1
|
Álvarez-Tosco K, González-Fernández R, González-Nicolás MÁ, Martín-Ramírez R, Morales M, Gutiérrez R, Díaz-Flores L, Arnau MR, Machín F, Ávila J, Lázaro A, Martín-Vasallo P. Dorsal root ganglion inflammation by oxaliplatin toxicity: DPEP1 as possible target for peripheral neuropathy prevention. BMC Neurosci 2024; 25:44. [PMID: 39278931 PMCID: PMC11403972 DOI: 10.1186/s12868-024-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Peripheral neuropathy (PN) constitutes a dose-limiting side effect of oxaliplatin chemotherapy that often compromises the efficacy of antineoplastic treatments. Sensory neurons damage in dorsal root ganglia (DRG) are the cellular substrate of PN complex molecular origin. Dehydropeptidase-1 (DPEP1) inhibitors have shown to avoid platin-induced nephrotoxicity without compromising its anticancer efficiency. The objective of this study was to describe DPEP1 expression in rat DRG in health and in early stages of oxaliplatin toxicity. To this end, we produced and characterized anti-DPEP1 polyclonal antibodies and used them to define the expression, and cellular and subcellular localization of DPEP1 by immunohistochemical confocal microscopy studies in healthy controls and short term (six days) oxaliplatin treated rats. RESULTS DPEP1 is expressed mostly in neurons and in glia, and to a lesser extent in endothelial cells. Rats undergoing oxaliplatin treatment developed allodynia. TNF-𝛼 expression in DRG revealed a pattern of focal and at different intensity levels of neural cell inflammatory damage, accompanied by slight variations in DPEP1 expression in endothelial cells and in nuclei of neurons. CONCLUSIONS DPEP1 is expressed in neurons, glia and endothelial cells of DRG. Oxaliplatin caused allodynia in rats and increased TNF-α expression in DRG neurons. The expression of DPEP1 in neurons and other cells of DRG suggest this protein as a novel strategic molecular target in the prevention of oxaliplatin-induced acute neurotoxicity.
Collapse
Affiliation(s)
- Karen Álvarez-Tosco
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Departamento de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Ángeles González-Nicolás
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Departamento de Oncología Médica, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Ricardo Gutiérrez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Lucio Díaz-Flores
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario y Animalario del Servicio General de Apoyo a la Investigación (SEGAI), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Félix Machín
- Unidad de Investigación, Hospital Universitario Nuestra Señora de la Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Alberto Lázaro
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
2
|
Huang B, Zdora I, de Buhr N, Eikelberg D, Baumgärtner W, Leitzen E. Phenotypical changes of satellite glial cells in a murine model of G M1 -gangliosidosis. J Cell Mol Med 2021; 26:527-539. [PMID: 34877779 PMCID: PMC8743646 DOI: 10.1111/jcmm.17113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRG) react in response to various injuries in the nervous system. This study investigates reactive changes within SGCs in a murine model for GM1‐gangliosidosis (GM1). DRG of homozygous β‐galactosidase‐knockout mice and homozygous C57BL/6 wild‐type mice were investigated performing immunostaining on formalin‐fixed, paraffin‐embedded tissue. A marked upregulation of glial fibrillary acidic protein (GFAP), the progenitor marker nestin and Ki67 within SGCs of diseased mice, starting after 4 months at the earliest GFAP, along with intracytoplasmic accumulation of ganglioside within neurons and deterioration of clinical signs was identified. Interestingly, nestin‐positive SGCs were detected after 8 months only. No changes regarding inwardly rectifying potassium channel 4.1, 2, 3‐cyclic nucleotide 3‐phosphodiesterase, Sox2, doublecortin, periaxin and caspase3 were observed in SGCs. Iba1 was only detected in close vicinity of SGCs indicating infiltrating or tissue‐resident macrophages. These results indicate that SGCs of DRG show phenotypical changes during the course of GM1, characterized by GFAP upregulation, proliferation and expression of a neural progenitor marker at a late time point. This points towards an important role of SGCs during neurodegenerative disorders and supports that SGCs represent a multipotent glial precursor cell line with high plasticity and functionality.
