | | | | - Miguel A. Aranda
- ”Del Segura” Centre for Applied Biology (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Murcia, Spain; (C.A.); (E.M.-L.); (J.R.Ú.); (P.G.)
| |
Collapse
|
8
|
Chergintsev DA, Solovieva AD, Atabekova AK, Lezzhov AA, Golyshev SA, Morozov SY, Solovyev AG. Properties of Plant Virus Protein Encoded by the 5'-Proximal Gene of Tetra-Cistron Movement Block. Int J Mol Sci 2023; 24:14144. [PMID: 37762447 PMCID: PMC10532019 DOI: 10.3390/ijms241814144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To move from cell to cell through plasmodesmata, many plant viruses require the concerted action of two or more movement proteins (MPs) encoded by transport gene modules of virus genomes. A tetra-cistron movement block (TCMB) is a newly discovered transport module comprising four genes. TCMB encodes three proteins, which are similar to MPs of the transport module known as the "triple gene block", and a protein unrelated to known viral MPs and containing a double-stranded RNA (dsRNA)-binding domain similar to that found in a family of cell proteins, including AtDRB4 and AtHYL1. Here, the latter TCMB protein, named vDRB for virus dsRNA-binding protein, is shown to bind both dsRNA and single-stranded RNA in vitro. In a turnip crinkle virus-based assay, vDRB exhibits the properties of a viral suppressor of RNA silencing (VSR). In the context of potato virus X infection, vDRB significantly decreases the number and size of "dark green islands", regions of local antiviral silencing, supporting the VSR function of vDRB. Nevertheless, vDRB does not exhibit the VSR properties in non-viral transient expression assays. Taken together, the data presented here indicate that vDRB is an RNA-binding protein exhibiting VSR functions in the context of viral infection.
Collapse
Affiliation(s)
- Denis A. Chergintsev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.A.C.); (A.K.A.); (A.A.L.); (S.A.G.); (S.Y.M.)
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
9
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
10
|
Peng Z, Chen Y, Luo Z, Peng J, Zheng H, Wu G, Rao S, Wu J, Xu Z, Chen J, Lu Y, Guo F, Yan F. Complete genome sequence of a new virus from Allium sativum L in China. Arch Virol 2023; 168:167. [PMID: 37227509 DOI: 10.1007/s00705-023-05794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
The complete genome of a new virus belonging to the family Betaflexiviridae was identified in garlic and sequenced by next-generation sequencing and reverse transcription PCR. The complete RNA genome (GenBank accession number OP021693) is 8191 nucleotides in length, excluding the 3' poly(A) tail, and contains five open reading frames (ORFs). These open reading frames encode the viral replicase, triple gene block, and coat protein, and the genome organization is typical of members of the subfamily Quinvirinae. The virus has been tentatively named "garlic yellow curl virus" (GYCV). Phylogenetic analysis suggested that it represents an independent evolutionary lineage in the subfamily, clustering with the currently unclassified garlic yellow mosaic associated virus (GYMaV) and peony betaflexivirus 1 (PeV1). Differences between the phylogenies inferred for the replicase and coat protein indicate that the new virus does not belong to any established genus of the family Betaflexiviridae. This is the first report of GYCV in China.
Collapse
Affiliation(s)
- Zhengyu Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhaopeng Luo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Fengling Guo
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
12
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
13
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Dinesh-Kumar SP, Hsu YH. A viral movement protein co-opts endoplasmic reticulum luminal-binding protein and calreticulin to promote intracellular movement. PLANT PHYSIOLOGY 2023; 191:904-924. [PMID: 36459587 PMCID: PMC9922411 DOI: 10.1093/plphys/kiac547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chu-I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, California 95616, USA
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
14
|
Villamor DEV, Mejia AS, Martin RR, Tzanetakis IE. Genomic Analysis and Development of Infectious Clone of a Novel Carlavirus Infecting Blueberry. PHYTOPATHOLOGY 2023; 113:98-103. [PMID: 35852469 DOI: 10.1094/phyto-05-22-0186-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new blueberry virus was discovered using high-throughput sequencing. Using sequence identity values, phylogenetics, and serological and biological properties, we propose the virus, putatively named blueberry virus S (BluVS), to be a distinct species within the genus Carlavirus (family Betaflexiviridae). The genome was analyzed in depth, and an infectious clone was developed to initiate studies on virus pathogenicity. Agroinfiltration of the binary vector construct produced severe systemic symptoms in Nicotiana occidentalis. Back-inoculation using sap from agroinfiltrated N. occidentalis produced identical symptoms to the recipient plants (N. occidentalis), and virus purification yielded flexuous carlavirus-like particles. However, unlike blueberry scorch virus (BlScV), BluVS caused symptomless infection in Chenopodium quinoa and reacted weakly to BlScV antibodies in an enzyme-linked immunosorbent assay. Collectively, the results provide evidence for the distinct speciation of BluVS. The availability of an infectious clone provides tools for future studies on the biology of the virus.