Collapse
Affiliation(s)
- Bei Huang
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center of Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
4
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Makker PGS, Duffy SS, Lees JG, Perera CJ, Tonkin RS, Butovsky O, Park SB, Goldstein D, Moalem-Taylor G. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS One 2017; 12:e0170814. [PMID: 28125674 PMCID: PMC5268425 DOI: 10.1371/journal.pone.0170814] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Preet G S Makker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samuel S Duffy
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chamini J Perera
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan S Tonkin
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanna B Park
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, New South Wales, Sydney, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, New South Wales, Randwick, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Ouwendijk WJD, Getu S, Mahalingam R, Gilden D, Osterhaus ADME, Verjans GMGM. Characterization of the immune response in ganglia after primary simian varicella virus infection. J Neurovirol 2015; 22:376-88. [PMID: 26676825 PMCID: PMC4899505 DOI: 10.1007/s13365-015-0408-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 10/25/2022]
Abstract
Primary simian varicella virus (SVV) infection in non-human primates causes varicella, after which the virus becomes latent in ganglionic neurons and reactivates to cause zoster. The host response in ganglia during establishment of latency is ill-defined. Ganglia from five African green monkeys (AGMs) obtained at 9, 13, and 20 days post-intratracheal SVV inoculation (dpi) were analyzed by ex vivo flow cytometry, immunohistochemistry, and in situ hybridization. Ganglia at 13 and 20 dpi exhibited mild inflammation. Immune infiltrates consisted mostly of CD8(dim) and CD8(bright) memory T cells, some of which expressed granzyme B, and fewer CD11c(+) and CD68(+) cells. Chemoattractant CXCL10 transcripts were expressed in neurons and infiltrating inflammatory cells but did not co-localize with SVV open reading frame 63 (ORF63) RNA expression. Satellite glial cells expressed increased levels of activation markers CD68 and MHC class II at 13 and 20 dpi compared to those at 9 dpi. Overall, local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.
Collapse
Affiliation(s)
- Werner J D Ouwendijk
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Sarah Getu
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Don Gilden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Nascimento DSM, Castro-Lopes JM, Neto FLM. Satellite glial cells surrounding primary afferent neurons are activated and proliferate during monoarthritis in rats: is there a role for ATF3? PLoS One 2014; 9:e108152. [PMID: 25247596 PMCID: PMC4172763 DOI: 10.1371/journal.pone.0108152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Joint inflammatory diseases are debilitating and very painful conditions that still lack effective treatments. Recently, glial cells were shown to be crucial for the development and maintenance of chronic pain, constituting novel targets for therapeutic approaches. At the periphery, the satellite glial cells (SGCs) that surround the cell bodies of primary afferents neurons in the dorsal root ganglia (DRG) display hypertrophy, proliferation, and activation following injury and/or inflammation. It has been suggested that the expression of neuronal injury factors might initially trigger these SGCs-related events. We then aimed at evaluating if SGCs are involved in the establishment/maintenance of articular inflammatory pain, by using the monoarthritis (MA) model, and if the neuronal injury marker activating transcriptional factor 3 (ATF3) is associated with these SGCs' reactive changes. Western Blot (WB) analysis of the glial fibrillary acidic protein (GFAP) expression was performed in L4-L5 DRGs from control non-inflamed rats and MA animals at different time-points of disease (4, 7, and 14d, induced by complete Freund's adjuvant injection into the left hind paw ankle joint). Data indicate that SGCs activation is occurring in MA animals, particularly after day 7 of disease evolution. Additionally, double-immunostaining for ATF3 and GFAP in L5 DRG sections shows that SGCs's activation significantly increases around stressed neurons at 7d of disease, when compared with control animals. The specific labelling of GFAP in SGCs rather than in other cell types was also confirmed by immunohistochemical labeling. Finally, BrdU incorporation indicates that proliferation of SGCs is also significantly increased after 7 days of MA. Data indicate that SGCs play an important role in the mechanisms of articular inflammation, with 7 days of disease being a critical time-point in the MA model, and suggest that ATF3 might be involved in SGCs' reactive changes such as activation.
Collapse
Affiliation(s)
- Diana Sofia Marques Nascimento
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - José Manuel Castro-Lopes
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Fani Lourença Moreira Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- * E-mail:
| |
Collapse
|
8
|
Nadeau JR, Wilson-Gerwing TD, Verge VMK. Induction of a reactive state in perineuronal satellite glial cells akin to that produced by nerve injury is linked to the level of p75NTR expression in adult sensory neurons. Glia 2014; 62:763-77. [PMID: 24616056 DOI: 10.1002/glia.22640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022]
Abstract
Satellite glial cells (SGCs) surrounding primary sensory neurons are similar to astrocytes of the central nervous system in that they buffer the extracellular environment via potassium and calcium channels and express the intermediate filament glial fibrillary acidic protein (GFAP). Peripheral nerve injury induces a reactive state in SGCs that includes SGC proliferation, increased SGC/SGC coupling via gap junctions, decreased inward rectifying potassium channel 4.1 (Kir 4.1) expression and increased expression of GFAP and the common neurotrophin receptor, p75NTR. In contrast, neuronal p75NTR expression, normally detected in ∼80% of adult rat sensory neurons, decreases in response to peripheral axotomy. Given the differential regulation of p75NTR expression in neurons versus SGCs with injury, we hypothesized that reduced signaling via neuronal p75NTR contributes to the induction of a reactive state in SGCs. We found that reducing neuronal p75NTR protein expression in uninjured sensory neurons by intrathecal subarachnoid infusion of p75NTR-selective anti-sense oligodeoxynucleotides for one week was sufficient to induce a "reactive-like" state in the perineuronal SGCs akin to that normally observed following peripheral nerve injury. This reactive state included significantly increased SGC p75NTR, GFAP and gap junction protein connexin-43 protein expression, increased numbers of SGCs surrounding individual sensory neurons and decreased SGC Kir 4.1 channel expression. Collectively, this supports the tenet that reductions in target-derived trophic support leading to, or as a consequence of, reduced neuronal p75NTR expression plays a critical role in switching the SGC to a reactive state.
Collapse
Affiliation(s)
- Joelle R Nadeau
- Department of Anatomy and Cell Biology, University of Saskatchewan/Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada
| | | | | |
Collapse
|
9
|
Donegan M, Kernisant M, Cua C, Jasmin L, Ohara PT. Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia 2013; 61:2000-8. [PMID: 24123473 DOI: 10.1002/glia.22571] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
We have examined satellite glial cell (SGC) proliferation in trigeminal ganglia following chronic constriction injury of the infraorbital nerve. Using BrdU labeling combined with immunohistochemistry for SGC specific proteins we positively confirmed proliferating cells to be SGCs. Proliferation peaks at approximately 4 days after injury and dividing SGCs are preferentially located around neurons that are immunopositive for ATF-3, a marker of nerve injury. After nerve injury there is an increase GFAP expression in SGCs associated with both ATF-3 immunopositive and immunonegative neurons throughout the ganglia. SGCs also express the non-glial proteins, CD45 and CD163, which label resident macrophages and circulating leukocytes, respectively. In addition to SGCs, we found some Schwann cells, endothelial cells, resident macrophages, and circulating leukocytes were BrdU immunopositive.