Collapse
Affiliation(s)
- D E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - A Sierra Mejia
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - R R Martin
- Oregon State University and U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
15
|
Mifsud JCO, Gallagher RV, Holmes EC, Geoghegan JL. Transcriptome Mining Expands Knowledge of RNA Viruses across the Plant Kingdom. J Virol 2022; 96:e0026022. [PMID: 35638822 PMCID: PMC9769393 DOI: 10.1128/jvi.00260-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/24/2022] [Indexed: 01/07/2023] Open
Abstract
Our current understanding of plant viruses stems largely from those affecting economically important plants. Yet plant species in cultivation represent a small and biased subset of the plant kingdom. Here, we describe virus diversity and abundance in 1,079 transcriptomes from species across the breadth of the plant kingdom (Archaeplastida) by analyzing open-source data from the 1000 Plant Transcriptomes Initiative (1KP). We identified 104 potentially novel viruses, of which 40% were single-stranded positive-sense RNA viruses across eight orders, including members of the Hepelivirales, Tymovirales, Cryppavirales, Martellivirales, and Picornavirales. One-third of the newly described viruses were double-stranded RNA viruses from the orders Durnavirales and Ghabrivirales. The remaining were negative-sense RNA viruses from the Rhabdoviridae, Aspiviridae, Yueviridae, and Phenuiviridae and the newly proposed Viridisbunyaviridae. Our analysis considerably expands the known host range of 13 virus families to include lower plants (e.g., Benyviridae and Secoviridae) and 4 virus families to include alga hosts (e.g., Tymoviridae and Chrysoviridae). More broadly, however, a cophylogeny analysis revealed that the evolutionary history of these families is largely driven by cross-species transmission events. The discovery of the first 30-kDa movement protein in a nonvascular plant suggests that the acquisition of plant virus movement proteins occurred prior to the emergence of the plant vascular system. Together, these data highlight that numerous RNA virus families are associated with older evolutionary plant lineages than previously thought and that the apparent scarcity of RNA viruses found in lower plants likely reflects a lack of investigation rather than their absence. IMPORTANCE Our knowledge of plant viruses is mainly limited to those infecting economically important host species. In particular, we know little about those viruses infecting basal plant lineages such as the ferns, lycophytes, bryophytes, and charophytes. To expand this understanding, we conducted a broad-scale viral survey of species across the breadth of the plant kingdom. We found that basal plants harbor a wide diversity of RNA viruses, including some that are sufficiently divergent to likely compose a new virus family. The basal plant virome revealed offers key insights into the evolutionary history of core plant virus gene modules and genome segments. More broadly, this work emphasizes that the scarcity of viruses found in these species to date most likely reflects the limited research in this area.
Collapse
Affiliation(s)
- Jonathon C. O. Mifsud
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Rachael V. Gallagher
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jemma L. Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
16
|
Atabekova AK, Lazareva EA, Lezzhov AA, Solovieva AD, Golyshev SA, Skulachev BI, Solovyev ID, Savitsky AP, Heinlein M, Morozov SY, Solovyev AG. Interaction between Movement Proteins of Hibiscus green spot virus. Viruses 2022; 14:v14122742. [PMID: 36560746 PMCID: PMC9780815 DOI: 10.3390/v14122742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.
Collapse
Affiliation(s)
- Anastasia K. Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A. Lazareva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergei A. Golyshev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Boris I. Skulachev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Ilya D. Solovyev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexander P. Savitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, 67000 Strasbourg, France
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-939-3198
| |
Collapse
|
17
|
Carvalho SL, Tilsner J, Figueira AR, Carvalho CM. Subcellular localization and interactions among TGB proteins of cowpea mild mottle virus. Arch Virol 2022; 167:2555-2566. [PMID: 36269413 DOI: 10.1007/s00705-022-05576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Cowpea mild mottle virus (CPMMV) is a flexuous filamentous virus that belongs to the genus Carlavirus (family Betaflexiviridae). The CPMMV genome contains six open reading frames (ORFs), among which the triple gene block (TGB), encoded by ORFs 2 to 4, has been reported to encode movement proteins for different viruses. The subcellular localization of the TGB proteins of CPMMV isolate CPMMV:BR:MG:09:2 was analysed by transient expression of each protein fused to a fluorophore. Overall, the accumulation pattern and interactions among CPMMV TGB proteins (TGBp) were similar to those of their counterparts from the potex-like group. Considering these similarities, we evaluated the potential interactions between the TGB proteins of CPMMV and of potato virus X, which could complement cell-to-cell movement. The TGBp2 and TGBp3 of PVX had an effect on CPMMV TGBp1, directing it to the plasmodesmata, but the reverse was not true.
Collapse
Affiliation(s)
- S L Carvalho
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/ nº Campus Universitário, 36570-000, Viçosa, MG, Brasil
| | - J Tilsner
- Cell and Molecular Sciences, The James Hutton Institute, DD2 5DA, Dundee, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, KY16 9ST, St Andrews, Fife, Scotland, UK
| | - A R Figueira
- Departamento de Fitopatologia, Universidade Federal de Lavras, Campus Universitário, 37200- 900, Lavras, MG, Brazil
| | - C M Carvalho
- Departamento de Fitopatologia, Universidade Federal de Lavras, Campus Universitário, 37200- 900, Lavras, MG, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/ nº Campus Universitário, 36570-000, Viçosa, MG, Brasil.
| |
Collapse
|
18
|
Solovyev AG, Morozov SY. Uncovering Plant Virus Species Forming Novel Provisional Taxonomic Units Related to the Family Benyviridae. Viruses 2022; 14:v14122680. [PMID: 36560684 PMCID: PMC9781952 DOI: 10.3390/v14122680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Based on analyses of recent open-source data, this paper describes novel horizons in the diversity and taxonomy of beny-like viruses infecting hosts of the plant kingdom (Plantae or Archaeplastida). First, our data expand the known host range of the family Benyviridae to include red algae. Second, our phylogenetic analysis suggests that the evolution of this virus family may have involved cross-kingdom host change events and gene recombination/exchanges between distant taxa. Third, the identification of gene blocks encoding known movement proteins in beny-like RNA viruses infecting non-vascular plants confirms other evidence that plant virus genomic RNAs may have acquired movement proteins simultaneously or even prior to the evolutionary emergence of the plant vascular system. Fourth, novel data on plant virus diversity highlight that molecular evolution gave rise to numerous provisional species of land-plant-infecting viruses, which encode no known potential movement genetic systems.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-9393198
| |
Collapse
|
19
|
Silva JMF, Melo FL, Elena SF, Candresse T, Sabanadzovic S, Tzanetakis IE, Blouin AG, Villamor DEV, Mollov D, Constable F, Cao M, Saldarelli P, Cho WK, Nagata T. Virus classification based on in-depth sequence analyses and development of demarcation criteria using the Betaflexiviridae as a case study. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.