Collapse
Affiliation(s)
- Macayla Donegan
- University of California San Francisco, Center for Integrative Neuroscience, BOX 0444, 675 Nelson Rising Lane, San Francisco, California
| | | | | | | | | |
Collapse
|
10
|
Warwick RA, Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur J Pain 2012; 17:571-80. [PMID: 23065831 DOI: 10.1002/j.1532-2149.2012.00219.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy is a serious side effect in cancer treatment, a major manifestation being neuropathic pain that can be debilitating and can reduce the quality of life of the patient. Oxaliplatin and taxol are common anti-cancer drugs that induce neuropathic pain by an unknown mechanism. We tested the hypothesis that satellite glial cells in dorsal root ganglia (DRGs) are altered in chemotherapy-induced peripheral neuropathy models and contribute to neuropathic pain. METHODS Mice were injected with either oxaliplatin or taxol and examined at 7-30 days. Glial fibrillary acidic protein (glial activation marker) expression was determined by immunohistochemistry. Satellite glial cells in isolated DRG were injected with the fluorescent dye Lucifer yellow and the incidence of dye coupling among these cells that surround different neurons was quantified. RESULTS Taxol or oxaliplatin increased glial fibrillary acidic protein expression in satellite glial cells. Gap junction-mediated coupling between satellite glial cells was increased by up to fivefold after oxaliplatin and by up to twofold after taxol. This is consistent with work on other pain models showing that augmented satellite glial cell coupling contributes to chronic pain. Administration of the gap junction blocker carbenoxolone to chemotherapy-treated mice produced an analgesic-like effect. CONCLUSIONS We propose that increased coupling by gap junctions is part of satellite glial cell activation, and that augmented coupling contributes to the lowering of pain threshold in oxaliplatin- and taxol-treated mice. We further propose that gap junction blockers may have potential in treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- R A Warwick
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
11
|
Hooper C, Slocombe R, Day R, Crawford S. Leucopenia associated with abalone viral ganglioneuritis. Aust Vet J 2012; 90:24-8. [DOI: 10.1111/j.1751-0813.2011.00877.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jasmin L, Vit JP, Bhargava A, Ohara PT. Can satellite glial cells be therapeutic targets for pain control? NEURON GLIA BIOLOGY 2010; 6:63-71. [PMID: 20566001 PMCID: PMC3139431 DOI: 10.1017/s1740925x10000098] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Satellite glial cells (SGCs) undergo phenotypic changes and divide the following injury into a peripheral nerve. Nerve injury, also elicits an immune response and several antigen-presenting cells are found in close proximity to SGCs. Silencing SCG-specific molecules involved in intercellular transport (Connexin 43) or glutamate recycling (glutamine synthase) can dramatically alter nociceptive responses of normal and nerve-injured rats. Transducing SGCs with glutamic acid decarboxylase can produce analgesia in models of trigeminal pain. Taken together these data suggest that SGCs may play a role in the genesis or maintenance of pain and open a range of new possibilities for curing neuropathic pain.
Collapse
Affiliation(s)
- Luc Jasmin
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA.
| | | | | | | |
Collapse
|
13
|
Ohara PT, Vit JP, Bhargava A, Romero M, Sundberg C, Charles AC, Jasmin L. Gliopathic pain: when satellite glial cells go bad. Neuroscientist 2010; 15:450-63. [PMID: 19826169 DOI: 10.1177/1073858409336094] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurons in sensory ganglia are surrounded by satellite glial cells (SGCs) that perform similar functions to the glia found in the CNS. When primary sensory neurons are injured, the surrounding SGCs undergo characteristic changes. There is good evidence that the SGCs are not just bystanders to the injury but play an active role in the initiation and maintenance of neuronal changes that underlie neuropathic pain. In this article the authors review the literature on the relationship between SGCs and nociception and present evidence that changes in SGC potassium ion buffering capacity and glutamate recycling can lead to neuropathic pain-like behavior in animal models. The role that SGCs play in the immune responses to injury is also considered. We propose the term gliopathic pain to describe those conditions in which central or peripheral glia are thought to be the principal generators of principal pain generators.
Collapse
Affiliation(s)
- Peter T Ohara
- Department of Anatomy, University of California, San Francisco, California 95143-0452, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gowrishankar K, Slobedman B, Cunningham AL, Miranda-Saksena M, Boadle RA, Abendroth A. Productive varicella-zoster virus infection of cultured intact human ganglia. J Virol 2007; 81:6752-6. [PMID: 17409155 PMCID: PMC1900131 DOI: 10.1128/jvi.02793-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Varicella-zoster virus (VZV) is a species-specific herpesvirus which infects sensory ganglia. We have developed a model of infection of human intact explant dorsal root ganglia (DRG). Following exposure of DRG to VZV, viral antigens were detected in neurons and nonneuronal cells. Enveloped virions were visualized by transmission electron microscopy in neurons and nonneuronal cells and within the extracellular space. Moreover, rather than remaining highly cell associated during infection of cultured cells, such as fibroblasts, cell-free VZV was released from infected DRG. This model enables VZV infection of ganglionic cells to be studied in the context of intact DRG.