Collapse
Affiliation(s)
- João Marcos Fagundes Silva
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| | - Fernando Lucas Melo
- Departamento de Fitopatologia, Instituto de Biología Integrativa de Sistemas, University of Brasília, Brasília 70910-900, Brazil
| | - Santiago F. Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Instituto de Biología Integrativa de Sistemas (I2 13 SysBio), CSIC-Universitat de València, Paterna 14 46980 València, Spain
| | - Thierry Candresse
- Univ. Bordeaux, INRAE, UMR 1332 BFP, 33140 Villenave d’Ornon, France
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland
| | | | - Dimitre Mollov
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA
| | - Fiona Constable
- Department of Jobs Precincts and Regions, Agriculture Victoria Research, Agribio, Bundoora, VIC 3083, Australia
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, PR China
| | - Pasquale Saldarelli
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Via Amendola 122/D, 70126 Bari, Italy
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
20
|
Alcaide C, Donaire L, Aranda MA. Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains. MOLECULAR PLANT PATHOLOGY 2022; 23:1592-1607. [PMID: 35852033 PMCID: PMC9562736 DOI: 10.1111/mpp.13249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Pepino mosaic virus (PepMV) is a single-stranded (ss), positive-sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed-infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV-EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV-EU but not by PepMV-CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription-quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Livia Donaire
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Miguel A. Aranda
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| |
Collapse
|
21
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
22
|
Chen R, Yang M, Tu Z, Xie F, Chen J, Luo T, Hu X, Nie B, He C. Eukaryotic translation initiation factor 4E family member nCBP facilitates the accumulation of TGB-encoding viruses by recognizing the viral coat protein in potato and tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:946873. [PMID: 36003826 PMCID: PMC9393630 DOI: 10.3389/fpls.2022.946873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to their limited coding capacity, plant viruses have to depend on various host factors for successful infection of the host. Loss of function of these host factors will result in recessively inherited resistance, and therefore, these host factors are also described as susceptibility genes or recessive resistance genes. Most of the identified recessive resistance genes are members of the eukaryotic translation initiation factors 4E family (eIF4E) and its isoforms. Recently, an eIF4E-type gene, novel cap-binding protein (nCBP), was reported to be associated with the infection of several viruses encoding triple gene block proteins (TGBps) in Arabidopsis. Here, we, for the first time, report that the knockdown of nCBP in potato (StnCBP) compromises the accumulation of potato virus S (PVS) but not that of potato virus M (PVM) and potato virus X (PVX), which are three potato viruses encoding TGBps. Further assays demonstrated that StnCBP interacts with the coat proteins (CPs) of PVS and PVM but not with that of PVX, and substitution of PVS CP in the PVS infectious clone by PVM CP recovered the virus infection in StnCBP-silenced transgenic plants, suggesting that the recognition of PVS CP is crucial for StnCBP-mediated recessive resistance to PVS. Moreover, the knockdown of nCBP in Nicotiana benthamiana (NbnCBP) by virus-induced gene silencing suppressed PVX accumulation but not PVM, while NbnCBP interacted with the CPs of both PVX and PVM. Our results indicate that the nCBP orthologues in potato and tobacco have conserved function as in Arabidopsis in terms of recessive resistance against TGB-encoding viruses, and the interaction between nCBP and the CP of TGB-encoding virus is necessary but not sufficient to determine the function of nCBP as a susceptibility gene.
Collapse
Affiliation(s)
- Ruhao Chen
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Manhua Yang
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fangru Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiaru Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tao Luo
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinxi Hu
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| |
Collapse
|
23
|
Bioinformatic Analysis Predicts a Novel Genetic Module Related to Triple Gene and Binary Movement Blocks of Plant Viruses: Tetra-Cistron Movement Block. Biomolecules 2022; 12:biom12070861. [PMID: 35883420 PMCID: PMC9313169 DOI: 10.3390/biom12070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that the RNA genomes of some plant viruses encode two related genetic modules required for virus movement over the host body, containing two or three genes and named the binary movement block (BMB) and triple gene block (TGB), respectively. In this paper, we predict a novel putative-related movement gene module, called the tetra-cistron movement block (TCMB), in the virus-like transcriptome assemblies of the moss Dicranum scoparium and the Antarctic flowering plant Colobanthus quitensis. These TCMBs are encoded by smaller RNA components of putative two-component viruses related to plant benyviruses. Similar to the RNA2 of benyviruses, TCMB-containing RNAs have the 5′-terminal coat protein gene and include the RNA helicase gene which is followed by two small overlapping cistrons encoding hydrophobic proteins with a distant sequence similarity to the TGB2 and TGB3 proteins. Unlike TGB, TCMB also includes a fourth 5′-terminal gene preceding the helicase gene and coding for a protein showing a similarity to the double-stranded RNA-binding proteins of the DSRM AtDRB-like superfamily. Additionally, based on phylogenetic analysis, we suggest the involvement of replicative beny-like helicases in the evolution of the BMB and TCMB movement genetic modules.
Collapse
|
24
|
Igori D, Shin AY, Kim SE, Kwon S, Moon JS. Identification and molecular characterization of a novel kudzu-infecting virus of the family Betaflexiviridae. Arch Virol 2022; 167:1707-1711. [DOI: 10.1007/s00705-022-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
25
|
Jiang C, Shan S, Huang Y, Mao C, Zhang H, Li Y, Chen J, Wei Z, Sun Z. The C-Terminal Transmembrane Domain of Cowpea Mild Mottle Virus TGBp2 Is Critical for Plasmodesmata Localization and for Its Interaction With TGBp1 and TGBp3. Front Microbiol 2022; 13:860695. [PMID: 35495691 PMCID: PMC9051516 DOI: 10.3389/fmicb.2022.860695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The movement of some plant RNA viruses is mediated by triple gene block (TGB) proteins, which cooperate to transfer the viral genome from cell to cell through plasmodesmata. Here, we investigated the function of the TGB proteins of cowpea mild mottle virus (CPMMV; genus Carlavirus, family Betaflexiviridae), which causes severe damage to soybean production. Subcellular localization experiments demonstrated that TGBp1 and TGBp3 were localized to the endoplasmic reticulum (ER), plasmodesmata (PD) and nucleus in Nicotiana benthamiana leaves. TGBp2 was unusually localized to PD. In protein interaction assays TGBp2 significantly enhanced the interaction between TGBp3 and TGBp1. Interaction assays using deletion mutants showed that the C-terminal transmembrane (TM) domain of TGBp2 is critical for its localization to PD and for its interaction with TGBp1 and TGBp3.
Collapse
|
26
|
Veselova SV, Sorokan AV, Burkhanova GF, Rumyantsev SD, Cherepanova EA, Alekseev VY, Sarvarova ER, Kasimova AR, Maksimov IV. By Modulating the Hormonal Balance and Ribonuclease Activity of Tomato Plants Bacillus subtilis Induces Defense Response against Potato Virus X and Potato Virus Y. Biomolecules 2022; 12:biom12020288. [PMID: 35204789 PMCID: PMC8961569 DOI: 10.3390/biom12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic plant-growth-promoting microorganisms can protect plants against pathogens, but they have rarely been investigated as potential biocontrol agents and triggers of induced systemic resistance (ISR), regulated by phytohormones, against viruses. We studied the role of endophytic strains Bacillus subtilis 26D and B. subtilis Ttl2, which secrete ribonucleases and phytohormones, in the induction of tomato plant resistance against potato virus X and potato virus Y in a greenhouse condition. The endophytes reduced the accumulation of viruses in plants, increased the activity of plant ribonucleases and recovered the fruit yield of infected tomato plants. Both the 26D and Ttl2 strains induced ISR by activating the transcription of genes related to salicylate- and jasmonate-dependent responses. The 26D and Ttl2 strains increased the content of cytokinins and decreased the level of indolacetic acid in plants infected with PVX or PVY. PVY led to an increase of the abscisic acid (ABA) content in tomato plants, and PVX had the opposite effect. Both strains reduced the ABA content in plants infected with PVY and induced ABA accumulation in plants infected with PVX, which led to an increase in the resistance of plants. This is the first report of the protection of tomato plants against viral diseases by foliar application of endophytes.
Collapse
|
27
|
Tabassum N, Blilou I. Cell-to-Cell Communication During Plant-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:98-108. [PMID: 34664986 DOI: 10.1094/mpmi-09-21-0221-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Naheed Tabassum
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Chirkov SN, Sheveleva A, Snezhkina A, Kudryavtseva A, Krasnov G, Zakubanskiy A, Mitrofanova I. Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia. PeerJ 2022; 10:e12607. [PMID: 35036085 PMCID: PMC8742542 DOI: 10.7717/peerj.12607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chrysanthemum is a popular ornamental and medicinal plant that suffers from many viruses and viroids. Among them, chrysanthemum virus B (CVB, genus Carlavirus, family Betaflexiviridae) is widespread in all chrysanthemum-growing regions. Another carlavirus, chrysanthemum virus R (CVR), has been recently discovered in China. Information about chrysanthemum viruses in Russia is very scarce. The objective of this work was to study the prevalence and genetic diversity of CVB and CVR in Russia. METHODS We surveyed the chrysanthemum (Chrysanthemum morifolium Ramat.) germplasm collection in the Nikita Botanical Gardens, Yalta, Russia. To detect CVB and CVR, we used RT-PCR with virus-specific primers. To reveal the complete genome sequences of CVB and CVR isolates, metatransciptomic analysis of the cultivars Ribonette, Fiji Yellow, and Golden Standard plants, naturally co-infected with CVB and CVR, was performed using Illumina high-throughput sequencing. The recombination detection tool (RDP4) was employed to search for recombination in assembled genomes. RESULTS A total of 90 plants of 23 local and introduced chrysanthemum cultivars were surveyed. From these, 58 and 43% plants tested positive for CVB and CVR, respectively. RNA-Seq analysis confirmed the presence of CVB and CVR, and revealed tomato aspermy virus in each of the three transcriptomes. Six near complete genomes of CVB and CVR were assembled from the RNA-Seq reads. The CVR isolate X21 from the cultivar Golden Standard was 92% identical to the Chinese isolate BJ. In contrast, genomes of the CVR isolates X6 and X13 (from the cultivars Ribonette and Fiji Yellow, respectively), were only 76% to 77% identical to the X21 and BJ, and shared 95% identity to one another and appear to represent a divergent group of the CVR. Two distantly related CVB isolates, GS1 and GS2, were found in a plant of the cultivar Golden Standard. Their genomes shared from 82% to 87% identity to each other and the CVB genome from the cultivar Fiji Yellow (isolate FY), as well as to CVB isolates from Japan and China. A recombination event of 3,720 nucleotides long was predicted in the replicase gene of the FY genome. It was supported by seven algorithms implemented in RDP4 with statistically significant P-values. The inferred major parent was the Indian isolate Uttar Pradesh (AM765837), and minor parent was unknown. CONCLUSION We found a wide distribution of CVB and CVR in the chrysanthemum germplasm collection of the Nikita Botanical Gardens, which is the largest in Russia. Six near complete genomes of CVR and CVB isolates from Russia were assembled and characterized for the first time. This is the first report of CVR in Russia and outside of China thus expanding the information on the geographical distribution of the virus. Highly divergent CVB and CVR isolates have been identified that contributes the better understanding the genetic diversity of these viruses.