Collapse
Affiliation(s)
- Kavitha Gowrishankar
- Center for Virus Research, Westmead Millenium Institute, and Department of Infectious Diseases and Immunology, University of Sydney, Blackburn Building, 2006 NSW, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Dénes A, Boldogkoi Z, Hornyák A, Palkovits M, Kovács KJ. Attenuated pseudorabies virus-evoked rapid innate immune response in the rat brain. J Neuroimmunol 2006; 180:88-103. [PMID: 16930726 DOI: 10.1016/j.jneuroim.2006.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 01/03/2023]
Abstract
Ba-DupGreen (BDG) is a highly attenuated, Bartha-derived pseudorabies virus (PRV) expressing green fluorescent protein (GFP) with immediate-early kinetics. Innate immune mechanisms underlying the low infectivity of the virus and the disappearance of infected neurons from the brain were studied at cellular level following injection of BDG into the spleen. The temporal shift in the expression between GFP and viral structural proteins allowed us to discriminate three stages of viral infection in the compromised neurons in correlation with the ongoing local inflammatory response. Iba1/lectin/OX42-positive microglia were recruited to infected neurons within 4-6 h following the initiation of virus replication, incorporated BrdU, isolated the infected cells before the disintegration of their membranes and phagocytosed collapsed neurons. Ex vivo-labeled blood and bone marrow-derived leukocytes, including ED-1-positive macrophages were involved in the immune cell assembly around compromised neurons, which resulted in the complete clearance of infected neurons from the early-infected brain regions.
Collapse
Affiliation(s)
- Adám Dénes
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Szigony u. 43. Budapest, H-1083, Hungary.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Current information indicates that glial cells participate in all the normal and pathological processes of the central nervous system. Although much less is known about satellite glial cells (SGCs) in sensory ganglia, it appears that these cells share many characteristics with their central counterparts. This review presents information that has been accumulated recently on the physiology and pharmacology of SGCs. It appears that SGCs carry receptors for numerous neuroactive agents (e.g., ATP, bradykinin) and can therefore receive signals from other cells and respond to changes in their environment. Activation of SGCs might in turn influence neighboring neurons. Thus SGCs are likely to participate in signal processing and transmission in sensory ganglia. Damage to the axons of sensory ganglia is known to contribute to neuropathic pain. Such damage also affects SGCs, and it can be proposed that these cells have a role in pathological changes in the ganglia.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel
| |
Collapse
|
17
|
Elson K, Ribeiro RM, Perelson AS, Simmons A, Speck P. The life span of ganglionic glia in murine sensory ganglia estimated by uptake of bromodeoxyuridine. Exp Neurol 2004; 186:99-103. [PMID: 14980814 DOI: 10.1016/j.expneurol.2003.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/20/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Studies of ganglionic glia turnover in the sensory nervous system have implications for understanding nervous system maintenance and repair. These glial cells of the sensory ganglia in the peripheral nervous system (PNS) comprise satellite cells (SCs) and, to a lesser extent, Schwann cells. SCs proliferate in response to trauma such as axotomy; however, the half-life of these glial cells under normal circumstances has not been estimated. To estimate the half-life of sensory ganglionic glial cells, we employed the DNA precursor analog 5-bromo-2'-deoxyuridine (BrdU) to measure the rate of turnover of these cells. BrdU was administered to inbred C57BL6 and outbred Swiss white mice via their drinking water. BrdU incorporation into ganglionic glia in the PNS was estimated by immunofluorescent staining of nervous tissue sections, and the fraction of ganglionic glial cells that acquired BrdU label was measured as a function of time. Mathematical modeling of the rate of uptake of BrdU into murine ganglionic glia enables calculation of the half-life of these cells. The kinetics of BrdU uptake is linear, consistent with ganglionic glia being a homogenous population. The value of the proliferation rate (p) plus death rate (d) derived from the slope of BrdU uptake as a function of time is approximately 2.4 x 10(-3) cells per day. Assuming that p = d (because ganglionic glial numbers are in equilibrium and they are assumed to neither emigrate from, or immigrate into, sensory ganglia), then the daily death rate is d = 1.2 x 10(-3) cells/day, which implies a half-life for ganglionic glia of about 600 days. Thus murine ganglionic glia in the untraumatized state appear to behave as a homogenous, slowly replicating population.
Collapse
Affiliation(s)
- Karen Elson
- Herpes Research Laboratory, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | |
Collapse
|