Collapse
Affiliation(s)
- Sergei N. Chirkov
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia,Kurchatov Genomic Center-NBG-NSC, Yalta, Russia
| | - Anna Sheveleva
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya Snezhkina
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Zakubanskiy
- Department of Medical Genomics, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Irina Mitrofanova
- Kurchatov Genomic Center-NBG-NSC, Yalta, Russia,Plant Developmental Biology, Biotechnology and Biosafety Department, Nikita Botanical Gardens, Yalta, Russia
| |
Collapse
|
29
|
Alcaide C, Aranda MA. Determinants of Persistent Patterns of Pepino Mosaic Virus Mixed Infections. Front Microbiol 2021; 12:694492. [PMID: 34295323 PMCID: PMC8290496 DOI: 10.3389/fmicb.2021.694492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022] Open
Abstract
Pepino mosaic virus (PepMV) has become a pandemic virus in tomato crops, causing important economic losses worldwide. In Spain, isolates of the EU and CH2 strains co-circulate, with PepMV-EU predominantly found in mixed infections. Simultaneous in planta mixed infections result in an asymmetric antagonism against PepMV-CH2, but the outcome of over-infections has never been tested. PepMV-EU and PepMV-CH2 time-lagged inoculations were performed, and viral accumulation was measured 10 days after challenge inoculation. PepMV-EU had a protective effect over PepMV-CH2; in contrast, the accumulation of PepMV-EU increased in plants pre-inoculated with PepMV-CH2 as compared to single infections. We also studied the effect of the type of infection on viral transmission. Independently of the nature of the infection (single or mixed), we observed a strong positive correlation between virus accumulation in the source plant and transmission, excluding mixed infection effects different than modulating viral accumulation. Finally, in order to determine the genetic variability of PepMV strains in single and mixed infections, a 430 nucleotide region was RT-PCR amplified from samples from a serial passages experiment and deep-sequenced. No significant differences were found in the number of nucleotide substitutions between single and mixed infections for PepMV-EU; in contrast, significant differences were found for PepMV-CH2, which was more variable in single than in mixed infections. Comparing PepMV-EU with PepMV-CH2, a higher nucleotide diversity was found for PepMV-CH2. Collectively, our data strongly suggest that PepMV mixed infections can impact the virus epidemiology by modulating in planta virus strain accumulation and diversification.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| |
Collapse
|
30
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
31
|
Khakhar A, Voytas DF. RNA Viral Vectors for Accelerating Plant Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:668580. [PMID: 34249040 PMCID: PMC8261061 DOI: 10.3389/fpls.2021.668580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
The tools of synthetic biology have enormous potential to help us uncover the fundamental mechanisms controlling development and metabolism in plants. However, their effective utilization typically requires transgenesis, which is plagued by long timescales and high costs. In this review we explore how transgenesis can be minimized by delivering foreign genetic material to plants with systemically mobile and persistent vectors based on RNA viruses. We examine the progress that has been made thus far and highlight the hurdles that need to be overcome and some potential strategies to do so. We conclude with a discussion of biocontainment mechanisms to ensure these vectors can be used safely as well as how these vectors might expand the accessibility of plant synthetic biology techniques. RNA vectors stand poised to revolutionize plant synthetic biology by making genetic manipulation of plants cheaper and easier to deploy, as well as by accelerating experimental timescales from years to weeks.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, United States
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
32
|
Liu J, Zhang L, Yan D. Plasmodesmata-Involved Battle Against Pathogens and Potential Strategies for Strengthening Hosts. FRONTIERS IN PLANT SCIENCE 2021; 12:644870. [PMID: 34149749 PMCID: PMC8210831 DOI: 10.3389/fpls.2021.644870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/28/2021] [Indexed: 06/01/2023]
Abstract
Plasmodesmata (PD) are membrane-lined pores that connect adjacent cells to mediate symplastic communication in plants. These intercellular channels enable cell-to-cell trafficking of various molecules essential for plant development and stress responses, but they can also be utilized by pathogens to facilitate their infection of hosts. Some pathogens or their effectors are able to spread through the PD by modifying their permeability. Yet plants have developed various corresponding defense mechanisms, including the regulation of PD to impede the spread of invading pathogens. In this review, we aim to illuminate the various roles of PD in the interactions between pathogens and plants during the infection process. We summarize the pathogenic infections involving PD and how the PD could be modified by pathogens or hosts. Furthermore, we propose several hypothesized and promising strategies for enhancing the disease resistance of host plants by the appropriate modulation of callose deposition and plasmodesmal permeability based on current knowledge.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
33
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021; 48:4677-4686. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
34
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
35
|
Elvira González L, Peiró R, Rubio L, Galipienso L. Persistent Southern Tomato Virus (STV) Interacts with Cucumber Mosaic and/or Pepino Mosaic Virus in Mixed- Infections Modifying Plant Symptoms, Viral Titer and Small RNA Accumulation. Microorganisms 2021; 9:689. [PMID: 33810543 PMCID: PMC8066132 DOI: 10.3390/microorganisms9040689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
Southern tomato virus (STV) is a persistent virus that was, at the beginning, associated with some tomato fruit disorders. Subsequent studies showed that the virus did not induce apparent symptoms in single infections. Accordingly, the reported symptoms could be induced by the interaction of STV with other viruses, which frequently infect tomato. Here, we studied the effect of STV in co- and triple-infections with Cucumber mosaic virus (CMV) and Pepino mosaic virus (PepMV). Our results showed complex interactions among these viruses. Co-infections leaded to a synergism between STV and CMV or PepMV: STV increased CMV titer and plant symptoms at early infection stages, whereas PepMV only exacerbated the plant symptoms. CMV and PepMV co-infection showed an antagonistic interaction with a strong decrease of CMV titer and a modification of the plant symptoms with respect to the single infections. However, the presence of STV in a triple-infection abolished this antagonism, restoring the CMV titer and plant symptoms. The siRNAs analysis showed a total of 78 miRNAs, with 47 corresponding to novel miRNAs in tomato, which were expressed differentially in the plants that were infected with these viruses with respect to the control mock-inoculated plants. These miRNAs were involved in the regulation of important functions and their number and expression level varied, depending on the virus combination. The number of vsiRNAs in STV single-infected tomato plants was very small, but STV vsiRNAs increased with the presence of CMV and PepMV. Additionally, the rates of CMV and PepMV vsiRNAs varied depending on the virus combination. The frequencies of vsiRNAs in the viral genomes were not uniform, but they were not influenced by other viruses.
Collapse
Affiliation(s)
- Laura Elvira González
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Rosa Peiró
- Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Luis Rubio
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
| | - Luis Galipienso
- Biotechnology and Plant Protection Center, Valencian Institute of Agricultural Research (IVIA), 46113 Valencia, Spain; (L.E.G.); (L.R.)
| |
Collapse
|
36
|
Thekke-Veetil T, McCoppin NK, Hobbs HA, Hartman GL, Lambert KN, Lim HS, Domier LL. Discovery of a Novel Member of the Carlavirus Genus from Soybean ( Glycine max L. Merr.). Pathogens 2021; 10:pathogens10020223. [PMID: 33670683 PMCID: PMC7922177 DOI: 10.3390/pathogens10020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
A novel member of the Carlavirus genus, provisionally named soybean carlavirus 1 (SCV1), was discovered by RNA-seq analysis of randomly collected soybean leaves in Illinois, USA. The SCV1 genome contains six open reading frames that encode a viral replicase, triple gene block proteins, a coat protein (CP) and a nucleic acid binding protein. The proteins showed highest amino acid sequence identities with the corresponding proteins of red clover carlavirus A (RCCVA). The predicted amino acid sequence of the SCV1 replicase was only 60.6% identical with the replicase of RCCVA, which is below the demarcation criteria for a new species in the family Betaflexiviridae. The predicted replicase and CP amino acid sequences of four SCV1 isolates grouped phylogenetically with those of members of the Carlavirus genus in the family Betaflexiviridae. The features of the encoded proteins, low nucleotide and amino acid sequence identities of the replicase with the closest member, and the phylogenetic grouping suggest SCV1 is a new member of the Carlavirus genus.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; (T.T.-V.); (H.A.H.); (G.L.H.); (K.N.L.)
| | - Nancy K. McCoppin
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA;
| | - Houston A. Hobbs
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; (T.T.-V.); (H.A.H.); (G.L.H.); (K.N.L.)
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; (T.T.-V.); (H.A.H.); (G.L.H.); (K.N.L.)
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA;
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; (T.T.-V.); (H.A.H.); (G.L.H.); (K.N.L.)
| | - Hyoun-Sub Lim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea;
| | - Leslie. L. Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; (T.T.-V.); (H.A.H.); (G.L.H.); (K.N.L.)
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA;
- Correspondence: ; Tel.: +1-217-333-0510
| |
Collapse
|
37
|
Leastro MO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JA. Unravelling the involvement of cilevirus p32 protein in the viral transport. Sci Rep 2021; 11:2943. [PMID: 33536554 PMCID: PMC7859179 DOI: 10.1038/s41598-021-82453-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/13/2021] [Indexed: 12/04/2022] Open
Abstract
Citrus leprosis (CL) is a severe disease that affects citrus orchards mainly in Latin America. It is caused by Brevipalpus-transmitted viruses from genera Cilevirus and Dichorhavirus. Currently, no reports have explored the movement machinery for the cilevirus. Here, we have performed a detailed functional study of the p32 movement protein (MP) of two cileviruses. Citrus leprosis-associated viruses are not able to move systemically in neither their natural nor experimental host plants. However, here we show that cilevirus MPs are able to allow the cell-to-cell and long-distance transport of movement-defective alfalfa mosaic virus (AMV). Several features related with the viral transport were explored, including: (i) the ability of cilevirus MPs to facilitate virus movement on a nucleocapsid assembly independent-manner; (ii) the generation of tubular structures from transient expression in protoplast; (iii) the capability of the N- and C- terminus of MP to interact with the cognate capsid protein (p29) and; (iv) the role of the C-terminus of p32 in the cell-to-cell and long-distance transport, tubule formation and the MP-plasmodesmata co-localization. The MP was able to direct the p29 to the plasmodesmata, whereby the C-terminus of MP is independently responsible to recruit the p29 to the cell periphery. Furthermore, we report that MP possess the capacity to enter the nucleolus and to bind to a major nucleolar protein, the fibrillarin. Based on our findings, we provide a model for the role of the p32 in the intra- and intercellular viral spread.
Collapse
Affiliation(s)
- Mikhail Oliveira Leastro
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, SP, Brazil. .,Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Juliana Freitas-Astúa
- Unidade Laboratorial de Referência em Biologia Molecular Aplicada, Instituto Biológico, São Paulo, SP, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, BA, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| |
Collapse
|
38
|
Lazareva EA, Lezzhov AA, Chergintsev DA, Golyshev SA, Dolja VV, Morozov SY, Heinlein M, Solovyev AG. Reticulon-like properties of a plant virus-encoded movement protein. THE NEW PHYTOLOGIST 2021; 229:1052-1066. [PMID: 32866987 DOI: 10.1111/nph.16905] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.
Collapse
Affiliation(s)
- Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Sergei A Golyshev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Manfred Heinlein
- Institute for Plant Molecular Biology (IBMP-CNRS), University of Strasbourg, Strasbourg, 67000, France
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 127550, Russia
| |
Collapse
|
39
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
40
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
41
|
Maachi A, Nagata T, Silva JMF. Date palm virus A: first plant virus found in date palm trees. Virus Genes 2020; 56:792-795. [PMID: 33026576 DOI: 10.1007/s11262-020-01801-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
In this work, a novel ssRNA (+) viral genomic sequence with gene organization typical of members of the subfamily Quinvirinae (family Betaflexiviridae) was identified using high- throughput sequencing data of date palm obtained from the Sequence Read Archive database. The viral genome sequence consists of 7860 nucleotides and contains five ORFs encoding for the replication protein (Rep), triple gene block proteins 1, 2, 3 (TGB 1, 2, and 3), and coat protein (CP). Phylogenetic analysis based on the Rep and the CP amino acid sequences showed the closest relationship to garlic yellow mosaic-associated virus (GYMaV). Based on the demarcation criteria of the family Betaflexiviridae, this new virus, provisionally named date palm virus A (DPVA), could constitute a member of a novel genus. However, considering that DPVA and GYMaV share the same genomic organization and that they cluster together on the Rep phylogenetic analysis, they could also constitute a novel genus together, highlighting the necessity of a revision of the taxonomic criteria of the family Betaflexiviridae.
Collapse
Affiliation(s)
- Ayoub Maachi
- R&D Department, Abiopep S.L, Espinardo 30100, Murcia, Spain
| | - Tatsuya Nagata
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, 70910-900, Brazil
| | - João Marcos Fagundes Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, 70910-900, Brazil.
| |
Collapse
|
42
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
43
|
Dickmeis C, Kauth L, Commandeur U. From infection to healing: The use of plant viruses in bioactive hydrogels. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1662. [PMID: 32677315 DOI: 10.1002/wnan.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Plant viruses show great diversity in shape and size, but each species forms unique nucleoprotein particles that are symmetrical and monodisperse. The genetically programed structure of plant viruses allows them to be modified by genetic engineering, bioconjugation, or encapsulation to form virus nanoparticles (VNPs) that are suitable for a broad range of applications. Plant VNPs can be used to present foreign proteins or epitopes, to construct inorganic hybrid materials, or to carry molecular cargos, allowing their utilization as imaging reagents, immunomodulators, therapeutics, nanoreactors, and biosensors. The medical applications of plant viruses benefit from their inability to infect and replicate in human cells. The structural properties of plant viruses also make them useful as components of hydrogels for tissue engineering. Hydrogels are three-dimensional networks composed of hydrophilic polymers that can absorb large amounts of water. They are used as supports for tissue regeneration, as reservoirs for controlled drug release, and are found in contact lenses, many wound healing materials, and hygiene products. They are also useful in ecological applications such as wastewater treatment. Hydrogel-based matrices are structurally similar to the native extracellular matrix (ECM) and provide a scaffold for the attachment of cells. To fully replicate the functions of the ECM it is necessary to augment hydrogels with biological cues that regulate cellular interactions. This can be achieved by incorporating functionalized VNPs displaying ligands that influence the mechanical characteristics of hydrogels and their biological properties, promoting the survival, proliferation, migration, and differentiation of embedded cells. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Louisa Kauth
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Zheng L, Chen M, Li R. Camellia ringspot-associated virus 4, a proposed new foveavirus from Camellia japonica. Arch Virol 2020; 165:1707-1710. [PMID: 32409876 DOI: 10.1007/s00705-020-04655-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/11/2020] [Indexed: 01/23/2023]
Abstract
One large contig with high sequence similarity to Asian prunus virus 2 was identified by high-throughput sequencing from a camellia (Camellia japonica) tree with ringspot symptoms. The complete genome of this new virus was determined to be 8829 nucleotides long, excluding the 3' poly(A) tail. Its genome organization resembles that of known foveaviruses but contains an additional open reading frame in the 3'-terminal region. Phylogenetic analysis also places this virus with members of the genus Foveavirus in the family Betaflexiviridae in the same subgroup. The virus, which is provisionally named "camellia ringspot-associated virus 4″, shares 50-56% nucleotide sequence identity with other foveaviruses and should represent a new species in the genus.
Collapse
Affiliation(s)
- Luping Zheng
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Madeleine Chen
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
| | - Ruhui Li
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
45
|
Jiang Z, Zhang K, Li Z, Li Z, Yang M, Jin X, Cao Q, Wang X, Yue N, Li D, Zhang Y. The Barley stripe mosaic virus γb protein promotes viral cell-to-cell movement by enhancing ATPase-mediated assembly of ribonucleoprotein movement complexes. PLoS Pathog 2020; 16:e1008709. [PMID: 32730331 PMCID: PMC7419011 DOI: 10.1371/journal.ppat.1008709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/11/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nine genera of viruses in five different families use triple gene block (TGB) proteins for virus movement. The TGB modules fall into two classes: hordei-like and potex-like. Although TGB-mediated viral movement has been extensively studied, determination of the constituents of the viral ribonucleoprotein (vRNP) movement complexes and the mechanisms underlying their involvement in vRNP-mediated movement are far from complete. In the current study, immunoprecipitation of TGB1 protein complexes formed during Barley stripe mosaic virus (BSMV) infection revealed the presence of the γb protein in the products. Further experiments demonstrated that TGB1 interacts with γb in vitro and in vivo, and that γb-TGB1 localizes at the periphery of chloroplasts and plasmodesmata (PD). Subcellular localization analyses of the γb protein in Nicotiana benthamiana epidermal cells indicated that in addition to chloroplast localization, γb also targets the ER, actin filaments and PD at different stages of viral infection. By tracking γb localization during BSMV infection, we demonstrated that γb is required for efficient cell-to-cell movement. The N-terminus of γb interacts with the TGB1 ATPase/helicase domain and enhances ATPase activity of the domain. Inactivation of the TGB1 ATPase activity also significantly impaired PD targeting. In vitro translation together with co-immunoprecipitation (co-IP) analyses revealed that TGB1-TGB3-TGB2 complex formation is enhanced by ATP hydrolysis. The γb protein positively regulates complex formation in the presence of ATP, suggesting that γb has a novel role in BSMV cell-to-cell movement by directly promoting TGB1 ATPase-mediated vRNP movement complex assembly. We further demonstrated that elimination of ATPase activity abrogates PD and actin targeting of Potato virus X (PVX) and Beet necrotic yellow vein virus (BNYVV) TGB1 proteins. These results expand our understanding of the multifunctional roles of γb and provide new insight into the functions of TGB1 ATPase domains in the movement of TGB-encoding viruses.
Collapse
Affiliation(s)
- Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhaolei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
46
|
Wu J, Zhang S, Atta S, Yang C, Zhou Y, Di Serio F, Zhou C, Cao M. Discovery and Survey of a New Mandarivirus Associated with Leaf Yellow Mottle Disease of Citrus in Pakistan. PLANT DISEASE 2020; 104:1593-1600. [PMID: 32357118 DOI: 10.1094/pdis-08-19-1744-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During biological indexing for viruses in citrus trees, in a collection of Symons sweet orange (SSO) (Citrus sinensis L. Osbeck) graft inoculated with bark tissues of citrus trees from the Punjab Province in Pakistan, several SSO trees exhibited leaf symptoms of vein yellowing and mottle. High-throughput sequencing by Illumina of RNA preparation depleted of ribosomal RNAs from one symptomatic tree, followed by BLAST analyses, allowed identification of a novel virus, tentatively named citrus yellow mottle-associated virus (CiYMaV). Genome features of CiYMaV are typical of members of the genus Mandarivirus (family Alphaflexiviridae). Virus particles with elongated flexuous shape and size resembling those of mandariviruses were observed by transmission electron microscopy. The proteins encoded by CiYMaV share high sequence identity, conserved motifs, and phylogenetic relationships with the corresponding proteins encoded by Indian citrus ringspot virus (ICRSV) and citrus yellow vein clearing virus (CYVCV), the two current members of the genus Mandarivirus. Although CYVCV is the virus most closely related to CiYMaV, the two viruses can be serologically and biologically discriminated from each other. A reverse-transcription PCR method designed to specifically detect CiYMaV revealed high prevalence (62%) of this virus in 120 citrus trees from the Punjab Province, Pakistan, where the novel virus was found mainly in mixed infection with CYVCV and citrus tristeza virus. However, a preliminary survey on samples from 200 citrus trees from the Yunnan Province, China failed to detect CiYMaV in this region, suggesting that the molecular, serological, and biological data provided here are timely and can help to prevent the spread of this virus in citrus-producing countries.
Collapse
Affiliation(s)
- Jiaxing Wu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Sagheer Atta
- Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering Shenyang University, Shenyang 110044, China
| | - Yan Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari 70126, Italy
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| |
Collapse
|
47
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
48
|
Li S, Su X, Luo X, Zhang Y, Zhang D, Du J, Zhang Z, OuYang X, Zhang S, Liu Y. First evidence showing that Pepper vein yellows virus P4 protein is a movement protein. BMC Microbiol 2020; 20:72. [PMID: 32228456 PMCID: PMC7106754 DOI: 10.1186/s12866-020-01758-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plant viruses move through plasmodesmata (PD) to infect new cells. To overcome the PD barrier, plant viruses have developed specific protein(s) to guide their genomic RNAs or DNAs to path through the PD. RESULTS In the present study, we analyzed the function of Pepper vein yellows virus P4 protein. Our bioinformatic analysis using five commonly used algorithms showed that the P4 protein contains an transmembrane domain, encompassing the amino acid residue 117-138. The subcellular localization of P4 protein was found to target PD and form small punctates near walls. The P4 deletion mutant or the substitution mutant constructed by overlap PCR lost their function to produce punctates near the walls inside the fluorescent loci. The P4-YFP fusion was found to move from cell to cell in infiltrated leaves, and P4 could complement Cucumber mosaic virus movement protein deficiency mutant to move between cells. CONCLUSION Taking together, we consider that the P4 protein is a movement protein of Pepper vein yellows virus.
Collapse
Affiliation(s)
- Sangsang Li
- Longping Branch, Hunan University, Changsha, 410125 China
| | - Xianyan Su
- Plant Protection Institute of Anhui Academy of Agricultural Science, Hefei, 230001 China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Yu Zhang
- Longping Branch, Hunan University, Changsha, 410125 China
| | - Deyong Zhang
- Longping Branch, Hunan University, Changsha, 410125 China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Jiao Du
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Zhanhong Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Songbai Zhang
- Longping Branch, Hunan University, Changsha, 410125 China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| | - Yong Liu
- Longping Branch, Hunan University, Changsha, 410125 China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province P. R. China
| |
Collapse
|
49
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
50
|
Alcaide C, Rabadán MP, Juárez M, Gómez P. Long-Term Cocirculation of Two Strains of Pepino Mosaic Virus in Tomato Crops and Its Effect on Population Genetic Variability. PHYTOPATHOLOGY 2020; 110:49-57. [PMID: 31524081 DOI: 10.1094/phyto-07-19-0247-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus-virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.
Collapse
Affiliation(s)
- C Alcaide
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| | - M P Rabadán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| | - M Juárez
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Orihuela 03312, Alicante, Spain
| | - P Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Campus de Espinardo, Espinardo, CP.30100, Murcia, Spain
| |
Collapse
|